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Abstract

The paper presents a generative design approach using a Genetic Algorithm (GA), which is structured based on a novel

offspring selection strategy. The proposed selection approach commences while enumerating the offsprings generated

from the selected parents. Afterwards, a set of eminent offsprings is selected from the enumerated ones based on

the following merit criteria: space-fillingness to generate as many distinct offsprings as possible, resemblance/non-

resemblance of offsprings to the good/bad individuals, non-collapsingness to produce diverse simulation results and

constrain-handling for the selection of offsprings satisfying design constraints. The selection problem itself is formu-

lated as a multi-objective optimization problem. A greedy technique is employed based on non-dominated sorting,

pruning, and selecting the representative solution. According to the experiments performed using three different ap-

plication scenarios, namely simulation-driven product design, mechanical design and user-centred product design,

the proposed selection technique outperforms the baseline GA selection techniques, such as tournament and ranking

selections.

Keywords: Generative design, Genetic algorithm, Mating selection, Optimization, Non-dominated sorting,

Angle-based pruning

1. Introduction1

Optimization is the process of finding an alternative2

that is as fully perfect, functional, or effective as pos-3

sible. A designer comes up with a new idea and tries4

different variations on an initial concept to improve it.5

However, he/she may not always anticipate all possi-6

ble variations, as his/her intuition is limited. Therefore,7

an algorithm-driven design process can empower de-8

signers and achieve the desired objectives within given9

constraints. Genetic algorithm (GA) is an optimization10

technique based on the principles of genetics and natu-11

ral selection. It can be employed in various engineer-12

ing tasks such as design and computer-aided engineer-13

ing. Starting with an initial population consisting of14

distinct designs and their fitness values, the population15

evolves under the specified selection rules. The work16

in this paper focuses on the selection technique of GA17

that is used in crossover mating. Rather than employing18
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a probabilistic-based selection technique, as used in the 19

baseline techniques (such as ranking and tournament se- 20

lections), a systematic selection approach is employed. 21

Offsprings generated in this way can better scan the de- 22

sign space, and therefore, more desirable offsprings are 23

likely to emerge in terms of the desired objectives. 24

The proposed approach is developed for single-point 25

crossover (SPC), which can also be customized and em- 26

ployed for the other crossover operators, such as two- 27

point crossover. In SPC, one crossover point is selected: 28

Chromosomes from the beginning to the crossover point 29

are copied from one parent, and the rest are copied from 30

the second parent. Probabilistic-based selection meth- 31

ods produce mating pairs based on the individuals’ fit- 32

ness values. The individual with the lowest fitness value 33

has the greatest probability of mating. However, such a 34

probabilistic approach may generate similar offsprings, 35

and thus, it does not guarantee the generation of distinct 36

offsprings in the resulting population. 37

The GA selection method proposed in this paper aims 38

to generate a set of offsprings (a solution consisting of 39

individuals) from the mating pool based on the follow- 40



ing five quality criteria:1

1. Space-filling offsprings: The offsprings obtained2

after SPC mating should be as different from each3

other as possible, which enables users to better ex-4

plore a design space consisting of many offsprings.5

In this way, a more desirable offspring (i.e., off-6

spring with a lowest fitness value) can be obtained7

in the design stage;8

2. Non-resemblance in individuals with higher fit-9

ness values: The offsprings should resemble the10

individuals with higher fitness values (i.e., bad in-11

dividuals) as little as possible. In other words, the12

offsprings should reside in the design space posi-13

tions that are far away from the bad individuals;14

3. Resemblance in individuals with lower fitness15

values: The offsprings should resemble the indi-16

viduals with lower fitness values (i.e., good indi-17

viduals). Good individuals are likely to be close to18

the optimum solution (i.e., the individual with the19

minimum fitness value) in the design space;20

4. Non-collapsing offsprings: If two offsprings does21

not share the same parameter value, this charac-22

teristic is described as non-collapsing (NC) off-23

springs. Running two collapsing experiments24

might provide similar results, and ultimately,25

causes a waste of computational effort [1]. Al-26

though it is not always possible to produce non-27

collapsing offsprings in GA, it is preferable to gen-28

erate NC offsprings as much as possible; and29

5. Feasible offsprings: A design space consists of30

feasible and infeasible designs. A design is feasi-31

ble if all the design constraints are satisfied; other-32

wise, it is infeasible. Feasible individuals may pro-33

duce infeasible offsprings in SPC mating, which is34

undesirable.35

The probabilistic-based GA selection techniques36

(such as tournament selection) give higher priorities for37

the parents having lower fitness values to mate. The38

second and third quality criteria favors the generation of39

offsprings, which should resemble/not resemble in indi-40

viduals with lower/higher fitness values. This approach41

is similar like those of the probabilistic-based GA selec-42

tion techniques. However, this paper further investigates43

the use of the space-fillingness and non-collapsing cri-44

teria in the GA selection process. Based on all quality45

criteria, we also propose a multi-objective GA selection46

strategy using Non-dominated Sorting.47

Figure 1: A two-dimensional (2D) case for the non-space-filling (a),

space filling (b) and space-filling with non-collapsing (c) designs.

Fig. 1 illustrates a two-dimensional (2D) case for the 48

non-space-filling (a), space filling (b), and space-filling 49

with non-collapsing (c) designs. The second and third 50

criteria are mainly considered by the baseline GA se- 51

lection methods, whereas the first and fourth are not. 52

A design test case (the vessel case [2]) is illustrated in 53

Figure 2. While considering the above quality criteria to 54

generate offsprings, their (minimum) fitness values ob- 55

tained are investigated. An algorithm considering these 56

criteria is executed 100 times. We have mostly seen de- 57

creases in or same fitness values at the end of the iter- 58

ations in the algorithm runs. We think that the quality 59

criteria considered enable to scan the design space well 60

so that offsprings with minimum fitness values can be 61

found. This claim is valid for 98 algorithm runs (among 62

100) for the test case in Figure 2. 63

In the proposed GA selection approaches, all possible 64

offsprings in SPC mating are first generated. A desired 65

number of offsprings is then sampled while considering 66

the five criteria mentioned above. The research prob- 67

lem is formulated as a multi-objective optimization. A 68

greedy approach is chosen to find the best offsprings, 69

based on non-dominated sorting, pruning, and selecting 70

the representative solution. Our method involves opti- 71

mization process, therefore needs more computational 72

time compared to the baseline GA selection methods. 73

The proposed approach can be particularly useful in 74

simulation-driven product design, in which high com- 75

putational simulation times are required to analyze de- 76

signs. For example, wind tunnel tests for car body and 77

aircraft wings are costly and time-consuming, and there- 78

fore a limited number of designs can be tested. The 79

proposed multi-criteria based GA selection algorithm 80

can well scan the design space (unlike the probabilistic- 81

based GA selection techniques such as ranking and 82

tournament selections) and carefully select the designs, 83

which can increase the possibility of exploring a more 84

plausible design (i.e., a design with lower fitness value). 85

Besides simulation-driven product design, the proposed 86

technique is validated through mechanical design and 87
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Figure 2: Plot of (minimum) fitness values obtained versus number of iterations for a test case (the vessel case [2]) when the quality criteria

(such as space-fillingness, non-collapsingness) are considered in the offspring generation. An algorithm considering these criteria is run 100 times.

