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Abstract

We present a novel hierarchical force-directedmethod for drawing large graphs. Given a graphG = (V ,E), the
algorithm produces an embedding forG in an Euclidean spaceE of any dimension. A two or three dimension
drawing of the graph is then obtained by projecting a higher-dimensional embedding into a two or three dimensio
subspace ofE. Such projections typically result in drawings that are “smoother” and more symmetric than
drawings in 2D and 3D.

In order to obtain fast placement of the vertices of the graph our algorithm employs a multi-scale techniqu
on a maximal independent set filtration of vertices of the graph. While most existing force-directed algorithm
with an initial random placement of all the vertices, our algorithm attempts to place vertices “intelligently”, close
to their final positions. Other notable features of our approach include a fast energy function minimization s
and efficient memory management. Our implementation of the algorithm can draw graphs with tens of th
of vertices using a negligible amount of memory in less than one minute on a 550 MHz Pentium PC.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Graphs are common in many applications, from compilers to networks, from software engin
to databases. Typically, small graphs are drawn manually so that the resulting picture best
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the underlying relationships. The task of drawing graphs by hand becomes more challenging as the
complexity and size of the graphs increases. Graph drawing tools have been the focus of the graph
drawing community for at least the last two decades; see [11,30] for comprehensive reviews of the graph
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drawing field and [44] for work in information visualization. Numerous algorithms have been deve
for drawing special classes of graphs such as trees and planar graphs. There are few genera
graph drawing algorithms, however. Force-directed methods are often the methods of choice for
general graphs. Substantial interest in force-directed methods stems from their conceptual sim
applicability to general graphs, and typically aesthetically pleasing results.

Automated graph drawing tools can rarely guarantee optimal drawings. Thus such tools
attempt to optimize a set of goals which tend to produce nice drawings. Typical goals include
area, even distribution of vertices, minimizing edge crossings, etc. Depending on the applicati
goals are ranked in order of importance and often only one or two are used in the drawing algor
is not uncommon that different aesthetic criteria can be contradictory.

With few exceptions, current automated systems cannot deal with graphs of tens of thous
vertices. Meanwhile, it is common for the graphs to be visualized to have more vertices than the
of pixels on conventional displays. Such massive graphs occur naturally in the many areas
networking, telecommunications, and databases. The majority of drawing tools attempt to disp
entire graph, with each vertex and edge explicitly depicted. This approach is impracticable fo
graphs, for example when the number of vertices exceeds the number of pixels on the display de
the case of very large graphs different techniques are called for.

In this paper we present a new algorithm which can draw simple undirected graphs with t
thousands of vertices in under a minute. Even larger graphs can be displayed using theGRIP system in
conjunction with a fisheye view [21,31,40] or the multi-level display algorithms of Eades and Feng
Large graphs can be visualized using clustering based on a binary space partition (BSP) toget
either fisheye views or multi-level displays as shown in [12,32]. The BSP-based clustering ap
allows for the effective visualization of very large graphs. However, the effectiveness of the
algorithms depends on a good recursive clustering, which in turn depends on a good initial embed
the graph. Creating a good embedding has been prohibitively expensive using existing algorithm
algorithm allows us to create excellent initial embeddings in very reasonable times. The key fea
the algorithm are:

• intelligent initial placement of vertices,
• multi-dimensional drawing,
• a simple recursive coarsening scheme,
• fast energy function minimization,
• space and time efficiency.

The rest of this paper is organized as follows. In Section 2 we review some of the previous
in three dimensional drawing, visualization of large graphs, and force-directed algorithms for auto
graph drawing. In Section 3 we describe our algorithm and introduce maximal independent set filt
intelligent placement of vertices, and multi-dimensional drawing. In Section 4 we discuss po
modifications of the algorithm. Also included are several drawings obtained by theGRIP layout
system [22], which is based on our algorithm.
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2. Previous work

