

A Multi-DAG Model for Real-Time Parallel
Applications with Conditional Execution

Technical Report

CISTER-TR-141207

2015/04/13

José Fonseca*

Vincent Nélis*

Gurulingesh Raravi

Luis Miguel Pinho*

Technical Report CISTER-TR-141207 A Multi-DAG Model for Real-Time Parallel Applications with ...

A Multi-DAG Model for Real-Time Parallel Applications with Conditional Execution

José Fonseca*, Vincent Nélis*, Gurulingesh Raravi, Luis Miguel Pinho*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jcnfo@isep.ipp.pt, nelis@isep.ipp.pt, guhri@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Owing to the current trends for higher performance and the ever growing availability of multiprocessors in the
embedded computing (EC) domain, there is nowadays a strong push towards the parallelization of modern
embedded applications. Several real-time task models have recently been proposed to capture different forms of
parallelism. However, they do not deal explicitly with control flow information as they assume that all the threads
of a parallel task must execute every time the task is activated. In contrast, in this paper, we present a multi-DAG
model where each task is characterized by a set of execution flows, each of which represents a different execution
path throughout the task code and is modeled as a DAG of sub-tasks. We propose a two-step solution that
computes a single synchronous DAG of servers for a task modeled by a multi-DAG and show that these servers are
able to supply every execution flow of that task with the required cpu-budget so that the task can execute entirely,
irrespective of the execution flow taken at run-time, while satisfying its precedence constraints. As a result, each
task can be modeled by its single DAG of servers, which facilitates in leveraging the existing single-DAG
schedulability analyses techniques for analyzing the schedulability of parallel tasks with multiple execution flows.

© CISTER Research Center
www.cister.isep.ipp.pt

1

A Multi-DAG Model for Real-Time Parallel Applications with
Conditional Execution

José Carlos Fonseca†, Vincent Nélis†, Gurulingesh Raravi§ and Luís Miguel Pinho†

†CISTER/INESC-TEC, ISEP, Portugal
{jcnfo, nelis, lmp}@isep.ipp.pt

§Xerox Research Center, India
gurulingesh.raravi@xerox.com

ABSTRACT

Owing to the current trends for higher performance and the
ever growing availability of multiprocessors in the embedded
computing (EC) domain, there is nowadays a strong push to-
wards the parallelization of modern embedded applications.
Several real-time task models have recently been proposed
to capture different forms of parallelism. However, they do
not deal explicitly with control flow information as they as-
sume that all the threads of a parallel task must execute
every time the task is activated. In contrast, in this paper,
we present a multi-DAG model where each task is charac-
terized by a set of execution flows, each of which represents
a different execution path throughout the task code and is
modeled as a DAG of sub-tasks. We propose a two-step so-
lution that computes a single synchronous DAG of servers
for a task modeled by a multi-DAG and show that these
servers are able to supply every execution flow of that task
with the required cpu-budget so that the task can execute
entirely, irrespective of the execution flow taken at run-time,
while satisfying its precedence constraints. As a result, each
task can be modeled by its single DAG of servers, which
facilitates in leveraging the existing single-DAG schedula-
bility analyses techniques for analyzing the schedulability of
parallel tasks with multiple execution flows.

1. INTRODUCTION
Forty years ago, in 1973, Chang Liu and James Layland

proposed in [17] a simplistic model to characterize the timing
behavior of time-critical control and monitor functions that
they termed “pure process control”. Their model abstracts
each of these pure process controls by two numbers: a worst-
case execution requirement and an execution rate (called
period). Since then the real-time (RT) community has de-
veloped an extensive set of task models, platform models
and scheduling techniques by relaxing some of the assump-
tions originally made by Liu and Layland to incorporate
the requirements of new systems, applications and architec-
tures [10, 23]. Although researchers have built an impressive
body of knowledge that gives a deep understanding of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695808

broad variety of scheduling problems, today’s applications
in the EC domain are neither designed nor implemented
the way it used to be back in 1973, and most of the models
available today are not expressive enough to correctly model
the timing behavior of most of the contemporary embedded
applications.

Given that the modern embedded applications increas-
ingly require higher performance and with the ever grow-
ing need of deploying such applications on multiprocessors,
there is a strong push towards the parallelization of these ap-
plications. The parallelization is typically achieved by split-
ting applications into multiple smaller computation units
(called sub-tasks) which may run simultaneously on different
cores. In order to capture this parallelization opportunity
and overcome the limitations of the sequential task models,
several parallel task models have recently been proposed for
real-time embedded systems, which we shall revise now.
Related Work. There has been extensive work on schedul-
ing real-time sequential tasks atop multiprocessor systems
(see [11] for an excellent survey). The problem of schedul-
ing parallel tasks has been studied significantly by the high
performance computing (HPC) community [12, 7, 6]. In the
RT community, where timing constraints and worst-case sce-
narios are the primary concerns, this problem is currently
receiving substantial attention. Researchers have started de-
veloping schedulability analyses over more general task mod-
els to cope with the task parallelism generated by prominent
parallel programming models (e.g., OpenMP [20]). Parallel
task models can be broadly classified according to the re-
strictions imposed on the internal task structure.

At one extreme, the fork/join model [14, 2, 13] imposes the
most severe restrictions: a task is represented as an alternate
sequence of sequential and parallel segments, always starting
with a sequential segment. Thus, nested parallelism is not
allowed. Usually, the number of sub-tasks spawned in each
parallel segment is fixed and may not exceed the number of
cores in the system. On the other end of the spectrum, the
DAG model [5, 8, 15, 21, 3, 16] represents each task as a di-
rected acyclic graph (DAG), where each node is a sequential
sub-task, and each directed edge defines a precedence con-
straint between two nodes. In this model, a node becomes
ready for execution as soon as all its predecessor nodes (if
any) have completed. In between, the synchronous parallel
task model [22, 1, 19, 9, 18] generalizes the fork/join model
by allowing successive parallel segments and arbitrary num-
ber of sub-tasks in each segment. Still, this model imposes
synchronization points at every segment’s boundary, mean-
ing that all the sub-tasks in a segment may begin execution
only when all the sub-tasks of the previous segment have
finished their execution.