(Minimum) fitness values (for the obtained offsprints) mostly decrease or are same at the end of iterations in the algorithm runs except two of the

runs (shown with dashed black ellipses).

user-centered product design scenarios.1

The remainder of this paper is organized as follows:2

Section 2 reviews the relevant literature. Section 3 ex-3

plains the proposed sampling-based selection technique4

in crossover mating. The experiments and discussion5

are given in Sec. 4. Finally, concluding remarks and6

opportunities for future work are presented in Sec. 5.7

2. Related works8

The research in this paper is mainly relevant to gen-9

erative design and GAs; thus, these fields represent the10

focus here.11

2.1. Generative design12

During the last decade, several advancements have13

been made in the field of generative design for various14

applications. Multiple techniques have been proposed15

by different researchers for architectural applications,16

and a few other techniques are based on the generative17

creation of a specific class of products. The develop-18

ment of generative systems has passed through various19

stages, mostly led by academic researchers and its the-20

oretical implementation has already been widely recog-21

nized [3]. Krish [4] developed an exhaustive searched-22

based generative technique for creating design alterna-23

tives. In this technique, designs were randomly gener-24

ated in the design space based on a user-defined thresh-25

old value, which was set on the Euclidean distance be-26

tween the generated designs. A major drawback of27

this technique was that it was based on an exhaustive28

search and explored a limited region of the design space,29

thereby preventing the user from generating creative de-30

signs. Gunpinar et al.[5] introduced a generative de-31

sign and drag coefficient prediction system for Sedan32

car side silhouettes based on computational fluid dy-33

namics. A sketching system called DreamSketch was34

developed by Kazi et al. [6] to support generative design35

in the conceptual phase. In DreamSketch, a user gener- 36

ated an initial design by sketching, and its alternatives 37

were then generated in the sketched context. To utilize 38

this system, the user requires digital sketching abilities. 39

An optimization based generative design algorithm was 40

proposed by Khan and Awan [7] to explore continuous 41

and discrete parametric design spaces. Despite being 42

an efficient technique for creating visual variations of 43

designs, [7] cannot be used to explore shapes for any 44

performance objective. 45

A symmetric-based generative system was proposed 46

by Sousa and Xavier [8] for the digital fabrication of ge- 47

ometric shapes, such as rhombicuboctahedrons, cuboc- 48

tahedrons, and triangular prisms. Adam et al. [9] pro- 49

posed a biologically motivated algorithm for the gener- 50

ative creation of leaf venation patterns. Shea et al. [10] 51

and Turrin et al. [11] developed performance-driven 52

generative design systems to create lightweight archi- 53

tectural structures. Different researchers have also pro- 54

posed generative design techniques to create site layouts 55

[12], as well as energy efficient and eco-friendly build- 56

ing designs [13]. Recently, Gunpinar and Gunpinar [14] 57

proposed a design sampling technique for computer- 58

aided design (CAD) models to produce space-filling de- 59

signs via a particle tracing method. Khan and Gun- 60

pinar [15] also suggested another CAD model sam- 61

pling technique based on the teaching-learning-based 62

optimization of Rao et al. [2]. The designs sampled 63

via their method have a semi-Latin Hypercube property 64

and space-filling [1]. Khan also generated [16] space- 65

filling designs via spatial simulated annealing [17] for 66

customer-centered products. Finally, Dogan et al. [18] 67

presented a sampling approach for deriving profiles of 68

an existing product design using profile similarities and 69

primitive shapes. 70

In the literature, techniques like shape syntheses 71

[19, 20], shape grammars [21] and L-systems [22] have 72

been widely utilized by researchers to develop genera- 73

3



tive systems. A shape grammar is a generative method1

for representing and creating a design by embedding2

geometric logics/rules, and this approach has been uti-3

lized in different applications, such as architectural de-4

sign [23], product design [24], 2D automotive design5

[25] and embroidery design [26]. Despite being its us-6

age for different applications, shape grammar’s usage is7

limited to industry. This is because of its computational8

complexity and difficulty in developing user interfaces9

[27]. Furthermore, shape grammar requires a different10

set of geometric rules for each application, which re-11

quires special expertise [4]. An L-system is a variation12

of shape grammar that has been used for different de-13

sign problems, such as computer pattern design [28] and14

complex city planning/simulation [29]. L-systems are15

also based on the production rules, which are applied16

in the form of a string. In these techniques, designs17

are generated by applying string rewriting mechanisms18

[30]. Among the other methods, shape syntheses are su-19

perior in terms of creating a higher variation of a design.20

However, these techniques can only be utilized for cre-21

ating alternatives of existing shapes, in which the sys-22

tem is first trained on a large dataset of existing shapes23

and are then synthesized to create variant alternatives.24

2.2. Genetic algorithms25

GAs represent one of the powerful meta-heuristic op-26

timization techniques, which was originally developed27

by John Holland in the 1960s, and since then, they28

have been used ([31]), improved ([32, 33]), adapted29

([34]), and hybridized ([35]) with other evolutionary al-30

gorithms for a wide variety of applications. Mostly, the31

revised or new GAs are proposed from researchers by32

making improvements on the mutation/crossover oper-33

ator or on the selection techniques. The performance of34

GAs largely relies on these selection methods and op-35

erators. Over the years, there have been a lot of efforts36

made to improve their performance.37

A unimodal distribution crossover operator (UNDX)38

was introduced by Ono et al. [36], which used multiple39

parents and created offspring around the center of mass40

of the parents. Deep and Thakur [37] proposed a real-41

coded Laplace crossover (LX) operator to improve the42

overall performance of the algorithm. A Taguchi-based43

simulated binary crossover operator was proposed by44

Subbaraj et al. [32] to improve exploitation and robust-45

ness of the algorithm. Elfeky et al. [38] developed a tri-46

angular crossover (TC) operator that can be used for the47

constrained optimization problems. In the TC, two par-48

ents were selected from the feasible region and one par-49

ent from the infeasible region. Recently, Marandi and50

Smith [33] proposed a fluid Genetic Algorithm (FGA)51

with an improved crossover operator called Bron-An- 52

individual. The new operator enabled FGA to have 53

better global learning and diversity rate. The choice 54

of an appropriate selection method is essential, as the 55

general performance of GA depends on it. The selec- 56

tion methods are usually implemented for reproduction 57

(i.e., parent selection), as good parents can produce bet- 58

ter offspring. Several selection methods, such as Geni- 59

tor (steady state) selection, tournament selection, trun- 60

cation selection, linear and exponential rank selection, 61

roulette wheel selection, and stochastic universal sam- 62

pling have been widely used for the different optimiza- 63

tion problem. A detail description and comparison of 64

these selection methods can be found in [39]. 65

Zhong et al. [40] compared the tournament selection 66

with the proportional roulette wheel. It has been found 67

that the former was more efficient in convergence than 68

the later. Julstrom [41] compared the computational ef- 69

ficiency of the linear and exponential ranking with the 70

tournament selection method. Based on the results of 71

his studies, it was found that tournament selection is 72

computationally efficient compared with the ranking se- 73

lection methods. Mashohor et al. [42] examined the 74

performance of inspection systems using the determin- 75

istic, tournament, and roulette wheel methods. From the 76

results, these researchers observed that the determinis- 77

tic method was superior compared with the other two 78

techniques. A comparative study of the proportional, 79

ranking, tournament and Genitor selection methods was 80

carried by Goldberg and Deb [43]. Their study showed 81

that the ranking and tournament selection outperformed 82

the others in terms of convergence speed. 83

Goh et al. [44] proposed a new selection method 84

called sexual selection, which was inspired by Charles 85

Darwin’s selection concept. In this method, the sex of 86

an individual was first determined based on problem- 87

specific knowledge. A pair of individuals were then se- 88

lected in a sequential fashion for matting. Moreover, 89

Anand et al. [45] developed a novel, efficient selection 90

method called Alternis. Here, the population was first 91

sorted in descending order; the individuals were then 92

arranged in alternating fashion, with some left-right ar- 93

rangement according to their fitness values. Afterward, 94

an individual along with its left and right individuals 95

was chosen and placed in the matting pool. An im- 96

proved roulette wheel selection method was proposed 97

by Jadaan et al. [46] to increase the gain of resources, 98

reliability, and diversity as well as to decrease the uncer- 99

tainty in the selection process. Affenzeller and Wagner 100

[47] developed a new self-adaptive selection method for 101

GAs. Most of the work in the literature on the selection 102

methods have been based on the comparison of their 103
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performance in different optimization problems. How-1