2.1. Drawing in three dimensions

have
egree of
h shows
objects

rithms
rawing
20], and
g [9],

ades,
studied

gs that
r large
details
their

fisheye
etailed
17,32]
level

e

hs by
ma and

ustering
display
multi-
orithm
hence, it
gley [38]
asuring

der of
latter
Although the majority of the work in graph drawing is in two dimensional graph layout, there
been several algorithms and tools designed for three dimensional graph drawing. The additional d
freedom sometimes allows for more natural representations, and there is growing evidence whic
that the human brain can comprehend increasingly complex structures if they are displayed as
in three dimensional space [45,46]. Existing work in three dimensional (3D) graph drawing algo
focuses on algorithms for special kinds of graphs, for example the algorithms of Cohen et al. [7]. D
general graphs in 3D using the force-directed approach is studied by Fruchterman and Reingold [
Monien et al. [34]. Other recent 3D drawing algorithms include Bruß and Frick [5], Cruz and Twaro
and Ostry [35].

In the context of orthogonal drawings, 3D point-drawing algorithms were developed by E
Symvonis and Whitesides [16] and Papakostas and Tollis [36]. 3D orthogonal box-drawings were
by Biedl [2] and multi-dimensional orthogonal graph drawings are presented by Wood [47].

2.2. Visualization of large graphs

Visualizing large graphs presents unique problems and requires unorthodox solutions. Drawin
display the entire graph have the advantage of showing the global structure of the graph. Fo
graphs such drawings become impractical as the limited resolution of display devices makes
hard to discern. Partially drawing graphs allows for display of larger graphs but fails to convey
global structure. Two other approaches to visualization of large graphs are of particular interest:
views and multi-level displays. Fisheye views [21,31,40] show an area of interest quite large and d
while showing peripheral areas successively smaller and in less detail. Multi-level views [12,14,
allow us to view large graphs at multiple abstraction levels. A natural realization of such multiple
representations is a 3D drawing with each level drawn on a plane at a differentz-coordinate, and with th
clustering structure drawn as a tree in 3D.

Multi-level display algorithms are introduced in the context of visualization for clustered grap
Eades and Feng [14] and Feng [17]. Compound and clustered graphs are studied by Sugiya
Misue [33,41], by Eades et al. [15], and Feng et al. [18]. The above algorithms assume that the cl
of the graph is given. Creating a graph clustering based on binary space partitions and using it to
large graphs was introduced by Duncan et al.[12] and Kobourov [32]. The quality of the resulting
level drawings of [12] often depends on the initial embedding of the graph in the plane. The alg
presented in this paper allows us to create excellent initial embeddings in very reasonable times;
can be used either by itself or as a preprocessing step to these large-graph layout methods. Qui
studies the quality of the abstract graph views obtained from clustering techniques by formally me
the representational differences between abstract views and the underlying graph.

2.3. Force-directed algorithms

The force-directed placement algorithm of Quinn and Breur [39] and the spring embed
Eades [13] are among the first practical algorithms for the drawing of general graphs. In the
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algorithm the graph is modeled as a physical system of rings and springs. Classical force-directed
methods start from a random embedding of a graph and utilize standard optimization methods to find
a minimum of the energy function of their choice. A characteristic feature of force-directed layout
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algorithms is the use of acost (or energy) function E, which assigns to each embeddingρ :G → R
n

of a graphG in some Euclidean spaceRn (typically n = 2 orn = 3) a non-negative numberE(ρ). Force-
directed methods are based on the premise that minima of reasonably chosen energy functions
aesthetically pleasing graph drawings. The main differences between force-directed algorithms a
choice of energy function and the methods for its minimization.

The energy minimization algorithm of Kamada and Kawai [29] uses the Newton–Raphson m
for improved drawings. The simulated annealing method of Davidson and Harel [10] is another fl
force-directed algorithm. Fruchterman and Reingold [20] use a slightly different heuristic which r
in a faster algorithm. The algorithms of Bruß and Frick [5] and Frick et al. [19] add the notion of
temperature to further speed up the drawing process. A force-directed method can also be used
graphs with node labels as shown by Gansner and North [23].

The classic force-directed algorithm produces excellent results for small graphs. Howev
algorithm has two major drawbacks. The first of these drawbacks is that the force-directed alg
does not scale well with size. Large graphs present a problem for even the best existing graph
algorithms because these algorithms generally cannot handle more than about a hundred vert
larger graphs, the basic algorithm often fails to arrive to a minimum of the energy function and arit
precision also becomes a problem. The second drawback is the poor running time of force-d
algorithms. A typical implementation of a force-directed algorithm runs in phases. In each pha
locations are computed for all the vertices. A phase runs in O(n2 + m) time, wheren is the number of
vertices andm the number of edges of the graph. The number of phases is typically linear in the n
of vertices or edges leading to overall running time of O(n3) or O(n4). This poses serious problems wh
dealing with graphs of tens of thousands of vertices.