Figure 1: A hypothetical global fixed-priority schedule of the 3 different execution flows Fi,j of the task τi
(see Fig. 3) and a sequential task τseq with cseq = 5 on 3 cores.

Figure 2: A hypothetical global fixed-priority schedule of the 3 different execution flows Fi,j of the task τi
(see Fig. 3) and a sequential task τseq with cseq = 5 on 2 cores.

Typically, due to control structures within the tasks code,
different activations of a same task may execute different
parts of its code. Unfortunately, none of the aforementioned
models explicitly capture these different flows of execution
that a parallel task most likely will take during its recurrent
activity. Instead, all these models represent a task as a single
graph for which all the nodes (the sub-tasks) must execute
each time the task is released. In other words, none of these
models is able to express any control-flow information, such
as conditional statements, because they assume a single non-
variable internal task structure that has to be fully scheduled
and executed at every task release. This paper takes a first
step in addressing this limitation by proposing a multi-DAG
model which facilitates the schedulability analysis of parallel
tasks with multiple execution flows on multi-core systems.
Motivation. Let us consider a simple program starting
with a call to a function A followed by an if-then-else state-
ment. If the condition of the statement is satisfied, then the
program executes in parallel four instances of a function B,
otherwise it executes in parallel two instances of a function
C. It is trivial to see that an execution of this code can only
take one of the two execution paths (referred to as “execu-
tion flows”hereafter), i.e., it can either take the if execution
flow or the else execution flow, but never both. If each of the
instances of these functions is modeled as a sub-task, then
the mutual exclusion between sub-tasks of B and C (result-
ing from the conditional statement) cannot be expressed in
the aforementioned models; either they model this task as a
single graph of seven sub-tasks (1 sub-task for function A,
4 for B and 2 for C), with no consideration whatsoever for
the mutual exclusions between B and C, or they model only
the “worst-case” execution flow of that task, which we shall
discuss now.

On a single-core platform, the fact that a task can execute
different execution flows during different runs is not a ma-
jor issue for performing schedulability analysis. To analyze
the schedulability of a task set on a single-core it is known
that for each task, only the flow with the highest workload
(defined in Section 2) must be considered in the analysis be-
cause such flow (i) executes for the longest time and thus (ii)
causes the highest interference on the other tasks. Conse-
quently, the number of scheduling scenarios to be considered
stays within reasonable bounds. In contrast, in a multi-core
settings the interference between two or more graphs of sub-
tasks is much more difficult to capture and analyze. This is

because the interference not only depends on the execution
time of all the sub-tasks in each graph, but also on the in-
herent structure of the graphs themselves. As it can be seen
in Fig. 1 and Fig. 2, when analyzing a possible schedule of a
high priority multi-DAG task (τi as in Fig. 3) and a low pri-
ority sequential task (τseq with WCET of 5 time units), their
worst-case response times are found on different executions
flows depending on the circumstances1 (in this case we first
assume that 3 cores are available in Fig. 1 and then only 2
cores in Fig. 2). Therefore, for a given scheduling algorithm,
platform and set of parallel tasks, where each task may take
different execution flows at run-time, an exact schedulabil-
ity test would have to consider every feasible interference
scenario between all combinations of execution flows from
each task. Clearly, this would lead to a combinatorial explo-
sion in the number of scenarios to be considered, which is
prohibitively expensive in terms of computational time.

To the best of our knowledge, the RT research community
so far has only managed to address this scheduling problem
to a limited extent. That is, although current works do not
explicitly deal with conditional execution of sub-tasks, some
works have derived results that may still hold under such
circumstances due to the fact that the internal structure of
the graphs is completely ignored. For example, the authors
of [15] have derived a capacity augmentation bound based on
the workload and the critical path length of a task modeled
as a single DAG of sub-tasks. In the case of a task with
multiple execution flows, where each flow is modeled as a
separate DAG, identical results can be derived considering
the maximum workload and critical path length among all
the task’s execution flows; the pessimism in the analysis
itself reduces the number of scenarios to be considered.
This research. In this work, we ask the question: is it pos-
sible to represent a general parallel task with multiple exe-
cution flows as a single DAG to leverage the existing DAG-
based scheduling techniques for analyzing the schedulability
of such tasks? We answer the question affirmatively by mak-
ing the following contributions. This paper (c1) proposes
a multi-DAG model in which each real-time parallel task
is characterized by a collection of execution flows, each of
which is explicitly modeled as a separate DAG; (c2) presents
a two-step algorithm to construct a single synchronous DAG

1For simplicity, here we assume that tasks have harmonic
periods and synchronous releases.

Figure 3: Example of a task τi with Fi = {Fi,1, Fi,2, Fi,3}, Ti = 30, Di = 20. Note that in each execution flow,
node vk denotes the k’th node in the flow and thus v1 (for instance) of these three flows may or may not refer
to the same sub-task in τi.

of servers2 for each task; (c3) defines a run-time mapping
rule to assign sub-tasks to servers for execution; and (c4)
proves that (c2) together with (c3) ensure that the DAG of
servers derived for each task always provides the required
cpu-budget to its sub-tasks and preserves their precedence
constraints, irrespective of which execution flow is taken at
run-time.