ever, there is no substantial amount of research work2

done on creating new and effective selection techniques3

for GAs.4

3. A sampling-based selection method for genetic al-5

gorithms6

3.1. Problem formulation7

A design is a variation of a product whose geomet-8

ric model is represented using design parameters. Once9

the lower and upper bounds (i.e., parameter ranges) for10

the design parameters are set, a design space can be11

formed in which infinite number of designs exist. A12

design space, D, is an n-dimensional space where each13

design parameter stands for a dimension in D and n is14

an integer. Let X be a design, which is represented by15

the design parameters (x1, x2, ..., xn). The lower and up-16

per bounds for the design parameters are denoted by17

(l1, l2, ..., ln) and (u1, u2, ..., un), respectively. Further-18

more, (c1, c2, ..., cw) denotes a set of design constraints19

where w is an integer.20

Let P be the initial population containing Y designs,21

(X1, X2, ..., XY ), with their fitness values, ( f 1, f 2, ..., f Y ).22

The population is divided into two sub-populations23

based on the fitness values: P consists of Y good de-24

signs and P involves Y bad ones (Y = Y + Y). Using25

SPC, a new population is formed from the good designs26

in P. n − 1 SPC points can be defined for a design pair,27

and each SPC mating can yield 2 ∗ (n − 1) different off-28

springs. The number of possible SPC mates is
(

Y

2

)
. As a29

result, 2 ∗ (n − 1) ∗
(

Y

2

)
offsprings can be produced after30

SPC mating of the good designs in P. If the numbers Y31

and n are high, the number of producible offsprings will32

be high. In this work, offsprings are sampled among all33

producible ones while taking the four criteria into ac-34

count.35

3.2. Sampling criteria36

Five quality criteria are considered to choose K off-37

springs among the 2 ∗ (n− 1) ∗
(

Y

2

)
offsprings producible38

after the SPC mating, as detailed in the next sections.39

3.2.1. Space-filling offsprings40

A careful selection of the offsprings is of primary im-41

portance. Space-filling offsprings spread in the design42

space and allows having a global design space explo-43

ration. Audze-Eglais potential energy [48, 1] is em-44

ployed for this and is based on the analogy of mini-45

mizing the forces between the charged particles. The46

potential energy is at the minimum, and therefore, the 47

particles are in equilibrium. The potential energy E1 48

between the chosen offsprings is computed using Eq. 1: 49

E1 =

K−1∑

p=1

K∑

q=p+1

1

M(p, q)2
, (1)

where

M(p, q) =

√√
n∑

i=1

(x
p

i
− x

q

i
)2. (2)

Here, the function M(p, q) computes the distance in 50

the scaled design space D between the offsprings p and 51

q. The coordinates (x1, x2, ..., xn) are the scaled values 52

varying between 0 (the lower bound) and 1 (the up- 53

per bound) for the design parameters (x1, x2, ..., xn). x
i
p 54

and x
i
q, respectively, denote the ith coordinate of the off- 55

springs Xp and Xq. 56

3.2.2. Non-resemblance in bad designs 57

To generate offsprings that are far away from the bad 58

designs, the Audze-Eglais potential energy is again em- 59

ployed. Bad designs push offsprings away from them- 60

selves, which is favored using Eq. 3. Here, M(p, r) 61

computes the distance between the offspring p and the 62

bad design r as in Eq. 2. 63

E2 =

K∑

p=1

Y∑

r=1

1

M(p, r)2
. (3)

3.2.3. Resemblance in good designs 64

In SPC, an offspring is generated by mating two good 65

designs. To favor the generation of offsprings resem- 66

bling the good designs, the metric in Eq. 4 is intro- 67

duced. The energy E3 is minimized if the parents of 68

the offsprings have lower fitness values. Here, f
p

1
and 69

f
p

2
denote the fitness values for the two parents of the 70

offspring p. 71

E3 =

K∑

p=1

( f
p

1
+ f

p

2
). (4)

3.2.4. Non-collapsing offsprings 72

Equation 5 is introduced to avoid collapsing off- 73

springs. For every two different designs (p and q) in the 74

offspring list, it is checked whether they share the same 75

5



value for each design parameter. Collapsing designs are1

penalized using a piecewise function (g) in Eq. 6.2

E4 =

K∑

p=1

K∑

q=p+1

n∑

i=1

g(x
p

i
, x

q

i
), (5)

where

g(x
p

i
, x

q

i
) =


1, if x

p

i
= x

q

i

0, otherwise.
(6)

3.2.5. Feasible offsprings3

The design space consists of feasible and infeasible4

designs. As SPC mating can produce infeasible off-5

springs from feasible designs; infeasible ones should be6

penalized during the offspring sampling stage. Penalty7

function methods [49] can be utilized for the satisfac-8

tion of the design constraints. An energy function, E5,9

is computed separately for each offspring using Eq. 7.10

h(ci) is a piecewise function that has positive values if11

the constraint ci is not satisfied for an offspring. Oth-12

erwise, it is zero (see Eq. 8). zci
denotes the equation13

for ci, which can be 0 (greater/smaller than 0) for the14

equality (inequality) constraints. For example, if the15

constraint c1 is x1 > x3, zc1
is the absolute difference16

between x1 and x3, which is as follows: zc1
= |x1 − x3|.17

E5 =

K∑

p=1

w∑

i=1

h(ci). (7)

where

h(ci) =


0, if the constraint ci is satisfied∣∣∣zci

∣∣∣ , otherwise.
(8)

3.3. The offspring sampling technique18

Let ζ be the offspring list containing all producible19

offsprings in SPC mating of the good designs in P.20

The objective is to sample/choose K offsprings, (X =21

X1, X2, . . . , XK), in ζ based on the criteria in Sec. 3.2. A22

multi-objective optimization problem can be formulated23

as follows:24

min→ E, (9)

Subject to X ⊆ Z ∈ D. (10)

where

E = (E1(X), E2(X), E3(X), E4(X), E5(X))T (11)

Z in Eq. 10 denotes the feasible design space, which 25

consists only of feasible designs. ∗T stands for the trans- 26

pose operator. E1(X), E2(X), E3(X), E4(X), and E5(X) 27

represent the five energy functions for the K offsprings 28

X. 29

There is no one best solution to a multi-objective op- 30

timization problem; rather, a set of trade-off solutions 31

exist called non-dominated or Pareto-optimal solutions 32

[50]. In other words, no solution dominates or is bet- 33

ter than the other solutions in the set. In this work, a 34

greedy approach is chosen to sample K offsprings, as 35

summarized in Algorithm 1. Here, s denotes a solution 36

consisting of K offsprings and S is a list containing solu- 37

tions. Let M and L be the number of offsprings in ζ and 38

Pareto-optimal solutions, respectively. Starting with a 39

randomly generated solution consisting of K offsprings, 40

the offsprings in the solution are replaced one by one 41

with the offsprings in ζ and inserted into S , which con- 42

tains K∗M new solutions at the end. The Pareto-optimal 43

solutions are then found, which are denoted by S p. The 44

solutions are pruned using pruning techniques. This 45

procedure is repeated until the stopping criterion (SC) 46

is met. Finally, the representative solution is selected 47

among the obtained Pareto-optimal solutions. 48

Algorithm 1 The Offspring Sampling Algorithm

1: Select K random offsprings (i.e., the solution s) in

ζ.

2: Insert s into the solution list S P.

3: while The algorithm is not stopped do

4: for h = 1 to L do

5: Set s to the hth element of S P.

6: for j = 1 to K do

7: for k = 1 to M do

8: Replace the jth offspring of s with the kth

offspring of ζ.

9: Insert s into the list S .