Several new algorithms for drawing large graphs were presented at the 8th Symposium on
Drawing. Harel and Koren [27] present a multi-scale scheme that computes a simpler graph hie
Walshaw [43] describes a different multilevel algorithm, based on graph coarsening, refinemen
layout on each layer, and interpolation of the results onto the next level. Then-body simulation method
of Quigley and Eades [37] uses the Barnes–Hut [1] hierarchical space decomposition method. An
implementation of the Barnes–Hut method was used for graph drawing by Tunkelang in JIGGL
JIGGLE also temporarily increases the degrees of freedom by starting with layouts in higher dime
space. A method similar to our intelligent placement is described in the context of incremental d
by Cohen in [6].

When presented with a computationally expensive graph algorithm, a standard approach is to a
with the graph a hierarchy of graphs. The needed computation is performed by starting with the s
graph in the hierarchy, then proceeding to larger and larger graphs and using at each stage th
of the previous computation. This strategy has been brought to the area of force-directed graph
from particle physics [3,4] in the multi-scale algorithm of Hadany and Harel [26]. In [27] Harel and K
introduce several simplifications to the previous algorithm resulting in faster drawings and allowi
larger graphs. With their beautiful drawings of graphs with 3,000 vertices they mark a new chapte
area of force-directed graph drawings.

However, as one of the underlying steps of the algorithm in [27], all-pairs shortest paths are com
which is both time and space expensive. Using a binary heap implementation the all-pairs shorte
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problem can be solved in O(nm logn) time, and using Fibonacci heaps, in O(n2 logn + nm) time, e.g.
see [8]. In addition, the quadratic space complexity incurred by the matrix of distances between vertices
of the graph also quickly becomes an obstacle for drawing large graphs. Other computationally expensive
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procedures include the clustering procedure for a construction of a hierarchy of graphs and the N
Raphson optimization method for scaling the displacement vectors. Finally, the algorithm in [27] c
drawings in 2D and, as it is based on the Newton–Raphson method, extending it to 3D consi
slows down the algorithm. The algorithm described in the next section addresses the above probl
introduces several novel features.

3. The algorithm

3.1. Algorithm overview

In the remainder of this paper when we refer to a “graph” we assume a simple, undirecte
unweighted graph, unless specified otherwise. The algorithm begins by creating a filtration of
of verticesV of the graph,V: V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ ∅. Next the vertices in the smallest filtration s
Vk are placed in their initial positions, using their graph distance as an approximation to their o
Euclidean distance. Here thegraph distancebetween two vertices is defined as the length of the sho
path between them in the graph. The current positions are then refined using a small number o
directed refinement rounds. The same process is repeated with the vertices inVk−1, Vk−2, . . . ,V0. Thus,
there arek phases in the main algorithm and each phase has a placement stage and a refinemen

The pseudo-code for the algorithm can be seen in Fig. 1. After creating the vertex set filtrat
algorithm starts adding a few vertices at a time. The mainfor-loop runs through all levels of the filtration
starting atVk, and performs placement and refinement stages. At phasei for each vertexv ∈ Vi − Vi+1

we find a family of neighborhood setsNi(v),Ni−1(v), . . . ,N0(v). We use the neighborhood sets to fi
an initial positionpos[v] of v. The vertices inNi(v) are the closest neighbors tov from the setVi . The
graph distances betweenv and the vertices inNi(v) are used to determine the placement forv. The exact

