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Abstract

We present a novel hierarchical force-directeethod for drawing large graphs. Given a gra&pk- (V, E), the
algorithm produces an embedding fGrin an Euclidean spadg of any dimension. A two or three dimensional
drawing of the graph is then obtained by projecting a higlimensional embedding into a two or three dimensional
subspace o. Such projections typically result in drawings that are “smoother” and more symmetric than direct
drawings in 2D and 3D.

In order to obtain fast placement of the vertices of the graph our algorithm employs a multi-scale technique based
on a maximal independent set filtration of vertices of the graph. While most existing force-directed algorithms begin
with an initial random placement of all the vertices, our aion attempts to place veces “intelligently”, close
to their final positions. Other notable features of our approach include a fast energy function minimization strategy
and efficient memory management. Our implementation of the algorithm can draw graphs with tens of thousands
of vertices using a negligible amount of memory in less than one minute on a 550 MHz Pentium PC.

0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Graphs are common in many applications, from compilers to networks, from software engineering
to databases. Typically, small graphs are drawn manually so that the resulting picture best shows
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the underlying relationships. The task of drawing graphs by hand becomes more challenging as the
complexity and size of the graphs increases. Graph drawing tools have been the focus of the graph
drawing community for at least the last two decades; see [11,30] for comprehensive reviews of the graph
drawing field and [44] for work in information visualization. Numerous algorithms have been developed
for drawing special classes of graphs such as trees and planar graphs. There are few general purpos
graph drawing algorithms, however. Force-directed methods are often the methods of choice for drawing
general graphs. Substantial interest in force-directed methods stems from their conceptual simplicity,
applicability to general graphs, and typically aesthetically pleasing results.

Automated graph drawing tools can rarely guarantee optimal drawings. Thus such tools usually
attempt to optimize a set of goals which tend to produce nice drawings. Typical goals include small
area, even distribution of vertices, minimizing edge crossings, etc. Depending on the application, the
goals are ranked in order of importance and often only one or two are used in the drawing algorithm. It
is not uncommon that different aesthetic criteria can be contradictory.

With few exceptions, current automated systems cannot deal with graphs of tens of thousands of
vertices. Meanwhile, it is common for the graphs to be visualized to have more vertices than the number
of pixels on conventional displays. Such massive graphs occur naturally in the many areas such as
networking, telecommunications, and databases. The majority of drawing tools attempt to display an
entire graph, with each vertex and edge explicitly depicted. This approach is impracticable for large
graphs, for example when the number of vertices exceeds the number of pixels on the display device. In
the case of very large graphs different techniques are called for.

In this paper we present a new algorithm which can draw simple undirected graphs with tens of
thousands of vertices in under a minute. Even larger graphs can be displayed usRli fhgystem in
conjunction with a fisheye view [21,31,40] or the multi-level display algorithms of Eades and Feng [14].
Large graphs can be visualized using clustering based on a binary space partition (BSP) together with
either fisheye views or multi-level displays as shown in [12,32]. The BSP-based clustering approach
allows for the effective visualization of very large graphs. However, the effectiveness of the above
algorithms depends on a good recursive clustering, which in turn depends on a good initial embedding of
the graph. Creating a good embedding has been prohibitively expensive using existing algorithms. Our
algorithm allows us to create excellent initial embeddings in very reasonable times. The key features of
the algorithm are:

intelligent initial placement of vertices,
multi-dimensional drawing,

a simple recursive coarsening scheme,
fast energy function minimization,
space and time efficiency.

The rest of this paper is organized as follows. In Section 2 we review some of the previous work
in three dimensional drawing, visualization of large graphs, and force-directed algorithms for automated
graph drawing. In Section 3 we describe our algorithm and introduce maximal independent set filtrations,
intelligent placement of vertices, and multi-dimensional drawing. In Section 4 we discuss possible
modifications of the algorithm. Also included are several drawings obtained byGEhé layout
system [22], which is based on our algorithm.
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2. Previouswork
2.1. Drawing in three dimensions

Although the majority of the work in graph drawing is in two dimensional graph layout, there have
been several algorithms and tools designed for three dimensional graph drawing. The additional degree of
freedom sometimes allows for more natural representations, and there is growing evidence which shows
that the human brain can comprehend increasingly complex structures if they are displayed as objects
in three dimensional space [45,46]. Existing work in three dimensional (3D) graph drawing algorithms
focuses on algorithms for special kinds of graphs, for example the algorithms of Cohen et al. [7]. Drawing
general graphs in 3D using the force-directed approach is studied by Fruchterman and Reingold [20], and
Monien et al. [34]. Other recent 3D drawing algorithms include Bruf3 and Frick [5], Cruz and Twarog [9],
and Ostry [35].

In the context of orthogonal drawings, 3D point-drawing algorithms were developed by Eades,
Symvonis and Whitesides [16] and Papakostas and Tollis [36]. 3D orthogonal box-drawings were studied
by Biedl! [2] and multi-dimensional orthogonal graph drawings are presented by Wood [47].