10: end for

11: end for

12: end for

13: Find the Pareto-optimal solutions, S P, for S .

14: Prune the solutions in S P and update them.

15: end while

16: Choose the representative solution.

3.3.1. Domination criteria 49

Let X̂ and X̃ be the two solutions consisting of K off- 50

springs. X̂ is said to dominate X̃ (i.e., X̂ ≺ X̃, X̂ non- 51

6



dominated by X̃) if the following condition is true:1

X̂ ≺ X̃ ⇔ [E1(X̂) ≤ E1(X̃)] ∧ [E2(X̂) ≤ E2(X̃)]∧

[E3(X̂) ≤ E3(X̃)] ∧ [E4(X̂) ≤ E4(X̃)]∧

[E5(X̂) ≤ E5(X̃)] ∧


5∑

i=1

[Ei(X̂) < Ei(X̃)]

 .

Here, X̂ is no worse than X̃ in all energies, and X̂ is2

better than X̃ in at least one energy. A solution is said3

to be Pareto optimal if it is not dominated by any other4

solution.5

3.3.2. Pruning solutions6

Pruning algorithms are applied to select a subset of7

Pareto-optimal solutions. Two types of pruning are em-8

ployed, which are outlined as follows:9

• Pruning noisy solutions: During the offspring re-10

placement (see line 8) in the sampling algorithm11

(Algorithm 1), offsprings that have same design12

parameter values can be obtained. This will pro-13

duce a solution with an extremely high value of E114

as the denominator in Eq. 1 becomes zero. Such15

solutions are undesirable, and thus, they should be16

pruned. If a solution has an energy value α times17

greater than the median of the solutions in any en-18

ergy, it will be discarded. In this study’s experi-19

ments, α is set to 100; and20

• Angle-based pruning: An angle-based pruning21

algorithm with specific bias parameter is employed22

as that of Sudeng and Wattanapongsakorn [50].23

The pruning is performed using Eq. 12. The so-24

lution X̃ will be discarded if X̂ is not worse than25

X̃ and the angle θ between X̃ and X̂ is less than26

the threshold angle δ for at least one of the ener-27

gies. The geometric angle in Eq. 13 is denoted28

by θi, where i is the ith energy. ∆E j is the differ-29

ence between the ith energy values for X̃ and X̂.30

To determine the threshold angle δi in Eq. 14, all31

non-dominated solutions are first sorted in ascend-32

ing order for each energy. The inter-quartile range33

of the sorted data for each energy is then calcu-34

lated. Finally, the inter-quartile range of average35

distance of the ith energy value between two con-36

secutive non-dominated solutions is computed. τ37

ranging from 0 to 1 is the bias intensity of each en-38

ergy. A higher value for τ indicates a less preferred39

energy.40

X̂ ≺ X̃ ⇔

5∑

i=1

([Ei(X̂) ≤ Ei(X̃)] ∧ [|θi(X̂, X̃)| ≤ |δi|]) > 0,

(12)

where

θi = tan−1



√∑5
j=1, j,i (∆E j)

2

∆Ei


. (13)

δi =

[
tan−1

(
IQS i

IQi

)]τ
. (14)

3.3.3. Selection of the representative solution 41

One way to select a single solution (i.e., the repre- 42

sentative solution) from the set of Pareto-optimal solu- 43

tions is to choose the one that minimizes the distance 44

to the ideal solution similar to that described by Cheikh 45

et al. [51]. The ideal solution represents the solution 46

that simultaneously optimizes all the objectives being 47

considered, and can be non-existing. To set the ener- 48

gies (E1 − E5) for the ideal solution, a large number 49

(i.e., 10000) of solutions (i.e., a set of K offsprings) are 50

first randomly generated, and the energies for the so- 51

lutions are then computed. The energies for the ideal 52

solution are the minimum energies among the energies 53

of all randomized solutions. The representative solu- 54

tion of S P has the closest proximity to the ideal solu- 55

tion. In other words, the distance between a solution 56

and the ideal solution is the Euclidean distance between 57

the energies of the two solutions. Here, each energy 58

term represents a separate dimension. Note that all the 59

energy values should be normalized before employing 60

the distance function. Scaling is performed using mini- 61

mum (i.e., lower bound) and median (i.e., upper bound) 62

energy values for the 10000 randomized solutions. The 63

maximum energy values in the randomized solution set 64

is not considered as the upper bound, as one energy 65

term can dominate another one due to the existence of 66

the Pareto-optimal solutions involving very large energy 67

values particularly for E1. 68

3.3.4. Stopping criteria 69

The while loop in Algorithm 1 runs until one of the 70

SCs is met; SCs are as follows: 71

• SC1: The energy values for the representative so- 72

lutions in three consecutive runs are very similar. 73
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The similarity means that the absolute difference1

between two energies is less than a threshold, such2

as 0.001;3

• SC2: The algorithm enters a loop, producing the4

same solutions. Let S Pi
be the Pareto-optimal so-5

lutions obtained after the ith iteration of the while6

loop in Algorithm 1. After a certain period, S Pi
7

and S Pi+a
includes the same solutions following the8

a iterations, where a is an integer; and9

• SC3: The execution time of the algorithm after the10

iteration is greater than the user-defined time t. If11

t is not defined by the user, the above two criteria12

should be satisfied to stop the proposed algorithm.13

This criterion is introduced because the processing14

time may be high for some experiments.15

3.4. The extended offspring sampling algorithm16

Let nt be the number of iterations the while loop in the17

above algorithm does. The computational complexity18

for the algorithm is high, which is O(nt ∗ L ∗ K ∗ M).19

Therefore, a more practical version of the algorithm is20

proposed. Instead of using all Pareto-optimal solutions21

(obtained after applying pruning methodology) in Line22

4 of the offspring sampling algorithm 1, a representative23

solution is selected among them. Line 5 of the offspring24

sampling algorithm is revised as 5’ and is as follows:25

5’. Set h to be the representative solution of the list

S P.

The infeasible offsprings produced in the SPC mating26

are also removed, thus the generation of only feasible27

offsprings is guaranteed. Furthermore, noisy solutions28

are solely pruned in the extended algorithm as a sin-29

gle solution (i.e., the representative solution) is selected30

from the Pareto-optimal solutions, and therefore, there31

is no need to perform angle-based pruning. SC2 or the32

following stopping criterion is met for the convergence33

of the extended algorithm:34

• SC4: The energy values for the representative so-35

lution do not decrease further in an algorithm run.36

4. Test cases and problems37

The proposed GA selection techniques are validated38

for different applications, namely simulation-driven39

product design, mechanical design and user-centered40

product design.41

Table 1: Design parameter ranges for the dental implant model.