MAIN ALGORITHM

create a filtrationV: V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ ∅
for i = k to 0 do

for each v ∈ Vi − Vi+1 do
find vertex neighborhoodNi(v),Ni−1(v), . . . ,N0(v)

find initial positionpos[v] of v

repeat rounds times
for each v ∈ Vi do

compute local temperatureheat[v]
disp[v] ← heat[v] · −→

F Ni
(v)

for each v ∈ Vi do
pos[v] ← pos[v] + disp[v]

add all edgese ∈ E

Fig. 1. After creating the vertex filtration and setting up thescheduling function the algorithm processes each filtration
starting with the smallest one. Herepos[v] is a point inR

n corresponding to vertexv androunds is a small constant. In th
refinement stageheat[v] is scaling factor for the displacement vectordisp[v], which in turn is computed over a restrictio
Ni(v) of the vertices ofG.
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Fig. 2. A hierarchy of coarsened graphs for the cycle of 24 vertices,G. Initially placed vertices are light and vertices th
have already been refined are darkly shaded. The left column shows the drawing at the beginning of each phase
the new vertices were added. Their initial positions are calculated based on thepositions of their nearest neighbors from the
previous layer of the filtrationV . The right column shows how the positions of newly added vertices change after applyi
force-directed local refinement. Note that the vertices in the left column are originally placed “close” to their eventual refin
positions.

methods for determining the neighborhood setsNi(v),Ni−1(v), . . . ,N0(v) and for determining the initia
vertex positions are in Sections 3.3 and 3.4, respectively.

The refinement phase is repeatedrounds times, whererounds is a small constant.1 In the
refinement stage vertices are perturbed using a local force-directed algorithm. The displacemen
disp[v] of v is set to a local Kamada–Kawai force vector. Herelocal means that the force vector

−→
FNi

(v)

is computed overv’s vertex neighborhoodNi(v) rather than over all vertices inG. The displacemen
vector is scaled by a local temperature factorheat[v]. More details about the process of calculat
heat[v] can be found in Section 3.5. Finally, once all the vertices have been placed, the edge
graph are added. Fig. 2 illustrates the drawing stages of the algorithm for a cycle graph.

1 In principle,rounds can be set to be a constant function, but our experiments with a linearly increasing functio
values from 5 to 15 yield better results.
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3.2. Vertex set filtrations

When trying to draw a large graph, it is natural to associate with it a hierarchy of graphs and produce
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at each stage we use the previous drawing. Two important properties of such a hierarchy are:

• the depth of the hierarchy (number of levels),
• the distribution of the vertices in the levels.

A shallow hierarchy (e.g. constant depth) implies that as we go from one level to the next, mo
a constant fraction of the vertices are added. Usually this means that information from the old
not sufficient to create a good drawing on the new level. On the other hand, a deep hierarchy (e.
in the number of vertices) is too time consuming to traverse. Thus, logarithmic depth in the num
vertices is highly desirable.

The effectiveness of a multi-scale scheme like this also depends on the uniformity of the distr
of the vertices at all levels of the hierarchy. The hierarchy of graphs can be thought of as con
different levels of abstraction of the underlying graph. Uniform distribution of the vertices implies
accurate levels of abstraction which in turn implies better drawings on each level.

Hadany and Harel [26] create a hierarchy of graphs based on the cluster number, the degree
and the homotopic number. Harel and Koren [27] use a simpler method to create the hierarchy of
which relies on thek-clusters problem. Since solving thek-clusters problem or the relatedk-centers
problem is NP-hard [25,28], their algorithm uses a straightforward 2-approximation algorithm f
k-centers problem to create a GC filtration. The algorithm begins by producing agraph centers(GC)
filtration V = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ ∅ of the setV of vertices of the graphG, with |Vi| = c · xk−i , where
x > 1 andc = |Vk| is a constant. A cluster of vertices closest to each center is created for each
and on every level. A set of weighted edges is computed between elements ofVi , so that the weights
correspond to the number of edges between the elements of the corresponding clusters. Thu
filtration together with the edges forms a hierarchy of graphs.

The creation of a GC filtration proceeds as follows. Pick a random elementv of V and add it toVk.
Find a vertex farthest away from all the vertices inVk and add it toVk. Continue this process untilVk

hasc elements. Suppose we have already foundVi , 1 � i � k. To find the next setVi−1 let Vi−1 = Vi

and again continue adding toVi−1 the elements that are farthest away fromVi−1 until |Vi−1| = c · xk−i+1.
WhenV1 is completed we have a GC filtration ofV .

