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 Ethnicity identification for demographic information has been studied for 
soft biometric analysis, and it is essential for human identification and 
verification. Ethnicity identification remains popular and receives attention in 
a recent year especially in automatic demographic information. 
Unfortunately, ethnicity identification technique using color-based feature 
mostly failed to determine the ethnicity classes accurately due to low 
properties of features in color-based. Thus, this paper purposely analyses the 
accuracy of the color-based ethnicity identification model from various color 

spaces. The proposed model involved several phases such as skin color 
feature extraction, feature selection, and classification. In the feature 
extraction process, a dynamic skin color detection is adapted to extract the 
skin color information from the face candidate. The multi-color feature was 
formed from the descriptive statistical model. Feature selection technique 
applied to reduce the feature space dimensionality. Finally, the proposed 
ethnicity identification was tested using several classification algorithms. 
From the experimental result, we achieved a better result in multi-color 

feature compared to individual color space model under Random  

Forest algorithm. 
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1. INTRODUCTION 
The human face is crucial in identifying the person because it is rich in information about personal 

characteristics. Previously, information from the human face has gained much attention especially in the  
soft-biometric analysis [1]. Face providing several important information, including personal identity,  

gender [2], age [2-5], ethnicity [6, 7] , skin tones and emotional expression [8-11]. Ethnicity identification is 

the key demographic attribute, and it plays an important role in many applications [12-14]. Thus, a human 

face must be detected and exploited in order to analyze the facial information. Ethnicity identification is 

challenging because of its ambiguity and complexity. To address the issues, several ethnicity identification 

models have been introduced to enhance the performance in categorizing different ethnic group. Color or 

chromatic-based feature has been used in classifying ethnic group due to some reason. It is based on the 

justification that every person has different skin range, and might include the ethnicity properties, especially 

in controlled condition. The author [14] stressed that the justification of chromatic is less significant lies on 
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the visual appliance of chromatic attributes. Although chromatic-based feature had some improvement in 

detection rate, the results may still not satisfactory due to minimal feature derived from the skin color. 

Several researchers utilized color-based such YCoCg-R in watermarking technique [15], HSV in shadow 

detection [16], cloth retrieval [17] and license plate detection [18].  

The ethnic group generally is formed based on the biological unit which made up from skin color, 

head shape, hair, face shape, and blood type. Ethnic generally is broken into three main categories: European 

(Caucasoid), African (Negroid), and Asian (Mongoloid) [19-21]. Asian skin is yellowish while the European 

is light or brown. On the other hand, African skin color is dark. Ethnic skin color varies because of melanin 
quantity under the skin. Skin color or chromatic-based feature for ethnicity identification has been studied 

previously by [7, 22-25], and their results appeared acceptable. However, several justifications that different 

ethnic might share similar skin tones. For example, skin tone from Southern Indian, and African might be 

clustered in the same dark skin tone even though they are from different ethnics. The worst case is that the 

skin tone is sensitive to uncontrolled illuminations that can produce errors [26]. Ethnicity identification based 

on a chromatic feature from the previous articles mentioned in psychological [26], which that skin tone does 

not have a relationship to ethnic representation. The justification is based on the psychological view with less 

of evaluation on the various color-based features. Brooks and Gwinn [27] examined the correlation between 

‘White’ and ‘Black’ people under the skin tone characteristic. They perceived that ethnicity does not 
determine by the skin tone. Though, the faces were converted into a grayscale format without presenting the 

result within the various color space model such as RGB, YCbCr, HSV, YUV, CIE Lab and CIE Luv.  

This paper investigates the interrelation between ethnicity and color by proposing a new method in 
finding the optimal color-based feature from various color spaces for improving automatic ethnicity 

identification model under multi-class ethnic group. The proposed method employs three phases: skin color 

feature extraction, feature selection, and a classification phase. The skin colors were employed using several 

color spaces such as RGB, YCbCr, HSV, YUV, CIE Lab and CIE Luv. The rest of this paper is organized as 

follows: Section II provides a brief introduction to the methodology of the proposed model. Section III 

describes the results and analysis, and Section IV concludes the paper.  

 

 

2. RESEARCH METHOD 
This study aims to analyze the performance of ethnicity identification based on the color feature 

from the face images. The proposed ethnicity identification model is divided into three major phases.  
The first phase is skin color feature extraction which exploits the color properties from the face image using 

skin color detection. The second phase is feature selection were applied to reduce the dimensionality of the 

obtained features from the first phase. The last phase is the classification which applied to several 

classification algorithms. 