Parameter ranges

7.0 ≤ x1 ≤ 11.0 2.05 ≤ x2 ≤ 2.5 0.75 ≤ x3 ≤ 1.5 0.2 ≤ x4 ≤ 0.6

0.05 ≤ x5 ≤ 0.2

4.1. Simulation-driven product design 42

CAE simulations (such as FEA and computational 43

fluid dynamics (CFD)) can sometimes take a large 44

amount of time to analyze a single design. Therefore, 45

it is preferable to find a good solution by testing a lim- 46

ited number of designs via CAE analysis. This section 47

involves there product design cases, where CAE analy- 48

sis is crucial. A dental implant and a car chassis design 49

cases will be outlined here. 50

4.1.1. Dental implant 51

A dental implant for the mandibular first molar tooth 52

was utilized, which was employed by Usta and Onder 53

[52] for material optimization using FEA 1. Figure 3 (a) 54

shows the CAD model for the implant with five design 55

parameters. Here, the terms x1, x2, . . . , x5 denote the de- 56

sign parameters and represent the implant length, top 57

radius, bottom radius, thread length, and thread height, 58

respectively. Table 1 shows the design parameter ranges 59

for this model. 60

Another application area for GA is the engineering 61

optimization [53]. Here, the objective is to minimize the 62

maximum stress in the bones. The initial population is 63

obtained by randomly generating 30 designs with a non- 64

collapsing property [1], which are tested using FEA. 65

The population was divided into two sub-populations 66

based on the maximum stress value (i.e., fitness value): 67

If the value for a design was less than 10.0, the design 68

was inserted into the population P, which was used in 69

SPC mating. Figure 3 (b) shows the FEA model [52], 70

consisting of an implant, crown, abutment, screw, cor- 71

tical bone, and trabecular bone. The generated mesh 72

for the FEA model can be seen in Fig. 3 (c), and the 73

load was 100 Newton axially applied on the crown, as 74

shown in Fig. 3 (d). The side and bottom surfaces of 75

the cortical bone were fixed, and thus, they had zero 76

displacement. 77

4.1.2. Car chassis 78

A sprint car’s chassis frame was also employed to val- 79

idate the performance of the proposed technique 2. The 80

1See https://github.com/???
2See https://github.com/shahrozkhan66/Sprint_Race_

Car_Chassis_Analysis
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Figure 3: (a) Dental implant model. (b) An FEA model involves an implant, crown, abutment, screw, cortical bone and trabecular bone. (c) The

mesh model for the FEA model. (d) Force loading conditions and boundary conditions. (Images taken from [52]).

Table 2: Design parameter ranges for the sprint car’s chassis model.

Parameter ranges

15 ≤ x1 ≤ 24 26 ≤ x2 ≤ 35 58 ≤ x3 ≤ 66 88 ≤ x4 ≤ 95

2.5 ≤ x5 ≤ 5 28 ≤ x6 ≤ 35 0.5 ≤ x7 ≤ 5 20 ≤ x8 ≤ 24

22 ≤ x9 ≤ 27 5 ≤ x10 ≤ 15 25 ≤ x11 ≤ 35 3 ≤ x12 ≤ 8

25 ≤ x13 ≤ 35 8 ≤ x14 ≤ 15 28 ≤ x15 ≤ 38 5 ≤ x16 ≤ 17

18 ≤ x17 ≤ 35 1 ≤ x18 ≤ 3.5 5 ≤ x19 ≤ 10 3 ≤ x20 ≤ 10

5 ≤ x21 ≤ 30 2 ≤ x22 ≤ 8

chassis was designed according to the [54] and tested1

for shape optimization under the static torsional load-2

ing conditions. Figure 4 (a) shows the CAD model for3

the chassis frame with 22 design parameters. Here, the4

terms x1, x2, . . . , x19 are the design parameters, repre-5

senting the horizontal/vertical dimensions of chassis’s6

internal structure; x20 (r20), x21 (r21), and x22 (r22) are7

the fillet radius of the chassis’s boundary structure. Ta-8

ble 2 shows the ranges for the design parameters.9

The objective for a chassis frame was to minimize10

the stresses produced under the static torsional loading11

conditions by rearranging the internal structure of the12

chassis and maintaining the out boundary of the chas-13

sis. In the chassis’s structural analysis, the torsional test14

is one of the important tests, as this validates/rejects the15

chassis structure. For this test, the chassis was assumed16

to act as a cantilever beam with one end fixed and an-17

other end subject to torque about its longitudinal axis18

as shown in Fig. 4 (b). For the safe working of the19

sprint car, the chassis should able to resist the resul-20

tant shear stress. Like the dental implant model, for21

the initial population of designs, Latin Hypercube de-22

signs were randomly created and tested via FEA analy-23

sis under the clockwise moment of 316 Newton-meters24

around the longitudinal axis. The population was di-25

vided into two sub-populations, and designs with stress26

values less than 7E6 Pascal were inserted into the pop-27

ulation P, which was used in SPC mating. The mesh28

results for the chassis are shown in Fig. 4 (c).29

Table 3: Design parameter ranges for the honeycomb heat sink.
Parameter ranges

20.0 ≤ x1 ≤ 40.0 6.0 ≤ x2 ≤ 15.∗ 20.0 ≤ x3 ≤ 40.0 0.0 ≤ x4 ≤ 30.0

8000.0 ≤ x5 ≤ 25000.0

4.2. Mechanical design 30

Five different constrained benchmark mechanical de- 31

sign problems with linear and nonlinear constraints are 32

used for the validation of the GA selection methods. 33

A pressure vessel, a tension and compression spring, a 34

welded beam, and a gear train test cases are described 35

in Rao et al.’s work [2]. Furthermore, a honeycomb heat 36

sink case is outlined in this section. 37

A heat sink example with hexagonal aluminum hon- 38

eycomb fins, introduced by Subasi et al. [55], was also 39

tested. The design parameters were the fin height x0, 40

fin thickness x1, longitudinal pitch x2, angle of attack 41

x3, and Reynolds number x4. Figure 5 shows the CAD 42

model for the honeycomb heat sink. Table 3 shows the 43

design parameter ranges for the heat sink model. 44

The objective for the honeycomb heat sink design is 45

to minimize the friction factor f , which has a mathemat- 46

ical model obtained using regression analysis in Subasi 47

et al.’s work [55]. Latin Hypercube designs were ran- 48

domly created and tested using the mathematical model. 49

The population was divided into two sub-populations, 50

and designs with frictional factors less than 0.4 were in- 51

serted into the population P. 52

4.3. User-centered product design 53

In today’s market, user preferences are important in 54

product design [14]. GA can be used to learn these 55

preferences via surveys. The designs can then be rec- 56

ommended to the users. For this purpose, a wine glass 57

shape is designed using GA based on the SPC mating 58

and proposed GA selection methods. 59

The wine glass model introduced by Gunpinar and 60

Gunpinar [14], with 16 design parameters, is employed, 61
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Figure 4: (a) Sprint car’s chassis model represented using 22 design parameters. (b) Force loading conditions and boundary conditions. (c) The

mesh model with circular beam elements for the sprint car chassis.

Figure 5: Structure of a honeycomb fin (left), top view (middle) and (c) perspective view of a heat sink configuration (right) (Images taken from

[55]).

Figure 6: Wine glass model represented using 16 design parameters

(Images taken from [14]).

as shown in Fig. 6. Two Bezier curves represent the1

glass, and x1, x2, . . . , x16 denote the X and Y coordi-2

nates of its points. Tables 4 and 5 show the geometric3

constraints and parameter ranges, respectively, for the4

model.5

One of the popular application area of GA is the gen-6

Table 4: Design constraints for the wine glass model.

Geometric Constraints

φ1 : f (φ1) = x2 + x1/11.0 − 25.0/22.0 = 0 φ2 : f (φ2) = x6 − x4 ≥ 0

φ3 : f (φ3) = x16 − x14 ≥ 0 φ4 : f (φ3) = x8 − x6 ≥ 0

φ5 : f (φ5) = x15 − x13 ≥ 0

Table 5: Design parameter ranges for the wine glass model
Parameter ranges

0.0 ≤ x1 ≤ 1.5 1.0 ≤ x2 ≤ 1.5 0.0 ≤ x3 ≤ 1.0 1.0 ≤ x4 ≤ 15.0

0.5 ≤ x5 ≤ 1.0 15.0 ≤ x6 ≤ 25.0 0.5 ≤ x7 ≤ 15.0 25.0 ≤ x8 ≤ 35.0

0.5 ≤ x9 ≤ 15.0 30.0 ≤ x10 ≤ 40.0 0.5 ≤ x11 ≤ 15.0 35.0 ≤ x12 ≤ 45.0

0.5 ≤ x13 ≤ 15.0 40.0 ≤ x14 ≤ 50.0 5.0 ≤ x15 ≤ 15.0 45.0 ≤ x16 ≤ 55.0

eration of user-preferred models, as described in Cluzel 7

et al.’s work [56]. A wine glass model was employed in 8

a user study, and three users scored the 20 designs based 9

on their likes/dislikes. The population was divided into 10

two sub-populations based on the participant scoring: If 11

the score for a design was greater than 7.0, it was in- 12

serted into the population P, which was utilized in SPC 13

mating. The new populations, with a population size of 14

10, were then generated using the proposed GA selec- 15

tion technique and the baseline algorithms. The designs 16

10



Figure 7: User interface for the survey.