We believe that the significance of this research is as fol-
lows: (s1) this is the first work to model real-time parallel
tasks with multiple execution flows on multi-core platforms;
(s2) our approach reduces the number of interference sce-
narios to be considered while deriving schedulability tests
for the tasks under consideration on multi-cores by orders
of magnitude; and (s3) with this approach, any existing
scheduling techniques for the DAG model (synchronous or
not) can be applied to analyze such multi-DAG tasks.

2. MODEL AND DEFINITIONS
We assume a multi-core platform π comprisingm identical

cores, and where each real-time parallel application is mod-
eled by a sporadic task τi , i ∈ [1, n], which is characterized
by a 3-tuple (Fi, Ti, Di) with the following interpretation.
Task τi is a recurrent process that releases a (potentially)
infinite sequence of “jobs”, with the first job released at any
time during the system execution and subsequent jobs re-
leased at least Ti time units apart. Each job released by a
task τi has to complete its execution within Di time units
from its release — we assume Di ≤ Ti (constrained-deadline
task model). Every job of a task τi executes the code of
τi from its (unique) entry point to its exit point(s). Due
to the control structures within τi’s code (e.g., the “if-then-
else” statements), two different jobs of τi may execute two
different parts of the code, and we call an “execution flow”
the path taken by a job throughout the task’s code during
its execution. Every execution flow of a task τi is modeled
by a DAG of computing units that may execute simultane-
ously: we refer to such units as sub-tasks. Each such DAG is
denoted by Fi,j and the task parameter Fi denotes the set
of all execution flows of τi, i.e. Fi = {Fi,1, Fi,2, . . . , Fi,ni

}
where ni is the number of execution flows of τi.

2The term“server” is employed here with the same meaning
as in [4], for instance. Servers are the entities to be scheduled
on the cores. Each server has a pre-defined cpu-budget to
be “consumed” through the execution of ready tasks, every
time a server is granted a core. A task cannot execute within
a server if its budget is exhausted.

Each execution flow Fi,j ∈ Fi is thus a DAG of sub-tasks,
i.e. Fi,j = 〈Vi,j , Ei,j〉 , where Vi,j is a set of ni,j nodes
and Ei,j is a set of directed edges. Each node vk ∈ Vi,j
represents a sub-task that executes sequentially and is char-
acterized by a worst-case execution time (WCET) denoted
by ck. For ease of understanding, we assume that every sub-
task vk executes for exactly ck time units (we will further
discuss this assumption at the end of Section 4). Each di-
rected edge (va, vb) ∈ Ei,j denotes a precedence constraint
between the two sub-tasks va and vb with the interpretation
that successor vb cannot start executing before predecessor
va completes its execution. A sub-task is then said to be
“ready-to-execute” (or simply “ready”) if and only if all its
predecessors have finished their execution. Fig. 3 illustrates
our multi-DAG model for a task τi comprised of three exe-
cution flows. We further define some notations and termi-
nology that will be extensively used throughout the paper.

Definition 1 (Workload). The workload W(Fi,j) of
an execution flow Fi,j of a task τi is defined as the cumula-
tive amount of work3 of all the sub-tasks in Vi,j , i.e.

W(Fi,j)
def
=

∑

vk∈Vi,j

ck

Definition 2 (Path). In a given execution flow Fi,j of
a task τi , a path p = {v1, . . . , vk} is a sequence of sub-tasks
∈ Vi,j such that (1) there is an edge ∈ Ei,j connecting every
two adjacent sub-tasks of p and (2) the first and the last sub-
tasks v1 and vk in p are an entry and an exit node of the
DAG Fi,j .

Definition 3 (Critical path length). For an exe-
cution flow Fi,j of a task τi, the critical path length CP(Fi,j)
is defined as the cumulative execution requirement of the
longest path4 in Fi,j , i. e.

CP(Fi,j)
def
= max

p∈Fi,j

∑

vk∈p

ck

In the next section, we show how to transform each Fi,j

in a synchronous DAG of servers and introduce a mapping
rule to arbitrate the assignment of sub-tasks to servers at

3Note that the workload also gives the WCET of a DAG on
a single-core platform.
4The critical path length can also be seen as the WCET of a
DAG on a platform comprising an infinite number of cores.

run-time. We also define some properties to assert the cor-
rectness of that transformation, setting this way the basis
for section 4 in which we will present a method that merges
all the DAGs of servers defined for every execution flow Fi,j

into a single synchronous DAG of servers for each task τi.

3. PER-FLOW SERVER GRAPH
For each execution flow Fi,j of every task τi, we derive

a synchronous DAG of servers referred to as synchronous
server graph (SSG) and is denoted by F SSG

i,j . Formally, we
define an SSG as follows:

Definition 4 (SSG). A Synchronous Server Graph is
a synchronous DAG of nodes (here the nodes are the servers)
organized as a set {σ1, σ2, . . . , σr} of r segments. Each seg-
ment σℓ with ℓ ∈ [1, r] is characterized by a pair 〈bℓ, qℓ〉,
where qℓ is the number of servers in σℓ and bℓ is the cpu-
budget associated to each of these qℓ servers. Directed edges
exist only between nodes of adjacent segments. Specifically,
every node within a segment is connected to every node of
the next segment (if any).

Informally, the purpose of the method developed in this
section is to be able to represent each execution flow of a
given task τi as a synchronous DAG of servers such that,
when τi takes one of its execution flows Fi,j at run-time,
the corresponding SSG F SSG

i,j provides the required budget
to finish the execution of all the sub-tasks of Fi,j without
violating any precedence constraint. This is an intermedi-
ate step in our approach; in the next section we develop a
second step (based on this first one) that assigns a single
synchronous DAG to each task, rather than one SSG for
each flow.