While having proper graphs on each level is necessary in many applications utilizing graph hiera
in the context of graph drawing we can save time and space by using just a filtration of the ver
Note that in a filtration there are no edges but only vertices. As we already pointed out, logarithmic
and “uniform” filtrations are highly desirable for graph drawing purposes. We have developed and
one specific such filtration that we call amaximal independent set(MIS) filtration and we use it in this
algorithm.

Recall thatS ⊂ V is anindependent setof a graphG = (V ,E) if no two elements ofS are connected
by an edge ofG. Equivalently,S is an independent set ofG if the graph distance between any tw
elements ofS is at least two. Recall that thegraph distancebetween two vertices is the length of t
shortest path between them in the graph. A maximal independent set filtration ofG is a family of sets
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Fig. 3. An example of a MIS filtration. Here the underlying graphG = (V ,E) is a rectangular mesh of size 10× 10. The dark
vertices are included in the filtration. HereV = V0, V1 is a standard maximal independent set,V2 is a maximal subset ofV1 so
that the distances between its elements are at least 22 = 4, and so on.

V = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ ∅, such that eachVi is a maximal subset ofVi−1 for which the graph distanc
between any pair of its elements is greater than or equal to 2i ; see Fig. 3.

Since the maximum independent set problem is NP-hard [24], we use maximal independe
instead. Conceptually, MIS filtrations can be constructed as follows. LetV ∗ = V , take a random verte
v ∈ V ∗ and add it toV1. Removev and all of its neighbors fromV ∗ and repeat until no more vertices c
be chosen. Suppose we constructed an orderi independent setVi of G. To constructVi+1 let V ∗ = Vi

and take a random vertexv ∈ V ∗ out ofV ∗, and place it inVi+1. Next remove fromV ∗ all vertices whose
graph distance tov is less than or equal to 2i . This distance factor is important in ensuring that verti
are well distributed and in guaranteeing small depth of the filtration. Choose another elementw of V ∗,
and remove fromV ∗ the chosen vertex and all vertices whose distance tow is less than or equal to 2i .
Placew in Vi+1. Repeat this procedure untilV ∗ is empty. An example of a maximal independent
filtration is shown in Fig. 3.

The construction of a MIS filtration stops at levelk so that 2k > δ(G), whereδ(G) is the diameter o
G. Therefore, each MIS filtration has depth O(logδ(G)). MIS filtrations provide excellent distributio
of the vertices by construction, a property needed for high quality filtrations.

The three different filtrations considered have their advantages and disadvantages. The nu
vertices in the MIS filtration sets is controlled by the topology of the graph, whereas in the graph c
filtration the sizes are arbitrarily set by the user. While we cannot guarantee sub-quadratic time an
MIS filtrations are faster to create and use very little space compared to GC filtrations.

3.3. Finding vertex neighborhoodsNi(v)

One of the key ideas of the hierarchical force-directed graph layout method is that at each s
the construction a force-directed position refinement method is applied to a given layerVi of a filtration
only locally. More precisely, for a given energy functionE andv ∈ Vi , the gradient ofE at pos[v] is
computed not forE but for the restriction ofE to some neighborhoodNi(v) of v in Vi . A good filtration
of V and an efficient local position refinement strategy are the key means of achieving a sub-qu
lower bound for space and time complexity of our method.

This section describes a procedure of constructing the neighborhood sets,Ni(v), and the definition
of the functionnbrs(i) which determines the size ofNi(v). Intuitively, each stage of the hierarchic
graph drawing strategy should result in a closer approximation of the final drawing of the graph. I
at the last stage, when we perform a force-directed local refinement of the position of each vertv of
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the graph, it should be enough to takeN0(v) to be the set of adjacent vertices ofv. The time complexity
of this last stage calculation is∑

awing

s
et
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c ·
v∈V

N0(v) = c · n · avgDeg(G),

whereavgDeg(G) is the average degree ofG and c is a constant. We would like to makec · n ·
avgDeg(G) an upper bound for the complexity of calculations at each stage of graph dr
construction. Therefore, we set

nbrs(i) = �

(
avgDeg(G) · n

|Vi|
)

.