in the population were again scored by the participants.1

The scores were given based on a 0−10 scale (very poor:2

0.0−2.9, poor: 3.0−4.9, fair: 5.0−6.9, good: 7.0−7.9,3

very good: 8.0−10.0). Note that the survey participants4

did not have any information about the techniques that5

were used to generate the models. Furthermore, the par-6

ticipants spent time observing several design options be-7

fore starting the survey. Figure 7 depicts the user inter-8

face for the survey, which can be found on the web ad-9

dress https://goo.gl/forms/LiShOkMcDze8UQjN2. All10

the users were males without professional design expe-11

rience, and they were aged 23-25 years. Finally, a dif-12

ferent energy for E3 was employed here as higher scores13

are better for the wine glass test case; the calculation is14

as follows, and this is comparable to that of Eq. 4:15

E′3 =

K∑

p=1

(21 − f
p

1
− f

p

2
). (15)

There were 120 designs in total, which were gener-16

ated using the proposed selection technique with τ =17

0.5, τ = 0.75, and τ = 1.0, and the tournament, rank- 18

ing and stochastic universal sampling (SUS) selection 19

techniques. The designs generated using these tech- 20

niques were randomly divided into two to prevent the 21

users from scoring 120 designs at once. A 5-minute 22

break was given after each part of the survey. To check 23

the user’s consistency, we duplicated the designs every 24

20 designs. The consistency score is expressed in per- 25

centiles and computed using Eq. 16, and let υ be the 26

consistency score of a user for his selections, and υs is 27

the difference in the scores given by the user for the du- 28

plicated design s. 29

υ = 100 − (100 ∗

∑6
s=1 υs

6 ∗ 10
). (16)

5. Experiments and discussion 30

The results of the proposed GA selection techniques 31

will be first given and compared with the baseline GA 32

selection techniques. Computational time and conver- 33

gence of the proposed methods will then be discussed. 34

5.1. Results for the test cases and problems 35

The results for the proposed selection techniques are 36

compared with the tournament, ranking and SUS se- 37

lection techniques. The results for the GA selection 38

methods were obtained with the generation of 20 de- 39

signs/offsprings (i.e., K = 20) in SPC mating. Note 40

that the generated population using the techniques men- 41

tioned in this work (along with the initial population) 42

for whole test cases can be found in the supplementary 43

material of this paper. 44

5.1.1. Simulation-driven product design cases 45

Fig. 8 shows the results for the dental implant sim- 46

ulations. The objective here is to minimize the maxi- 47

mum stress on the dental bones. The best three designs 48

(with the minimum maximum stresses) were produced 49

by the extended offspring sampling (S pmExt). The best 50

designs generated using the offspring sampling algo- 51

rithm with τ = 0.75 and τ = 1.0 settings (S mp0.75 52

and S mp1.0, resp.) had lower maximum stress values 53

than those generated using S mp0.5 and the baseline GA 54

selection methods. Besides, the tournament selection 55

method had better performance than the other selection 56

techniques (i.e., ranking, SUS, and the proposed selec- 57

tion algorithm with τ = 0.5). Fig. 9 shows the cor- 58

tical bone models colored with von Mises stresses in 59

MPA for the best two dental implant designs obtained 60

using S mp0.75 and S mp1.0. Table 6 shows the energy 61
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Table 6: Energy values for the genetic algorithm selection techniques.
Test cases Methods E1 E2 E3 E4 E5

Dental implant

Smp0.5 349.506 463.969 400.360 66 -

Smp0.75 261.827 424.713 400.200 66 -

Smp1.0 297.3 387.5 400.7 64 -

SmpExt 361.8 383.5 402.4 64 -

Ranking 300001515.5 490.0 342.4 74 -

Tournament 300003399.3 423.9 338.4 73 -

SUS 100003463.2 470.7 342.2 68 -

Chassis

Smp0.5 64.1 63.2 247.4 312 -

Smp0.75 58.1 61.6 243.6 312 -

Smp1.0 53.4 56.5 244.2 313 -

SmpExt 55.5 56.8 243.6 312 -

Ranking 79.4 47.0 219.6 317 -

Tournament 100000056.1 48.1 226.3 297 -

SUS 200000748.1 47.0 232.7 297 -

Vessel

SmpExt 592.9 269.6 268345881.0 52 0

Ranking 300001491.2 346.9 116051491.1 59 0

Tournament 300004302.3 349.6 91744169.7 60 186668.7

SUS 300002357.6 352.3 107138699.3 59 0

Spring

SmpExt 3657.7 1300.1 8.7 46 0

Ranking 702366800.0 3824.8 1.8 47 1.1

Tournament 402090550.7 1183.7 1.7 49 0.8

SUS 101107783.2 2167.0 1.9 46 1.9

Beam

SmpExt 3684.4 1070.9 356.9 63 0

Ranking 400005591.8 1249.0 155.7 63 42073.2

Tournament 600004778.8 1268.0 154.2 65 60353.3

SUS 800041822.9 1146.9 153.4 63 61622.5

Train

SmpExt 1838.4 438.1 178665.0 119 0

Ranking 700017024.0 434.1 134836.4 122 0

Tournament 1000033620.7 426.3 134616.2 122 0

SUS 1501124081.0 454.2 135373.1 122 0

Honeycomb heat sink

Smp0.5 404.4 279.1 15.4 66 -

Smp0.75 250.0 221.2 15.3 66 -

Smp1.0 284.2 241.5 15.2 64 -

SmpExt 265.5 210.6 15.3 64 -

Ranking 100001153.3 258.6 12.0 70 -

Tournament 500000959.5 237.4 11.9 75 -

SUS 400000616.4 232.9 12.2 70 -

Wine glass - 1

Smp0.5 33.9 17.3 150.0 - 0.0

Smp0.75 23.7 20.1 138.0 - 0.0

Smp1.0 26.2 18.5 141.0 - 0.0

Ranking 259.6 18.9 107.0 - 723.4

Tournament 100000657.3 17.7 119.0 - 719.1

SUS 300004823.3 21.8 103.0 - 650.2

Wine glass - 2

Smp0.5 36.9 31.1 122.0 - 0.0

Smp0.75 43.8 30.7 121.0 - 0.0

Smp1.0 22.9 27.8 125.0 - 0.0

Ranking 100000126.5 35.5 102.0 - 629.2

Tournament 100000238.9 32.8 127.0 - 662.5

SUS 1700003040.2 30.7 120.0 - 617.4

Wine glass - 3

Smp0.5 37.0 26.5 217.0 - 0.0

Smp0.75 46.6 26.6 217.0 - 0.0

Smp1.0 31.3 24.4 218.0 - 0.0

Ranking 100000278.6 30.1 125.0 - 694.1

Tournament 78.5 27.3 128.0 - 572.2

SUS 700009659.6 28.7 128.0 - 664.8

values for the designs obtained using the GA selection1

techniques. For the implant model, the baseline GA se-2

lection techniques produced very large values of E1 as3

they were probabilistic-based and did not take space-4

filling criterion (i.e., E1) into account while generating5

designs, and therefore they could produce similar de-6

signs. The designs generated by S mpExt and the base-7

line GA selection techniques had the lowest values of8

E2 and E3, resp. In case of E4, S mpExt and S mp1.09

had the lowest values.10

The simulation results of the sprint car’s chassis are11

shown in Fig. 10. The best chassis designs were12

obtained when the proposed selection algorithm with13

τ = 0.75 and τ = 1.0 was utilized (see Fig. 11). The best14

chassis design can be seen in Fig. 11. However, the best15

designs of all methods except that of S mp0.5 had sim-16

ilar maximum stress values. S mpExt and S mp1.0 gen-17

Figure 8: Simulation results for the dental implant designs generated

using the GA selection techniques (i.e., maximum stress in the bones).