The mechanism to handle these per-flow SSG at run-time
works as follows: each segment of an SSG is a collection of
servers whose budget is used to execute exclusively the ready
sub-tasks of the execution flow from which the SSG has been
derived. The servers are the entities to compete for, and to
be scheduled on, the m cores by the scheduling algorithm
of the operating system. Each time a server is granted a
core, its budget is used to execute a ready sub-task. Each
time a job of a task is released (and thus executes one of its
execution flows), the first segment of the corresponding SSG
“releases” all its servers, in the sense that they become ready
to provide budget to the sub-tasks of that particular flow.
Then, each of the subsequent segments releases all its servers
only after all the servers from the previous segment have ex-
hausted their budgets. That is, servers belonging to a seg-
ment σℓ are allowed to provide cpu-budget to the sub-tasks
of the dedicated execution flow only when all the servers
from segment σℓ−1 have exhausted their budget. Since at
some point in time we may have several sub-tasks from the
same execution flow that are ready-to-execute and several
servers in the corresponding SSG that are ready to provide
budget, there must be a mapping rule to define which sub-
task is granted budget from which server.

Firstly, we state the generic conditions that assert the
validity of an SSG toward a given execution flow through
Property 1. Then, we define a simple, yet efficient, mapping
rule which is used throughout the paper to arbitrate the
assignment of ready sub-tasks to servers. From that point
onward, every time we refer to a valid SSG it implies that the
mapping rule given by Definition 5 is enforced. Finally, we
present an algorithm to construct an SSG for each execution
flow and prove its correctness.

Property 1 (Validity). For a platform π, a schedul-
ing algorithm A, a mapping rule R, and an execution flow
Fi,j of a task τi, an SSG F SSG

i,j is said to be valid for Fi,j

according to R if and only if for any schedule of the servers
of F SSG

i,j produced by A on π, at run-time all the nodes of
Fi,j are guaranteed to be mapped by R to the server nodes of
F SSG

i,j in such a way that (1) all the dependencies between the
nodes of Fi,j are satisfied, and (2) Fi,j receives the required
budget to execute all its nodes.

Definition 5 (Mapping rule). Let Fi,j be an execu-
tion flow of a task τi and let F SSG

i,j be the corresponding SSG

constructed using Algorithm 1. A server sℓ,x ∈ σℓ ⊆ F SSG

i,j ,
with x ∈ [1, qℓ], can execute a ready sub-task vk ∈ Vi,j if and
only if vk has not been executed by a server sℓ,y 6= sℓ,x such
that sℓ,y ∈ σℓ as well.

Algorithm 1: generateSSG(Fi,j)

Input : Fi,j - An execution flow of task τi
Output: F SSG

i,j - An SSG for Fi,j

F SSG

i,j ← ∅ ;1

while Vi,j 6= ∅ do2

Scurr ← {vk ∈ Vi,j | pred(vk) = ∅};3

Cmin ← min {ck|vk ∈ Scurr} ;4

F SSG

i,j ← F SSG

i,j ⊗
{〈

Cmin, |Scurr|
〉}

;5

foreach vk ∈ Scurr do6

ck ← ck − Cmin;7

if ck = 0 then8

Vi,j ← Vi,j \ {vk} ;9

Ei,j ← Ei,j \ {(vk, ∗)} ;10

end11

end12

end13

return F SSG

i,j ;14

The pseudo-code of the SSG creation algorithm is shown
in Algorithm 1, whereas Fig. 4 depicts the resulting SSG5

for the execution flow Fi,1 illustrated in Fig. 3. This algo-
rithm takes an execution flow Fi,j of task τi as input and
outputs an SSG F SSG

i,j for that flow, working as follows. The
algorithm traverses the DAG Fi,j by starting at its unique
entry node (first iteration at line 3). At each iteration in the
while loop, the algorithm adds a new segment at the end of
F SSG

i,j (line 5). The addition is represented by the operator
⊗〈b, q〉 which appends a segment of q servers, each with a
budget of b. This new segment has as many servers as there
are sub-tasks with no predecessor(s) in Vi,j (i.e., ready sub-
tasks) and each of these servers is assigned a budget equal to
the minimum execution requirement among these sub-tasks
(computed at line 4). The algorithm then proceeds by up-
dating the DAG Fi,j and ”simulating” the execution of its
sub-tasks within the created servers, i.e. for each sub-task
with no predecessor, its execution time is decreased by Cmin

time units (line 7), thus reflecting its execution within that
dedicated server. The number of servers per segment is ba-
sically tied to the number of sub-tasks that are guaranteed
to be ready at that point in time, at run-time. Sub-tasks
reaching zero execution requirement are removed from the
input DAG Fi,j , as well as their respective outgoing edges

5As a coincidence, in this example, all segments of the SSG
have unitary budgets although it may not be the case in
general.

Figure 4: SSG F SSG

i,1 obtained by running Algorithm 1 with input Fi,1.

(lines 8–10). Algorithm 1 is guaranteed to terminate as Vi,j
eventually becomes empty.

We now prove that the SSG output by Algorithm 1 is
always valid (see 1) for its input execution flow.

Lemma 1. W(F SSG

i,j) = W(Fi,j)

Proof. At each iteration in the while loop in Algorithm 1,
|Scurr| × Cmin units of workload are added to F SSG

i,j (at
lines 5), and the same amount is then iteratively subtracted
from Fi,j (lines 6 and 7). From this and the while loop
termination condition, the claim trivially holds.

Theorem 1. The SSG F SSG

i,j , obtained by running Algo-
rithm 1 with input Fi,j , is valid for the execution flow Fi,j .