 

2.1.   Skin Color Feature Extraction 
The skin color was carried out based on the color of each face skin. We used our skin color 

detection which introduced in [28-30]. The skin color detection was applied as the pre-processing stage to 

extract the skin color information. Here, viola-jones face detection algorithm was employed to find the 

human face, extract the skin thresholds and classify the input image. Extraction of color-based from the  

face-skin was carried out. The face region was then converted into five color spaces which are YCbCr, YIQ, 
HSV, CIE Luv, and CIE Lab. The Y, Cb, and Cr are the skin feature vector for YCbCr color channels 

obtained from the face-skin region. The skin pixel from the face-skin region extracted in the form of a vector. 

In the end, these extracted skin color pixels were presented into a new feature vector by calculated using a 

descriptive statistical feature. There are nine descriptive statistical feature utilized for ethnicity features which 

are: minimum, maximum, mean, median, mode, standard deviation, variance, skewness, and kurtosis. The 

detail description with the formula of the descriptive statistics is presented in Table 1. All nine-descriptive 

statistic feature were calculated based on each skin vector of the color channel. A total of 162 features were 

generated from 18 color channels (3 × 6 color space including RGB), and nine descriptive statistics.  

Where, 

n is the number of skin pixels, 

p is the nth skin pixels 

li lower limit of modal class 
f0 frequency of the preceding modal class, and 

i class interval of modal class 
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Table 1. Description Statistics for Color Features 
No. Feature Formula 𝑓1 Minimum The lowest pixel value 𝑓2 Maximum The highest pixel value 𝑓3 Mean �̅� = ∑ 𝑝𝑛  𝑓4 Median 

𝑛 + 12  𝑓5 Mode 𝑙1 + 𝑓1−𝑓02𝑓1 − 𝑓0 − 𝑓2 × 𝑖 
𝑓6 Standard deviation 𝑠 = √∑(𝑝 − �̅�)𝑛 − 1  𝑓7 Variance 𝑠2 =  ∑(𝑝 − �̅�)𝑛 − 1  𝑓8 Skewness 

𝛼2 =  𝑛(𝑛 − 1)(𝑛 − 2) ∑ (𝑝 − �̅�𝑠 )2 

𝑓9 Kurtosis 

𝛼3 =  { 𝑛(𝑛 − 1)(𝑛 − 1)(𝑛 − 1)(𝑛 − 3) ∑ (𝑝 − �̅�𝑠 ) −  3(𝑛 − 1)2(𝑛 − 2)(𝑛 − 3)} 
 

 

The 𝑓1 until 𝑓9 indicates the feature vector for each color channels. For instance, 𝑓1_𝑅, 𝑓1_𝐺, 𝑓3_𝐵 

respectively for 𝑅, 𝐺 and 𝐵 color channels which will formed nine color features from 𝑅𝐺𝐵 color space 

under maximum descriptive statistical feature. The following feature vector 𝑓2 will having the same process 

of vectorization until feature vector of 𝑓9. The process of color-based extraction using our previous skin 
color detection and calculation of descriptive statistical feature is illustrated in  

Figure 1. The ethnicity identification model utilized the skin color from the face candidate as the 

key feature. Extraction of skin color from the face was carried out by converting the skin vector into six 

different color spaces. At the end of this phase, a feature space obtained where six color spaces were 

performed to characterize the human face for classifying the ethnic group. Feature space formed 162 

attributes consisted of the descriptive statistical feature of each color channels from all six color spaces.  

 

 

 
 

Figure 1. The flowchart of the extraction skin color using skin color detection algorithm, and descriptive 

statistical features 

 

 

2.2.   Feature Selection using Wrapper-based Subset Evaluator 
This phase implemented a feature selection method which aims to reduce the dimensionality of 

feature space. The feature selection chose only the most relevant features by removing irrelevant features by 

using wrapper subset evaluation and genetic algorithm (GA) search method. Concerning the number of 
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images used for this study, the ethnic groups for each ethnic group were specified accordingly for training 

and testing. A total of 343 face images are for Asian, 929 face images for Caucasian, 216 African-American, 

and 62 face images for Hispanic. The Accuracy of the Ethnicity Identification Model based on Different 

Color Spaces (Trainset) as shown in Table 2.  

 
 

Table 2. The Accuracy of the Ethnicity Identification Model based on Different Color Spaces (Trainset) 

Classifier 
Color Features 

RGB YCbCr YIQ HSV CIE Lab CIE Luv All 

Naïve Bayes 0.683 0.690 0.715 0.627 0.711 0.739 0.686 

BayesNet 0.692 0.685 0.720 0.733 0.699 0.716 0.709 

SVM 0.599 0.601 0.756 0.688 0.610 0.608 0.599 

k-NN 0.818 0.857 0.871 0.858 0.876 0.894 0.899 

Random Forest 0.845 0.887 0.870 0.885 0.878 0.880 0.894 

MLP 0.841 0.876 0.860 0.874 0.863 0.881 0.924 

 
 

As mentioned in the feature extraction phase, there are 162 attributes obtained which from six color 

spaces and descriptive statistical calculation. This phase aims to find the optimal feature space from  

color-based features. The feature selection consists of a genetic algorithm to search for the best population. 