S mp0.5, S mp0.75 and S mp1.0 denote the offspring sampling tech-

nique with the τ = 0.5, τ = 0.75 and τ = 1.0 settings, respectively.

S mpExt stands for the extended offspring sampling technique.

Figure 10: Simulation results for the car chassis models generated

using the GA selection techniques (i.e., maximum stress).

erated chassis designs having the minimum values of E1 18

(see Table 6), while the tournament and SUS selection 19

techniques produced designs with very large values of 20

E1. On the other hand, the designs obtained using the 21

tournament and SUS selection techniques had the low- 22

est values of E2, E3 and E4. 23

5.1.2. Mechanical design problems 24

Fig. 12 shows the designs obtained for mechani- 25

cal design problems. Except for the beam problem, 26

S pmExt algorithm produced the design having the min- 27

imum fitness value. The ranking, tournament and SUS 28

selection methods generated the best designs only for 29

two design problems. S mpExt and S mp are compared 30

using the honeycomb heat sink problem. S mpExt and 31

S mp with τ = 0.75 (S mp0.75) generated the best solu- 32

tion. The best solution obtained using S mp with τ = 1.0 33

had a fitness value closer to the best solutions obtained 34

using S mpExt and S mp0.75. 35

The energy values are also compared for the GA se- 36

lection methods, and can be seen in Table 6. The base- 37

line GA selection methods produced solutions with very 38

high values of E1. The solution generated by S mpExt 39

had a value of E1 less than those obtained using S mp0.5 40

and S mp1.0, and greater than that of Smp0.75. Note 41

that S mpExt and S mp0.75 both generated the best so- 42
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Figure 9: Cortical bone FEM results (i.e., von Mises stresses in MPA) for the best first two dental implant designs generated using the offspring

sampling algorithm with the τ = 0.5 and τ = 0.75 settings.

Figure 11: Best chassis design with a maximum stress of 4.459 MPa.

lutions in term of the fitness value. When E2 values are1

compared, the solutions obtained using S mpExt had the2

lowest values in three design problems. On the other3

hand, S mpExt produced solutions with larger values of4

E3 compared to the baseline methods. The solutions had5

the lowest values of E4 when S mpExt was utilized. Fi-6

nally, most of E5 values for the designs obtained from7

the GA baseline selection techniques were non-zero as8

the design constraints were not completely satisfied (see9

Table 6).10

5.1.3. User-centered product design cases11

Figure 13 shows the results for the wine glass12

user study conducted with three users. Here, 20 de-13

signs/offsprings (i.e., K = 20) were generated in SPC14

mating. Higher scores for the designs indicate the de-15

signs preferred by the users. According to the first user’s 16

scorings, the most preferred design was obtained when 17

the proposed selection technique with τ = 0.5 was em- 18

ployed. The second most preferred designs were gener- 19

ated using the proposed selection technique with τ = 1.0 20

and the tournament selections. When the second user’s 21

scorings are observed, the proposed selection technique 22

with τ = 0.75 and the SUS method generated the most 23

preferred designs. The second most preferred design 24

was also obtained using the proposed selection tech- 25

nique with τ = 0.75. According to the third user’s scor- 26

ings, the most preferred designs were obtained by the 27

selection technique with τ = 0.75, ranking, and tourna- 28

ment selections. Figure 14 depicts the wine glass de- 29

signs preferred by the first (a), second (b) and third (c) 30

users. The consistency scores for the first, second, and 31

third users were 93.3%, 88.3% and 95.2%, respectively. 32

The selection times for the first population were 65, 75, 33

and 192 seconds for the first, second, and third users, 34

respectively. For the second population, they were 390- 35

356 (the first-second part of the user study), 342-255 36

and 905-782 seconds, respectively. 37

The energy values for the designs obtained from the 38

selection techniques can be seen in Table 6. S mpExt 39

and S mp1.0 generated chassis designs having the min- 40

imum values of E1, while the designs obtained using 41

GA baseline selection techniques had very large values 42

of E1. In case of E2, all methods produced designs with 43

similar values. On the other hand, the designs generated 44
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Figure 12: Results for the vessel (a), spring (b), beam (c), train (d), and honeycomb heat sink (e) cases.

Figure 14: Wine glass models preferred by the first (a), second (b) and

third (c) users.

from the GA baseline selection techniques had lower1

values of E3. Finally, it has been observed that the de-2

signs generated using the GA baseline selection tech-3

niques did not completely satisfy the design constraints4

in Table 4 (see E5 values in Table 6).5

5.2. Performance of the genetic algorithm selection6

techniques7

We evaluated the performance of the GA selection8

methods. Table 7 shows the fitness values of the best9

designs generated using the methods for the test cases.10

Note that the best score for the design is subtracted11

from the maximum grade (i.e., 10) for the wine glass12

test case, as larger fitness values are preferable for this13

Table 7: The designs with minimum fitness values obtained using the

genetic algorithm selection methods.

Test cases
GA selection methods

Smp0.5 Smp0.75 Smp1.0 SmpExt Ranking Tournament SUS

Dental implant 8.324 7.766 7.766 7.503 8.004 7.955 8.113

Chassis 4.661 4.459 4.479 4.518 4.53 4.503 4.513

Test cases
GA selection methods

SmpExt Ranking Tournament SUS

Vessel 0.17 0.68 0.68 0.17

Spring 0.021 0.021 0.021 0.021

Beam 3.11 2.86 2.72 2.98

Train 3123.63 3123.63 3124.01 3215.84

Test cases
GA selection methods

Smp0.5 Smp0.75 Smp1.0 SmpExt Ranking Tournament SUS

Honeycomb heat sink 0.237 0.175 0.177 0.175 0.258 0.237 0.233

Wine glass - 1 10-8.5 10-7 10-8 - 10-7 10-8 10-6

Wine glass - 2 10-8 10-10 10-9 - 10-9 10-9 10-10

Wine glass - 3 10-7.9 10-8 10-8 - 10-8 10-8 10-7.9

test case. S mpExt and/or S mp0.75 generated the best 14

designs in most cases. For the second wine glass user 15

study, S mp0.75, S mp1.0, ranking, and tournament had 16

the best designs. In contrast, the proposed method with 17

τ = 0.5 generated the best design in the first wine 18

glass user study. When the overall results in Table 7 19

are seen, S mp0.75 exhibited better performance mostly 20

compared with S mp0.5 and S mp1.0. It is thought that 21

S mp1.0 prunes too many solutions, and suboptimal so- 22

lutions can be obtained. While S mp0.5 prunes less solu- 23

tions, and performs less iterations, thus only unmatured 24

solutions can be obtained in a less time. The baseline 25

GA selection methods had better performances for the 26

vessel, spring, beam, train models, and the third wine 27

glass user study. 28

5.3. Computational time and algorithm convergence 29

A PC with an Intel Core i7 6700 3.4 GHz proces- 30

sor and 16 GB memory was used in this study’s exper- 31

iments. The implementation was single-threaded. Ta- 32

14



Figure 13: Results for the user preference tests on the wine glass models.