Proof. According to the validity property, we need to
show that (a) all the dependencies in Fi,j are preserved and
(b) Fi,j is provided the required budget to finish the execu-
tion of all its sub-tasks.

Proof of (a): It can be easily seen that all the precedence
constraints in Fi,j are preserved by construction since the
servers are created for only those sub-tasks which are ready
to execute (lines 3–5 in Algorithm 1), and the mapping rule
ensures that no sub-task is assigned to more than one server
within the same segment.

Proof of (b): Let us recall the run-time management
mechanism of an SSG: all the servers within a segment of
an SSG become “ready” to provide budgets only when all
the servers from the previous segment have exhausted their
budgets. Given this run-time mechanism, we prove by in-
duction on the number of segments that no budget provided
by the servers is wasted, i.e. all the servers of each segment
use their entire budget to execute sub-tasks of Fi,j that are
ready-to-execute. Therefore, since at the end no budget is
wasted and the total amount of budget provided by the SSG
is equal to the workload of Fi,j (from Lemma 1) the claim
holds true. The detailed proof follows.
Base case. In the first iteration of the while loop, there
is only one sub-task with no predecessor (remember that
there is only one entry point to any execution flow) and
thus only one server is created and added to F SSG

i,j at line 5.

This server has a budget Cmin equal to the WCET ck of
that sub-task (line 4), and at run-time this single server
will provide budget to that single sub-task as soon as it is
released, i.e. when Fi,j is taken for execution. Hence, this
first sub-task will execute entirely within the budget of that
first server and no budget is wasted in this first segment. In

addition, the algorithm ”simulates” the completion of this
first sub-task as it is removed from Fi,j at line 9 and 10,
implying that at the next iteration Vi,j will contain only the
sub-tasks that have not completed yet.
Inductive step. Assume that at run-time, the ℓ’th seg-
ment just released all its servers and no budget has been
wasted by the servers of all the previous segments. Also (as
mentioned above), at the ℓ’th iteration of the while loop,
Vi,j contains only the sub-tasks that have not completed
yet and Scurr therefore contains the set of all the uncom-
pleted sub-tasks that are ready-to-execute at the release of
the servers of the ℓ’th segment. As seen in line 5, Algo-
rithm 1 creates in segment σℓ as many servers as there are
ready sub-tasks, i.e. |Scurr| servers are created in σℓ. Each
of these |Scurr| servers is assigned a budget of Cmin, which
corresponds to the minimum remaining WCET of all the
ready sub-tasks. At run-time, the mapping rule guarantees
that each one of the |Scurr| ready sub-tasks will be allocated
to one (and only one) of the |Scurr| servers, and they will all
execute for Cmin time units, which is ”simulated” at lines 6
and 7 of Algorithm 1. Here again, no budget is wasted in the
ℓ’th segment and since the tasks that complete at the end
of this segment are removed from Fi,j at lines 8–10, at the
next iteration of the while loop, Vi,j will once more contain
only the uncompleted sub-tasks.

The algorithm terminates when Vi,j is empty, which means
that there are no more uncompleted sub-tasks. In every
segment, no budget has been wasted and since we have
W(F SSG

i,j) = W(Fi,j) by Lemma 1, it holds that all the sub-
tasks of Fi,j have been executed entirely.

Note that upon applying Algorithm 1 to each execution
flow of a task τi, we obtain a set of SSGs for that task,
where each SSG is defined and proven valid for one of τi’s
execution flow. With that, we now describe how to construct
a single synchronous DAG of servers for each task which
accommodates all of its execution flows through its SSGs.

4. PER-TASK SERVER GRAPH
The algorithm presented in the previous section has paved

the way for the second and final step of our approach. In
this section, we present how to merge all the SSGs F SSG

i,j ,
created for a task τi , into a single synchronous DAG of
servers, called “global synchronous server graph” (GSSG)
and denoted by FGSSG

i . Such a GSSG must ensure that
every execution flow Fi,j of task τi can be entirely executed
within its servers, i.e. FGSSG

i must be valid for every exe-

Figure 5: GSSG FGSSG

i obtained by running Algorithm 2 with input F SSG

i,j ∈ L where j ∈ [1, 2, 3]. The notation

σℓ ∈ F SSG

i,j shows which segments of the SSGs are mapped to the different segments of FGSSG

i .

cution flow Fi,j of τi. With that, state-of-the-art schedula-
bility techniques and analysis that have been developed for
DAG tasks can be straightforwardly applied over a new task
set comprised of GSSGs (one derived for each task), as our
approach transforms our multi-DAG model into a common
parallel synchronous task model. That is, for each task τi ,
its set Fi of DAGs is executed within a single synchronous
DAG FGSSG

i (period and deadline are inherited). Note that
a GSSG is still an SSG (as defined in Definition 4) and there-
fore all the definitions and properties presented in Section 3
remain in effect.

Algorithm 2: generateGSSG(L)

Input : L - A list with a valid SSG F SSG

i,j for each
execution flow Fi,j of task τi

Output: FGSSG

i - A GSSG for task τi
FGSSG

i ← ∅ ;1

while L 6= ∅ do2

Bmin ←∞ ;3

Qmax ← 0 ;4

foreach F SSG

i,j ∈ L do5

σcurr

i,j ←
{

σℓ ∈ F SSG

i,j | pred(σℓ) = ∅
}

;6

if Bmin > bcurri,j then Bmin ← bcurri,j ;7

if Qmax < qcurri,j then Qmax ← qcurri,j ;8

end9

FGSSG

i ← FGSSG

i ⊗
{〈

Bmin, Qmax
〉}

;10

foreach F SSG

i,j ∈ L do11

if bcurri,j −Bmin = 0 then F SSG

i,j ← F SSG

i,j \ σcurr

i,j ;12

else σcurr

i,j ← (bcurri,j −Bmin, qcurri,j) ;13

if F SSG

i,j = ∅ then L← L \
{

F SSG

i,j

}

;14

end15

end16

return FGSSG

i ;17

Algorithm 2 shows the pseudo-code of the GSSG creation
algorithm, whereas Fig. 5 depicts the resulting GSSG for
task τi once provided its execution flows have been converted
into SSGs by Algorithm 1, as exemplified in Fig. 4. For a
given task τi , this algorithm takes as input the SSGs F SSG