GA search for the best feature was set based on the population of each mutation. Configuration of GA was 

set as, maximum generation = 20, crossover probability = 0.6, and population size = 20.  

 

2.3.   Classification Modelling 
The proposed ethnicity identification used wrapper feature selection method which is embedded the 

classifier in the feature selection processes. For the classification modelling, we used several machine 

learning algorithms such as Naïve Bayes, BayesNet, k-Nearest Neighbour (k-NN), support vector machine 

(SVM), Random Forest and Multilayer Perceptron (MLP).  

 

 

3. RESULTS AND ANALYSIS 
The color might be affected due to several factors such as image background, eyes, mouth, lipstick, 

etc. In order to extract accurate skin region from the human face(s), the skin color detection was used. It was 

designed to detect the skin region from the image accurately by utilizing the face-skin as the initial sample 
for generating the skin threshold values. Thus, the skin region which segmented then exploited based on the 

color level. Table 2 shows the results of the identification model using skin color feature before the feature 

selection process during the training stage. The RGB color space achieved the highest accuracy with 84.5% 

using Random Forest classifier. Similarly, to YCbCr achieved the highest accuracy with 88.7% using 

Random Forest classifier. On the other hands, k-NN classifier produced the highest accuracy of 87.1% and 

89.4% under YIQ and CIE Luv color feature, respectively. Consequently, Random Forest accomplished the 

competitive accuracy for two color features which are HSV, and CIE Lab with respectively 88.5% and 

87.8%. Among the individual color feature, CIE Luv produced the highest accuracy when using k-NN 

classifier. For color-based feature, the combination color feature for trained stage achieved the highest 

accuracy compared to individual color features. The k-NN and Random Forest produced almost comparable 

accuracy with both 89.9% and 89.4%. According to the results in Table 2, there are three dominant classifiers 

that can be used for ethnicity identification model; k-NN, Random Forest and MLP. Unfortunately, other 
classification algorithms such as Naïve Bayes, BayesNet and SVM have produced the lowest accuracy 

compared to k-NN, Random Forest and MLP. The Naïve Bayes, BayesNet and SVM classifiers only 

achieved 0.686, 0.709, and 0.599 respectively which are lower than 0.8. From the results, it is shown that the 

color-based or chromatic-based feature has the capability to identify the ethnic group. However, color space 

and classification algorithm is chosen highly affects the performance of ethnicity identification.  

Further investigation was done on the testing set. The testing set was prepared based on 30% of the 

total dataset. Table 3 shows the performance of ethnicity identification in term of accuracy of CIE Luv (best 

individual color space), train set, and test set in the combined color feature. Based on the results, the accuracy 

of the test set dropped in each classification algorithm. For instance, Naïve Bayes classifier dropped from 

0.686 from to 0.574. BayesNet classifier also dropped from 0.709 to 0.556 in the combined feature.  

The trends also occurred in other classifiers: SVM, k-NN, Random Forest and MLP. Among all the 
classifiers of the test set, Random Forest revealed the highest accuracy with 0.756. It is then followed by 

MLP classifier with 0.712 and k-NN with 0.642. However, the accuracy of ethnic identification especially in 

the test set is still considered low. Besides, to evaluate the performance of the proposed model, ROC analysis 

was done under various color space models and classification algorithms.  
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Apart from the classifier perspective, Figure 2 show the ROC curves for all ethnic groups in CIE 

Luv color space. Visual examination on ROC curves for three classifiers implies that the Random Forest 

classifier has superiority over the other tested classifiers. In can be shown by the average ROC in Random 

Forest which achieved 0.973. The MLP classifier falls under the second with weighted ROC 0.958 and k-NN 

with weighted ROC 0.914. It can be concluded that Random Forest classifier and CIE Luv color space as the 

color feature are the best matches during the experimental. However, the ROC dropped in k-NN, Random 

Forest, and MLP classifier respectively at 0.650, 0.853 and 0.731. Classifier k-NN only achieved 0.700 ROC 

in the test set. Meanwhile, Random Forest achieved much higher compared to k-NN with 0.881 ROC. Then 

followed by MLP classification with 0.855 ROC. These showed that, Random Forest classifier also 

performed well in a combined color feature in identifying ethnic groups.  
 