SupposeV is a logarithmic depth filtration of the setV of vertices ofG. The calculation of the set
Nk(v),Nk−1(v), . . . ,N0(v) is performed for each elementv ∈ V only once, when it is added to a s
of already placed vertices; see Fig. 1. We require thatNi(v) contains�(nbrs(i)) elements for each
i = k, k − 1, . . . ,0. Therefore, the space complexity of this strategy is bounded above by

k∑
i=0

|Vi − Vi+1|
(
nbrs(1) + nbrs(2) + · · · + nbrs(i)

)
. (1)

SinceVi+1 ⊂ Vi , we have|Vi − Vi+1| = |Vi| − |Vi+1|, and after simplifications, (1) takes the form

k∑
i=0

|Vi|nbrs(i) � c0

k∑
i=0

|Vi|avgDeg(G) · n
|Vi| = c0

k∑
i=0

avgDeg(G) · n

= c0avgDeg(G) · (k + 1)n. (2)

Similarly we can show that there exists a positive constantc1 so that Eq. (1) is greater tha
c1avgDeg(G) · (k + 1)n. Thus, the storage complexity of the above strategy for findingNk(v),Nk−1(v),

. . . ,N0(v) for all v ∈ V is �(avgDeg(G)kn). If G is of bounded degree, then�(avgDeg(G)kn) =
�(kn), wherek = logn for a GC filtration, andk = logδ(G) for a MIS filtration.

Let thedepth of a vertex, depth(v), with respect toV be the largestd, such thatv ∈ Vd . The sets
Nk(v),Nk−1(v), . . . ,N0(v) are created by repeated application of a breadth-first search algorithm.
vertex with depthd is placed in each ofNj(v), for j � d, if Nj(v) is not already full. The process sto
when allNj(v)s are full. Note that the running time of this procedure is bounded above by

k∑
i=1

|Vi|
(
1 · nbrs(1) + 2 · nbrs(2) + · · · + i · nbrs(i)

)
. (3)

As in the case of the expression (1), (3) is equal to

k∑
i=0

i|Vi|nbrs(i) � c0

k∑
i=0

i|Vi |avgDeg(G) · n
|Vi| = c0

k∑
i=0

iavgDeg(G) · n

= c0avgDeg(G) · (k + 1)k

2
n. (4)

Similarly we can show that there exists a positive constantc1 so that Eq. (3) is greater tha
c1avgDeg(G) · (k+1)k

2 n. The time complexity of this strategy for findingNk(v),Nk−1(v), . . . ,N0(v) for
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all v ∈ V is �(avgDeg(G)k2n). If G is of bounded degree, then�(avgDeg(G)k2n) = �(k2n), where
k = logn for a GC filtration, andk = logδ(G) for a MIS filtration.
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3.4. Initial placement of vertices

Most graph drawing algorithms begin by placing all the vertices of the graph randomly in the
or in 3D. In this algorithm we have adopted a different approach in that we add vertices to the
drawing one at a time and only after we have found a suitable place for them. Here we describe the
in two dimensional space, but in practice it can be done in any Euclidean spaceE. Recall that in the firs
step of the algorithm we compute a filtrationV = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ ∅. If necessary, we modify th
last one or two sets of the filtration so that the last one has exactly three elements,Vk = {u, v,w}. We
assume thatG is connected (if not, each connected component can be drawn independently). W
the process of drawingG by placingu, v andw as follows: we find a triangle with endpoints given
pos[u],pos[v],pos[w], so that{distR2(u, v) = distG(u, v),

distR2(v,w) = distG(v,w),

distR2(w,u) = distG(w,u),

wheredistR2(u, v) is the Euclidean distance betweenpos[u] andpos[v], anddistG(u, v) is the
graph distance betweenu andv.

In general, after refining the positions of the vertices inVi , we need to find initial positions for th
vertices inVi−1 − Vi . Once all vertices inVi−1 are placed their positions are refined, and we proc
to the next level. This two-stage process continues until all vertices have been drawn. A natural
place a new vertex given the placement of several others is to use the graph distance from the ne
to several of its closest neighbors that have already been placed. We base our placement strate
simple idea.