i,j

derived by Algorithm 1 for each of its execution flows Fi,j ,
and outputs a unique GSSG FGSSG

i that can accommodate
all the referred flows, working as follows. The algorithm
keeps on iterating in the while loop at line 2 until the list
L of SSGs given as input is empty. At each of these it-
erations, a new segment of servers is added to the output
GSSG (line 10). This new segment is composed of Qmax

servers, each with a budget of Bmin. These two parame-
ters Bmin and Qmax are computed in lines 3–9. Specifically,
line 6 records in σcurr

i,j the segment from every input F SSG

i,j

that has no predecessors, therefore implicitly providing the
pair (bcurri,j , qcurri,j). Here bcurri,j is the remaining budget of any
of the qcurri,j servers. Note that by the definition of an SSG
(see Definition 4) all the servers within a segment will al-
ways have the same initial budget and only the servers of
one segment are ready at any time instant. On line 7, Bmin

is set to the minimum remaining budget of all these servers
in the “not-yet-processed” segment (σcurr

i,j) of all SSGs and
Qmax records the maximum number of servers in all these
segments.

The algorithm then updates all the SSGs (lines 11–13).
For every SSG F SSG

i,j , if the remaining budget of all the
servers in the “not-yet-processed” segment σcurr

i,j is equal to

Bmin then all the servers of that segment are now considered
as “processed”, as Qmax ≥ qcurri,j servers of budget Bmin have
been added to the output GSSG at line 10. All these servers
are thus removed from their SSG F SSG

i,j , and here we can see
that the next iteration of the foreach loop (lines 5–9) will
again give at line 6 a σcurr

i,j for each F SSG

i,j equal to its next seg-
ment. Otherwise, if the remaining budget of all the servers
in the “not-yet-processed” segment σcurr

i,j is higher than Bmin

(it cannot be lower by definition ofBmin at line 7), then these
remaining budgets are simply decremented by Bmin units of
workload. At line 14, if all the servers have been removed
from F SSG

i,j then this SSG is removed from the list L.
We now prove that Algorithm 2 produces a valid GSSG

for task τi. To do so, we define two operations called split-
ting and expanding that transform an input SSG derived
from Algorithm 1 into another SSG, and we show that both
operations preserve the validity of the input SSG. Then,
we prove in Theorem 2 that the output GSSG FGSSG

i from
Algorithm 2 can always be obtained from any of its input
SSGs F SSG

i,j by applying a sequence of splitting and expand-

ing operations and therefore FGSSG

i is also valid for all the
execution flows Fi,j of task τi.

Definition 6 (Splitting operation). A splitting op-
eration replaces any segment σℓ = (bℓ, qℓ) of an SSG F SSG

i,j

with a list of consecutive segments (σ1

ℓ , σ
2

ℓ , . . . , σ
r
ℓ) such that

∀k ∈ [1, r] it holds that σk
ℓ =

〈

bkℓ , q
k
ℓ

〉

, where

q
k
ℓ = qℓ (1)

r
∑

k=1

b
k
ℓ = bℓ (2)

Lemma 2. Let F SSG

i,j be a valid SSG derived by Algorithm 1

for a given execution flow Fi,j of task τi and let F SSG
′

i,j be the

SSG obtained from F SSG

i,j after applying an arbitrary series

of splitting operations on the segments of F SSG

i,j . It holds that

F SSG
′

i,j is also valid for Fi,j . That is, the splitting operation

preserves the validity of the original SSG F SSG

i,j .

Proof. In Theorem 1, the validity of the SSG F SSG

i,j ob-
tained by Algorithm 1 for the execution flow Fi,j is proven
by showing that (i) W(F SSG

i,j) = W(Fi,j) and (ii) no budget

of F SSG

i,j is wasted at run-time. Regarding the workload of

the SSG F SSG
′

i,j , for any segment σℓ ∈ F SSG

i,j that has been

broken into a series (σ1

ℓ , σ
2

ℓ , . . . , σ
r
ℓ) ∈ F SSG

′

i,j , it holds from

Eq. 2 that
∑r

k=1
bkℓ = bℓ and since from Eq. 1 qkℓ = qℓ for

all k ∈ [1, r], it is easy to see that W(F SSG
′

i,j) = W(F SSG

i,j) =
W(Fi,j).

Second, it is shown in Theorem 1 that every segment of
F SSG

i,j has as many servers as the number of sub-tasks that
will be ready-to-execute at run-time when the segment will
be allowed to provide budget. Therefore, since no budget of
F SSG

i,j is wasted, for any segment σℓ ∈ F SSG

i,j that has been

broken into a series (σ1

ℓ , σ
2

ℓ , . . . , σ
r
ℓ) ∈ F SSG

′

i,j , there will be
exactly qℓ ready sub-tasks of remaining WCET ≥ bℓ com-
peting for these qℓ servers of budget bℓ. From Eq. 1 and 2,
and by the mapping rule, there will also be qℓ ready-sub
tasks competing for the qℓ servers of every segment σk

ℓ , with
k ∈ [1, r], and such that at every segment σk

ℓ the remaining
WCET of these qℓ ready sub-tasks will be ≥ bkℓ . As a result,
no budget will ever be wasted in these new segments σk

ℓ ,
k ∈ [1, r].