2.2. Visualization of large graphs

Visualizing large graphs presents unique problems and requires unorthodox solutions. Drawings that
display the entire graph have the advantage of showing the global structure of the graph. For large
graphs such drawings become impractical as the limited resolution of display devices makes details
hard to discern. Partially drawing graphs allows for display of larger graphs but fails to convey their
global structure. Two other approaches to visualization of large graphs are of particular interest: fisheye
views and multi-level displays. Fisheye views [21,31,40] show an area of interest quite large and detailed
while showing peripheral areas successively smaller and in less detail. Multi-level views [12,14,17,32]
allow us to view large graphs at multiple abstraction levels. A natural realization of such multiple level
representations is a 3D drawing with each level drawn on a plane at a diffeceotdinate, and with the
clustering structure drawn as a tree in 3D.

Multi-level display algorithms are introduced in the context of visualization for clustered graphs by
Eades and Feng [14] and Feng [17]. Compound and clustered graphs are studied by Sugiyama anc
Misue [33,41], by Eades et al. [15], and Feng et al. [18]. The above algorithms assume that the clustering
of the graph is given. Creating a graph clustering based on binary space partitions and using it to display
large graphs was introduced by Duncan et al.[12] and Kobourov [32]. The quality of the resulting multi-
level drawings of [12] often depends on the initial embedding of the graph in the plane. The algorithm
presented in this paper allows us to create excellent initial embeddings in very reasonable times; hence, i
can be used either by itself or as a preprocessing step to these large-graph layout methods. Quigley [38
studies the quality of the abstract graph views obtained from clustering techniques by formally measuring
the representational differences between abstract views and the underlying graph.

2.3. Force-directed algorithms

The force-directed placement algorithm of Quinn and Breur [39] and the spring embedder of
Eades [13] are among the first practical algorithms for the drawing of general graphs. In the latter
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algorithm the graph is modeled as a physical system of rings and springs. Classical force-directed
methods start from a random embedding of a graph and utilize standard optimization methods to find
a minimum of the energy function of their choice. A characteristic feature of force-directed layout
algorithms is the use of eost(or energy function E, which assigns to each embeddipgG — R”

of a graphG in some Euclidean spa® (typically n = 2 orn = 3) a non-negative numbéf(p). Force-
directed methods are based on the premise that minima of reasonably chosen energy functions produc
aesthetically pleasing graph drawings. The main differences between force-directed algorithms are in the
choice of energy function and the methods for its minimization.

The energy minimization algorithm of Kamada and Kawai [29] uses the Newton—Raphson method
for improved drawings. The simulated annealing method of Davidson and Harel [10] is another flexible
force-directed algorithm. Fruchterman and Reingold [20] use a slightly different heuristic which results
in a faster algorithm. The algorithms of Bruf3 and Frick [5] and Frick et al. [19] add the notion of local
temperature to further speed up the drawing process. A force-directed method can also be used to draw
graphs with node labels as shown by Gansner and North [23].

The classic force-directed algorithm produces excellent results for small graphs. However, the
algorithm has two major drawbacks. The first of these drawbacks is that the force-directed algorithm
does not scale well with size. Large graphs present a problem for even the best existing graph drawing
algorithms because these algorithms generally cannot handle more than about a hundred vertices. Fo
larger graphs, the basic algorithm often fails to arrive to a minimum of the energy function and arithmetic
precision also becomes a problem. The second drawback is the poor running time of force-directed
algorithms. A typical implementation of a force-directed algorithm runs in phases. In each phase new
locations are computed for all the vertices. A phase runs(? @ m) time, wheren is the number of
vertices andn the number of edges of the graph. The number of phases is typically linear in the number
of vertices or edges leading to overall running time ¢f€) or O(n*). This poses serious problems when
dealing with graphs of tens of thousands of vertices.

Several new algorithms for drawing large graphs were presented at the 8th Symposium on Graph
Drawing. Harel and Koren [27] present a multi-scale scheme that computes a simpler graph hierarchy.
Walshaw [43] describes a different multilevel algorithm, based on graph coarsening, refinement of the
layout on each layer, and interpolation of the results onto the next level:-ogly simulation method
of Quigley and Eades [37] uses the Barnes—Hut [1] hierarchical space decompaosition method. An earlier
implementation of the Barnes—Hut method was used for graph drawing by Tunkelang in JIGGLE [42].
JIGGLE also temporarily increases the degrees of freedom by starting with layouts in higher dimensional
space. A method similar to our intelligent placement is described in the context of incremental drawing
by Cohen in [6].

When presented with a computationally expensive graph algorithm, a standard approach is to associate
with the graph a hierarchy of graphs. The needed computation is performed by starting with the smallest
graph in the hierarchy, then proceeding to larger and larger graphs and using at each stage the result
of the previous computation. This strategy has been brought to the area of force-directed graph drawing
from particle physics [3,4] in the multi-scale algorithm of Hadany and Harel [26]. In [27] Harel and Koren
introduce several simplifications to the previous algorithm resulting in faster drawings and allowing for
larger graphs. With their beautiful drawings of graphs with 3,000 vertices they mark a new chapter in the
area of force-directed graph drawings.