Suppose that we are looking for a place for a new vertext ∈ Vi−1 − Vi . Furthermore, suppose that w
know two verticesu, v ∈ Vi which have already been placed. Then using their position vectors,pos[u]
andpos[v], and the graph distancesdistG(u, t) anddistG(v, t), it is straightforward to find a positio
pos[t] of t in the plane so that{

distR2(u, t) = distG(u, t),

distR2(v, t) = distG(v, t),

as shown in Fig. 4(a). This idea can be generalized so that three or more already placed vertices
to determine the location of new vertices. For each vertext ∈ Vi−1−Vi we find its three closest neighbo
u, v,w ∈ Vi via a BFS; see Fig. 4. Sinceu, v andw have already been placed we can obtain a suit
place fort by solving the following system of equations foru, v,w andt


(x − xu)

2 + (y − yu)
2 = distG(u, t)2,

(x − xv)
2 + (y − yv)

2 = distG(v, t)2,

(x − xw)2 + (y − yw)2 = distG(w, t)2,

wherepos[u] = (xu, yu), pos[v] = (xv, yv), pos[w] = (xw, yw), pos[t] = (x, y). Since this system
of equations is over-determined and may not have any solutions, we solve the following three p
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Fig. 4. Initial placement for a new vertext ; darkly shaded vertices have already been placed. (a) Given two vertices inR
2, there

are up to two possible places fort , based on its graph distance tou andv. (b) Using three vertices inR2 in a similar fashion
results in a better placement fort .

equations instead


distR2(u, t) = distG(u, t),

distR2(v, t) = distG(v, t),

distR2(v, t) = distG(v, t),

distR2(w, t) = distG(w, t),

distR2(u, t) = distG(u, t),

distR2(w, t) = distG(w, t).

Solving these three systems of quadratic equations we obtain up to six different solutions. We cho
three closest to each other, call themt+1 , t+2 , t+3 , and placet at their barycenter:pos[t] = (t+1 + t+2 + t+3 )/3;
see Fig. 4(b).

3.5. Local temperature calculations

A common problem with most force-directed algorithms is determining the scaling factor o
displacement vector at each phase. Clearly, in the early iterations vertices should move farther th
last iteration, but coming up with a schedule for scaling the displacement vector that works well fo
graphs is generally difficult. One of the reasons for this difficulty is that initially the vertices are p
at random and as a result can be arbitrarily far from their final position. As a result of the inte
placement of vertices in our algorithms, this is much less of a problem. This approach is sim
that used in the GEM system [5]. The local temperatureheat[v] of v is simply a scaling factor of th
displacement vectordisp[v] of v. One particular implementation is considered in detail in [22]
regardless of the specifics of the implementation, the time complexity for updating the local temp
for eachv is constant and thus the total time complexity for local temperature calculations is linea

3.6. Multi-dimensional drawing

One of the major advantages of a simple local temperature calculation is that unlike the Ne
Raphson and the majority of other classical optimization methods, it works with minor chan
any dimension. In order to obtain an embedding of a graph inR

n, we can simply makepos[v] an n

dimensional vector. A problem with drawings in dimensions higher than three is that they can
trivially displayed. An obvious solution to this problem is to find a projection fromR

n into R
3 or R

2.
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Consider the case in which a four dimensional drawing is projected down to three dimensions. The
projection method described below generalizes to higher dimensions as well. We begin by taking a
random vectore′

0 in R
4 and normalizing ite0 = e′

0/‖e′
0‖. Next we find three vectorse′

1,e
′
2,e

′
3 ∈ R

4

g a
rs. We

e

f
s

l basis
al

from
oebius
D and
so thate0, e′
1, e′

2, e′
3 are linearly independent inR4. We find these vectors by repeatedly choosin

random vector and checking if it is independent from the previous ones until we have four vecto
then use the Gram–Schmidt orthogonalization process to produce an orthonormal basise0, e1, e2, e3 of
R

4 usinge0, e′
1, e′

2, e′
3. The three vectorse1, e2, e3 span a three-dimensional subspaceS of R

4 which
is perpendicular to the vectore0. The orthogonal projectionρ :R4 → S from R

4 ontoS in the direction
of the vectore0 is given by the formula

ρ(v) = v − (e0, v) ∗ e0,

where(e0, v) is the scalar product betweene0 andv. Yet to displayv on the screen using OpenGL, w
need the coordinates(v1, v2, v3) of the projectionρ(v) of v ontoS with respect to the basis vectorse1,
e2, e3. We get these by a simple scalar product calculationv1 = (e1, v), v2 = (e2, v), v3 = (e3, v).