Definition 7 (Expanding operation). An expanding
operation consists in supplying any segment σℓ = (bℓ, qℓ) of
an SSG F SSG

i,j with an arbitrary number of extra servers of
budget bℓ.

Lemma 3. Let F SSG

i,j be a valid SSG for a given execution
flow Fi,j of task τi obtained by Algorithm 1 (and possibly

after an arbitrary series of splitting operations). Let F SSG
′

i,j

be the SSG obtained from F SSG

i,j after applying an arbitrary

series of expanding operations on the segments of F SSG

i,j . It

holds that F SSG
′

i,j is also valid for Fi,j .

Proof. Adding new servers to a segment σℓ ∈ F SSG

i,j

leads to W(F SSG
′

i,j) > W(F SSG

i,j) and at run-time qℓ becomes
greater than the number of ready sub-tasks at segment σℓ.
However, the mapping rule of Definition 5 enforces that no
sub-task is assigned to two different servers within a same
segment. As a consequence the extra servers will simply
be ignored at run-time, and the precedence constraints be-
tween the sub-tasks of Fi,j will still be satisfied as the order
of execution of the sub-tasks remains unchanged. In short,

the budget of all the servers added to F SSG
′

i,j will be entirely
wasted and thus the validity is preserved.

Theorem 2. The GSSG FGSSG

i obtained by running Al-
gorithm 2 is valid for task τi as it is valid for every of its
execution flows Fi,j .

Proof. The proof is a direct consequence of Lemmas 2
and 3, and the fact that the output FGSSG

i of Algorithm 2
can be obtained from every input F SSG

i,j ∈ L by applying a

series of splitting and expanding operations. Let F SSG

i,j be

any of the input SSGs and let σcurr

i,j be its current segment

with no predecessor (line 6). By definition of Bmin at line 7,
we have bcurri,j ≥ Bmin and by definition of Qmax at line 8,
we have qcurri,j ≤ Qmax. Therefore, the addition of a new

segment of Qmax servers of budget Bmin at line 10 (alongside
the corresponding reduction of Bmin units at line 13) can be
seen as a splitting operation performed on segment σcurr

i,j .
Also, if qcurri,j < Qmax then the addition of Qmax servers can
be seen as an expanding operation. Finally, note that if
F SSG

i,j is not the last SSG to be removed from L at line 14,

then the addition of extra segments to the output FGSSG

i in
the next iterations can also be seen as applying an expanding
operation on arbitrary empty segments.

As a last result, the following corollary holds true from
the validity of the GSSGs created by Algorithm 2. The
corollary states that the schedulability of the original task
set composed of parallel tasks with multiple execution flows
can now be assessed by applying any existing schedulability
test (the only restriction on the scheduling algorithm is to be
work-conserving) over the set of derived GSSGs as long as
the test conforms with the final parallel model. The results
from [9, 18] are examples of such tests.

Corollary 1. If a valid GSSG FGSSG

i is deemed schedu-
lable by a schedulability test of a scheduling algorithm A, so
does the task τi from which it was derived.

We shall now briefly discuss the assumption made in Sec-
tion 2, according to which every sub-task vk executes for
exactly ck time units. It is certain that at run-time the sub-
tasks will most of the time execute for less than their WCET
and unfortunately our methodology is not sustainable in
these circumstances (we omit the proof here due to space
limitation). Nevertheless, the results obtained in this paper
can be made sustainable w.r.t. WCET through the addition
of run-time mechanisms. For example, consider the follow-
ing mechanism: when a sub-task vk completes earlier than
indicated by its WCET ck, the mechanism checks the GSSG
of the corresponding task and determines in how many seg-
ments, say r, that sub-task vk was supposed to complete
its execution. Then, the mechanism immediately locks all
the successor sub-tasks of vk (thus preventing them to be-
come ready) for the next r segments. This way, the system
behaves like if all the sub-tasks execute for their WCET.

5. DISCUSSION AND CONCLUSIONS
We firmly believe that it has nowadays become crucial to

investigate new models and techniques to schedule contem-
porary applications subject to real-time requirements, espe-
cially given the new trend towards parallelization to achieve
higher performance. The theoretical results and investiga-
tions carried out in this work should be seen as a step in
that direction. Some of the practical concerns and imple-
mentation details have been set aside in this work, but will
be the focus of our future work.

We have presented a technique to compute a single DAG
of servers FGSSG

i for a task τi with different execution flows,
and showed that these servers are able to supply every ex-
ecution flow of τi with the required cpu-budget so that the
task can execute entirely, irrespective of the execution flow
taken at run-time. Therefore, the multi-DAG parameter Fi

assumed in the task model can be replaced for its corre-
sponding GSSG FGSSG

i , while the period and the deadline
remain unchanged. With this, there is no need to consider

every feasible interference scenario between all combinations
of execution flows of all the tasks in order to derive a schedu-
lability test based on the internal structure of the tasks, as
FGSSG

i naturally upper-bounds the on-core interference that
a task τi causes on the other tasks. Moreover, a GSSG is a
special case of the synchronous parallel task model, which
in turn is a special case of the DAG model. Therefore,
existing multi-core scheduling techniques suited for any of
these classes of parallel tasks can be leveraged to ascertain
the schedulability of a task set modeled as discussed in this
work. Additionally, note that a GSSG has a very pecu-
liar structure (fair progression and synchronous behavior),
which offers opportunities for new theoretical analysis.