 

Table 3. Comparison of the ethnicity identification in CIE Luv (TrainSet), combined color feature  

(TrainSet and TestSet) 

Classifier 
Color Features 

CIE Luv All (TrainSet) All (TestSet) 

Naïve Bayes 0.739 0.686 0.574 

BayesNet 0.716 0.709 0.556 

SVM 0.608 0.599 0.601 

k-NN 0.894 0.899 0.642 

Random Forest 0.880 0.894 0.756 

MLP 0.881 0.924 0.712 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 2. ROC curves of ethnicity identification for CIE Luv color space using (a) kNN (b) MLP and (c) 

Random Forest classifier 
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To have a clearer understanding of the finding in each ethnic group, a confusion matrix was 

generated in testing dataset. Figure 3 shows the confusion matrix in k-NN, Random Forest and MLP 

classifier using the combined color feature. In  Figure 3(a), the k-NN identified 67 Asian ethnics out of 147 

with 0.456 TPR. Almost half of the Asian ethnic falsely identified in Caucasian (68), African (17), and 

Hispanic (8). For Caucasian ethnic, k-NN has successfully identified 303 out of 399 that produced 0.759 

TPR. However, k-NN suffers low TPR in Hispanic ethnic that produced 1 out of 28 face images.  

The Hispanic ethnic was mostly classified as Caucasian ethnic. Meanwhile, the TPR result in Figure 3(b) for 

Asian, Caucasian, and African was reported to be better than in k-NN. Unfortunately, Random Forest 
suffered in identifying Hispanic ethnic which alse faced in the k-NN classifier. The Hispanic ethnic was 

falsely classified as Asian and Caucasian ethnic. It also occurred when using MLP classifier. The k-NN, 

Random Forest, and MLP classifiers suffer in characterizing the Hispanic ethnic successfully. Most of the 

Hispanic ethnic were falsely classified as Caucasian ethnic.  

 
 

 
 

Figure 3. Confusion mattix of combined color features for (a) kNN, (b) Random Forest and (c) MLP 

classifier in all ethnic group 

 

 

3.1.   Results on Optimal Features 
As described earlier, feature selection was implemented using wrapper subset approach. Based on 

the results given in Table 4, the number of selected features is significantly reduced compared to the original 

feature space which is 162 features in total. Naïve Bayes reduced to only nine features over 162. The 

BayesNet and MLP on the other hands reduced to 8 features. Besides, Random Forest can reduce up to 12 

features. Meanwhile, k-NN reduced to 20 features which is the largest selected features among the other 

classifiers. However, the selected features obtained were considered small compared to the original  

feature space.  

The selected color-based feature reduced almost 93% on average of all classifiers. This mean, the 

majority of the color feature were irrelevant to characterise each ethnic group. For color-based feature, 

Random Forest showed the dominant result which produced accuracy 0.755 in the test set. The presented 

result in the above table indicates chromatic feature which is skin color have a good relationship with human 

ethnicity. Therefore the selected features are RGB (f8_G and f5_B), YCbCr (f1_Cb), YIQ (f7_Y, f2_Q, 
f3_Q), HSV (f7_H, f4_S), CIE Lab (f3_b) and CIE Luv (f9_L, f7_u). The component represents the color 

model, and the selected feature is the descriptive statistical feature corresponds to each color component. 

Though, it might not be significant enough to represent accurate ethnicity identification when exploiting skin 

color feature as the main ethnic feature vectors. Combination of color and texture feature might help to 

increase the performance of ethnicity identification.  

 

 

Table 4. Performance Analysis of the Original Skin Color Feature Space and Optimized Feature  

Space Dimension 
Classifier Original Feature Space Reduced features Accuracy (Train, Test) 

Naïve Bayes 

162 

9 0.686, 0.574 

BayesNet 8 0.709, 0.556 

k-NN 20 0.899, 0.694 

Random Forest 11 0.888, 0.755 

MLP 8 0.924, 0.703 
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4. CONCLUSION 
As a conclusion, type of color space model used influenced the accuracy of the model.  

The individual color space model does have a unique feature to characterize the ethnic group as found CIE 

Luv color space. Thus, color-based with combined features is much more preferred compared to the 

individual color model. The initial findings in the proposed ethnicity identification using color-based as the 

key feature have shown a limitation in producing a reasonable performance in the accuracy perspective.  

As seen in the results, the accuracy and the ROC decreased significantly because the identification of 

ethnicity failed to classify, especially in the successful Hispanic group. For this reason, we would like to 

improve the identification performance of the ethnic group by examining the additional features available 

especially from the face texture features.  
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