The above procedure easily generalizes to higher dimensions. For anym > 3, we find a projection o
R

m onto some three-dimensional subspaceS of R
m by specifyingm − 3 linearly independent vector

e′
0,e

′
1, . . . ,e

′
m−4 (generalized projection directions), and complete them to a basise′

0,e
′
1, . . . ,e

′
m−1

of R
m. Next, using the Gram–Schmidt orthogonalization process we create an orthonorma

e0,e1, . . . ,em−1 of R
m. The last three vectorsem−3, em−2, em−1 form a basis of a three-dimension

subspaceS of R
m, and the coordinates(v1, v2, v3) of the orthogonal projection of anyv ∈ R

m ontoS are
given by the formulav1 = (em−3, v), v2 = (em−2, v), v3 = (em−3, v).

Our experiments with four dimensional drawings yield results that are noticeably different
regular three dimensional drawings. In particular, note the problems with the drawings of the M
strip directly in 3D in Fig. 5 and the much better quality drawings of the same graphs drawn in 4
projected to 3D in Fig. 6.

Fig. 5. Moebius strips on 150, 300 and 1500 vertices drawn in directly 3D. Note the rough “twists”.

Fig. 6. The same Moebius strips as in Fig. 5 but drawn in 4D and projected in 3D. Note the smooth twists.



P. Gajer et al. / Computational Geometry 29 (2004) 3–18 15

3.7. Space and time complexity

Main Theorem. If G is a graph of bounded degree andV is a GC filtration or a MIS filtration of the

e and
d

vertex
rithm
e of the
creation

bed
setV of vertices ofG, then the time complexity of our algorithm, after constructingV , is �(n · k2) and
the space required is�(n · k), wherek = logn if V is a GC filtration, andk = logδ(G) if V is a MIS
filtration.

Proof. The proof of the theorem follows from the fact that after building a filtrationV , all parts of
the algorithm take linear time and space, except the procedure for findingNk(v),Nk−1(v), . . . ,N0(v) for
each elementv of V . Thus both time and space complexity of the algorithm is determined by the tim
space complexity of the procedure for finding the neighborhood setsNi(v). In Section 3.3, we showe
that the time required for finding the setsNi(v) is �(n · k2) and the space required is�(n · k), which
concludes the proof. �

4. Conclusion and future work

We have presented a novel algorithm for drawing large graphs. The algorithm employs a
filtration together with intelligent placement of vertices and fast energy minimization. The algo
produces drawings in two, three and higher dimensions in sub-quadratic time and space. On
problems that remains to be addressed concerns the running time and space complexity for the

Fig. 7. This drawing of the Sierpinski pyramid was created with theGRIP system, which is based on the algorithm descri
in this paper. The graph contains 8,194 vertices and the drawing took 22 seconds on a 550 MHz Pentium processor.
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of the maximal independent set filtration. While our tests indicate that the running time and space required
are sub-quadratic in the number of vertices in the graph, this remains to be proved. While the algorithm
works very well for sparse graphs and graphs of low degree, it does not produce high quality drawings

ificant
graphs.

mes the
and

ample
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ort.
Drawing
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the 3rd
p. 162–

–331.
rentice

J. Graph

Drawing

ings
Berlin,
for all graphs. In particular, well-connected graphs and graphs with small diameter pose sign
challenges as the vertex filtrations become very shallow. Also, our algorithm works best on sparse
While the majority of large graphs that need to be visualized have low average degree, someti
maximum degree can be as big as O(n). An algorithm for general graphs with sub-quadratic time
space complexity would be highly desirable.

The algorithm described in this paper is used in the design of theGRIP system (Graph dRawing with
IntelligentPlacement) [22] which produced the drawings in Figs. 5 and 6. We include one more ex
of an interesting class of graphs called Sierpinski graphs. The drawing of the Sierpinski pyramid
6th order, which contains 8194 vertices, was produced usingGRIP in 22 seconds on a 550 MHz Pentiu
processor; see Fig. 7.
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