From a schedulability point of view, current scheduling
techniques for parallel tasks can be broadly categorized into
two categories: decomposition method and direct analy-
sis. In decomposition method, each sub-task of a DAG is
assigned an intermediate offset and a deadline based on
the structure of the DAG. With this, each sub-task can
be treated as an individual sequential task. The parallel
task scheduling problem then reduces to the traditional se-
quential task schedulability problem on a multiprocessor sys-
tem, for which there is a plethora of scheduling algorithms
and schedulability tests in the literature. In direct analy-
sis, schedulability conditions are derived directly from the
properties of the DAG. Some analysis techniques consider
the precedence constraints on the DAG to study the execu-
tion requirements at different time instants, whereas others
simply rely on the workload and critical path length values
to create a synthetic worst-case scenario that upper-bounds
the interference. For the latter case, our contribution brings
no benefit since we end up increasing the maximum work-
load of the task. However, it has been shown in [21] that
considering the internal structure of a DAG (as we do in this
work) may improve the schedulability tests. Hence, for all
the other cases which rely on the internal structure of the
DAG (including the decomposition methods) our contribu-
tion directly enables the application of such schedulability
analysis methods to generic real-time parallel applications
with conditional execution without having to assume that
all the sub-tasks of every flow must execute.

Although the SSGs output by the algorithms presented in
this paper retain optimal critical path length values, we pro-
vide no proofs due to space constraints. Regarding the final
workload values, it is worth noting that Algorithm 2 can be
further improved with respect to tightening of the GSSG’s
workload. However, we chose to present this algorithm in
its simplest form for ease of understanding and proving the
validity of its output. As a final remark, it is also worth
mentioning that there exists a trade-off between the critical
path length and the workload of the GSSG output by Algo-
rithm 2, in the sense that it is sometimes possible to reduce
its workload by increasing its critical path length, and vice
versa, while preserving its validity. Besides evaluating our
approach through extensive experiments in terms of schedu-
lability gains comparatively to existing techniques that ne-
glect the internal structure of the tasks, our future work will
also explore and try to exploit this trade-off in order to in-
fluence the interference between tasks by fine-tuning these
two parameters, thereby reducing the worst-case response
time of some tasks to improve the system schedulability.

Acknowledgments
This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and by ERDF

(European Regional Development Fund) through COMPETE (Oper-
ational Programme ’Thematic Factors of Competitiveness’), within
project(s) FCOMP-01-0124-FEDER-037281 (CISTER), FCOMP-01-
0124-FEDER-020447 (REGAIN); by the European Union, under the
Seventh Framework Programme (FP7/2007-2013), grant agreement
nr. 611016 (P-SOCRATES).

6. REFERENCES
[1] B. Andersson and D. de Niz. Analyzing global-edf for

multiprocessor scheduling of parallel tasks. In Principles of
Distributed Systems, volume 7702 of Lecture Notes in
Computer Science, pages 16–30. 2012.

[2] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and
H. Hartig. Response-time analysis of parallel fork-join
workloads with real-time constraints. In ECRTS, pages
215–224, July 2013.

[3] S. Baruah. Improved multiprocessor global schedulability
analysis of sporadic dag task systems. In ECRTS, pages
97–105, July 2014.

[4] S. Baruah, J. Goossens, and G. Lipari. Implementing
constant-bandwidth servers upon multiprocessor platforms. In
RTAS, pages 154–163, 2002.

[5] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela,
L. Stougie, and A. Wiese. A generalized parallel task model for
recurrent real-time processes. In RTSS, pages 63–72, 2012.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient
scheduling for languages with fine-grained parallelism. J. ACM,
46(2):281–321, 1999.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, Sept.
1999.

[8] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese.
Feasibility analysis in the sporadic dag task model. In ECRTS,
pages 225–233, July 2013.

[9] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin.
Global edf schedulability analysis for synchronous parallel tasks
on multicore platforms. In ECRTS, pages 25–34, July 2013.

[10] R. Davis and A. Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Computing Survey,
43(4):35:1–35:44, Oct. 2011.

[11] R. I. Davis and A. Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Comput. Surv.,
43(4):35:1–35:44, Oct. 2011.

[12] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik,
and P. Wong. Theory and practice in parallel job scheduling. In
Job Scheduling Strategies for Parallel Processing, pages 1–34,
1997.

[13] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel
scheduling for cyber-physical systems: Analysis and case study
on a self-driving car. In Cyber-Physical Systems (ICCPS),
2013 ACM/IEEE International Conference on, pages 31–40,
April 2013.

[14] K. Lakshmanan, S. Kato, and R. R. Rajkumar. Scheduling
parallel real-time tasks on multi-core processors. In RTSS,
pages 259–268, 2010.

[15] J. Li, K. Agrawal, C. Lu, and C. D. Gill. Analysis of global
EDF for parallel tasks. In ECRTS, pages 3–13, 2013.

[16] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah.
Analysis of federated and global scheduling for parallel
real-time tasks. In ECRTS, July 2014.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal of
the ACM, 20:46–61, 1973.

[18] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho.
Response-time analysis of synchronous parallel tasks in
multiprocessor systems. In RTNS, pages 3–12, 2014.

[19] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic.
Techniques optimizing the number of processors to schedule
multi-threaded tasks. In ECRTS, pages 321–330, July 2012.

[20] OpenMP Architecture Review Board. OpenMP application
program interface version 4.0, 2013.

[21] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet.
Global edf scheduling of directed acyclic graphs on
multiprocessor systems. In RTNS, pages 287–296, 2013.

[22] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core
real-time scheduling for generalized parallel task models. In
RTSS, pages 217–226, 2011.

[23] L. Sha, T. Abdelzaher, K. Arzen, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. Mok.
Real Time Scheduling Theory: A Historical Perspective.
Real-Time Systems, 28(2-3):101–155, 2004.