Table 8: Computational time (in seconds) for the genetic algorithm

selection methods.
Test cases

GA selection methods

Smp0.5 Smp0.75 Smp1.0 SmpExt Ranking Tournament SUS

Dental implant 227972.7 180569.9 15417.7 8673.6 < 1 < 1 < 1

Chassis 13730.3 129155.0 142597.1 139575.8 < 1 < 1 < 1

Test cases
GA selection methods

SmpExt Ranking Tournament SUS

Vessel 5304.1 < 1 < 1 < 1

Spring 181.1 < 1 < 1 < 1

Beam 353.5 < 1 < 1 < 1

Train 1128.9 < 1 < 1 < 1

Test cases
GA selection methods

Smp0.5 Smp0.75 Smp1.0 SmpExt Ranking Tournament SUS

Honeycomb heat sink 103144.7 91908.6 2502.1 7006.2 < 1 < 1 < 1

Wine glass - 1 302454.2 207782.0 22445.4 - < 1 < 1 < 1

Wine glass - 2 215114.3 99522.0 1134.3 - < 1 < 1 < 1

Wine glass - 3 256150.9 92704.3 1909.6 - < 1 < 1 < 1

ble 8 shows the computational time for the selection1

techniques. The ranking, tournament, and SUS selec-2

tion techniques exhibited less computational times than3

the proposed selection techniques did. The processing4

time depends heavily on the following parameters, as5

follows: the number n of design parameter, the number6

Y of designs in P (i.e., good designs), the bias intensity τ7

of the energies, and the number K of offsprings that will8

be chosen in the selection algorithm. Note that K off-9

springs are chosen among the 2 ∗ (n−1) ∗
(

Y

2

)
offsprings.10

All energy calculations (E1−E5) involve the number K,11

while the energies E1, E3, and E4 contain the number12

n. When τ was set to 1.0, the pruning algorithm elim-13

inated many solutions so that the algorithm converged14

faster. The processing time of S mp1.0 was less com-15

pared to those of when S mp0.5 and S mp0.75. When16

τ was set to 0.5, a smaller number of solutions were17

pruned; therefore, the computational time was higher18

than those of the other two τ settings. This was because19

the number of elements in S P was higher (see Algo-20

rithm 1). S mpExt and S mp0.75 produced most of the21

best designs in the experiments. We recommend using22

S mpExt as a GA selection method as it had lower com-23

putational times than S mp0.75.24

The convergence of S mp1.0 mostly happened when25

SC2 was satisfied, while SC1 was only met for the hon-26

eycomb heat sink test case for S mp1.0. In contrast,27

SC3 was mainly/intentionally satisfied for S mp0.5 and28

Table 9: Number of iterations for the proposed selection technique.

Test cases
GA selection methods

Smp0.5 Smp0.75 Smp1.0 SmpExt

Dental implant 3 8 23 12

Chassis 2 4 11 11

Test cases
GA selection methods

SmpExt

Vessel 16

Spring 16

Beam 21

Train 10

Test cases
GA selection methods

Smp0.5 Smp0.75 Smp1.0 SmpExt

Honeycomb heat sink 3 9 8 19

Wine glass - 1 3 7 16 -

Wine glass - 2 4 9 23 -

Wine glass - 3 3 10 10 -

S mp0.75 as their single iteration time was high. On 29

the other hand, S mpExt was mostly converged when 30

SC4 was met. Table 9 shows the number of iterations 31

for the proposed GA selection algorithms in each test 32

cases. Less numbers of iterations were observed in 33

S mp0.5 due to their high computations costs so that the 34

user set the processing time (i.e., SC3 was satisfied). 35

Furthermore, the energy values after each iteration for 36

the dental implant and chassis models were observed 37

for the proposed GA selection techniques (see Figure 38

15). S mp0.5 and S mp0.75 converged after satisfying 39

SC3, while S mp1.0 and S mpExt converged when SC2 40

or SC4 was satisfied. 41

5.4. Multiple runs of the extended offspring sampling 42

algorithm 43

As the extended algorithm (S mpExt) is greedy and 44

starts with K random offsprings, the result may change 45

for every algorithm run. The algorithm was executed 46

10 times for the vessel, spring, beam and train cases. 47

Fig. 16 shows plots of the energy values versus num- 48

ber of iterations. For better visualization, there are 49

gaps (i.e., void iterations) between consecutive itera- 50

tions. The plots showed that similar energy values were 51

15



Figure 15: Energy values after the iterations for the dental implant (a) and chassis (b) models.

obtained in most algorithm runs. We have also executed1

S mpExt 100 times for these cases and investigated the2

fitness values after the algorithm runs. Figures 2 and 173

show plots of (minimum) fitness values obtained versus4

number of iterations. We have observed that the fitness5

values tended to decrease or be the same at the end of6

iterations in the algorithm runs in most cases. This ob-7

servation was valid for 393 algorithm runs in the exper-8

iments, while it was invalid only two and three runs for9

the vessel and train case experiments, resp. We think10

that the quality criteria contributed to such decrease in11

the fitness values. For example; the space-filling en-12

ergy (E1) strove for distributing the offsprings evenly in13

the design space. In this way, design space can be well14

scanned and designs with minimum fitness values can15

be found.16

5.5. Quality criteria contributions17

An ablation study has been performed using the18

spring and beam test cases to see the contributions of19

the quality criteria. The extended offspring sampling al-20

gorithm is executed without the energy E1/E2/E3/E4.21

Table 10 shows the fitness values for the best designs22

(i.e., designs having minimum fitness values). Accord-23

ing to these experiments, it has been observed that the24

best designs obtained had higher fitness values without25

the first two quality criteria (i.e., space-fillingness and26

non-resemblance in designs with higher fitness values).27

Therefore, these criteria has contributed more than other28

two criteria in these experiments. While distributing de-29

signs (as much as) evenly by means of the space-filling30

criterion and placing them (as much as) far away from31

the designs with higher fitness values by using the sec-32

ond criterion, the design space can be well scanned so33

that desired design(s) can be obtained. However, we34

think that the other two criteria can also play an im-35

portant role in some other test cases. Note that Design 36

of Experiments (DOE, the fourth criterion [1]) is com- 37

monly used for the costly and time-consuming exper- 38

iments, in which a limited number of designs can be 39

tested. In any case, one can either remove or include the 40

quality criterion/criteria based on the experiment. 41

6. Conclusions and future works 42

This paper proposed a sampling-based selection 43

method that can be employed in crossover mating. All 44

producible offsprings were first generated and a desired 45

number of offsprings were chosen based on the quality 46

criteria as follows: space-filling offsprings, offsprings 47

non-resembling to the individuals with higher fitness 48

values, offsprings resembling to the individuals with 49

lower fitness values, non-collapsing offsprings, and fea- 50

sible offsprings. A multi-objective optimization tech- 51

nique was employed based on non-dominated sorting, 52

pruning, and selection of the solution having the mini- 53

mum energy variance with the other solutions. The per- 54

formance of the proposed selection method using three 55

different application scenarios (simulation-driven prod- 56

uct design, mechanical design and user-centered prod- 57

uct design). 58

In future work, other crossover operators, such as 59

multi-point and uniform crossover, will be integrated 60

into the proposed selection technique. This will produce 61

a greater number of offsprings so that better energy min- 62

imization for the quality criteria can be achieved. In ad- 63

dition, an interactive crossover mechanism will be stud- 64

ied, which will learn decision preferences in real time 65

and reflect them in the generated offsprings. Finally, 66

a user interface will be developed for the proposed se- 67

lection algorithm to define the design parameters, their 68
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Figure 16: Energy values versus number of iterations for the vessel (a) (E3 is scaled by multiplying with 1E-6), spring (b), beam (c), and train (d)

(E1 and E3 is scaled by multiplying with 1E-1 and 1E-3, resp.) cases.

Table 10: The designs with minimum fitness values obtained in the ablation study while taking all or some energy terms into account.
Test cases E1, E2, E3, E4 E2, E3, E4 E1, E3, E4 E1, E2, E4 E1, E2, E3

Spring 0.021 0.025 0.025 0.021 0.021

Beam 3.11 3.13 3.13 3.11 3.11

lower/upper bounds, and design constraints in its graph-1

ical user interface and to export the offsprings in a file.2
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