However, as one of the underlying steps of the algorithm in [27], all-pairs shortest paths are computed,
which is both time and space expensive. Using a binary heap implementation the all-pairs shortest paths
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problem can be solved in @m logn) time, and using Fibonacci heaps, iridlogn + nm) time, e.g.

see [8]. In addition, the quadratic space complexity incurred by the matrix of distances between vertices
of the graph also quickly becomes an obstacle for drawing large graphs. Other computationally expensive
procedures include the clustering procedure for a construction of a hierarchy of graphs and the Newton—
Raphson optimization method for scaling the displacement vectors. Finally, the algorithm in [27] creates
drawings in 2D and, as it is based on the Newton—Raphson method, extending it to 3D considerably
slows down the algorithm. The algorithm described in the next section addresses the above problems anc
introduces several novel features.

3. Thealgorithm
3.1. Algorithm overview

In the remainder of this paper when we refer to a “graph” we assume a simple, undirected and
unweighted graph, unless specified otherwise. The algorithm begins by creating a filtration of the set
of verticesV of the graph,V: Vo > V1 O --- D Vi D @. Next the vertices in the smallest filtration set
V, are placed in their initial positions, using their graph distance as an approximation to their optimal
Euclidean distance. Here tigeaph distancéetween two vertices is defined as the length of the shortest
path between them in the graph. The current positions are then refined using a small number of force-
directed refinement rounds. The same process is repeated with the verfiGes,iW,_o, ..., Vo. Thus,
there arek phases in the main algorithm and each phase has a placement stage and a refinement stage.

The pseudo-code for the algorithm can be seen in Fig. 1. After creating the vertex set filtration the
algorithm starts adding a few vertices at a time. The m@irloop runs through all levels of the filtration,
starting atV,, and performs placement and refinement stages. At phfmseeach vertex € V; — Vi
we find a family of neighborhood sel (v), N;_1(v), ..., No(v). We use the neighborhood sets to find
an initial positionpos[v] of v. The vertices inV; (v) are the closest neighbors tdrom the setV;. The
graph distances betweerand the vertices itV; (v) are used to determine the placementifoFhe exact

MAIN ALGORITHM
create afiltratio’V: Vo> V1D ---D VD@
for i =kto0do
for eachve V; — V;; 1 do
find vertex neighborhood/; (v), N;_1(v), ..., No(v)
find initial positionpos[v] of v
repeat r ounds times
for each v € V; do
compute local temperatureeat [v]
di sp[v] < heat [v]- F y, (v)
for each v € V; do
pos[v] < pos[v] +di sp[v]
add all edgeg € E

Fig. 1. After creating the vertex filtration and setting up Huleduling function the algorithm processes each filtration set,
starting with the smallest one. Hep®s[v] is a point inR” corresponding to vertex andr ounds is a small constant. In the
refinement stagheat [v] is scaling factor for the displacement vectbrsp[v], which in turn is computed over a restriction
N; (v) of the vertices ofG.
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INITIAL PLACEMENT

Fig. 2. A hierarchy of coarsened graphs for the cycle of 24 vertiGednitially placed vertices are light and vertices that

have already been refined are darkly shaded. The left column shows the drawing at the beginning of each phase, just after
the new vertices were added. Their inigsitions are calculated based on tsitions of their neast neighbors from the

previous layer of the filtratio®. The right column shows how the positions of newly added vertices change after applying the
force-directed local refinement. Note that the vertices in thectdfimn are originally placed “close” to their eventual refined
positions.

methods for determining the neighborhood Sét&), N;_1(v), ..., No(v) and for determining the initial
vertex positions are in Sections 3.3 and 3.4, respectively.

The refinement phase is repeatedunds times, wherer ounds is a small constarit.In the
refinement stage vertices are perturbed using a local force-directed algorithm. The displacement vector
di sp[v] of v is set to a local Kamada—Kawai force vector. Heaal means that the force vecte_‘i)rN,. (v)
is computed ovep’s vertex neighborhooav; (v) rather than over all vertices iG. The displacement
vector is scaled by a local temperature fadterat [v]. More details about the process of calculating
heat [v] can be found in Section 3.5. Finally, once all the vertices have been placed, the edges of the
graph are added. Fig. 2 illustrates the drawing stages of the algorithm for a cycle graph.

lin principle, r ounds can be set to be a constant function, but our experiments with a linearly increasing function with
values from 5 to 15 yield better results.
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3.2. Vertex set filtrations

When trying to draw a large graph, it is natural to associate with it a hierarchy of graphs and produce
the drawing starting with the smallest graph in the hierarchy and drawing larger and larger graphs so that
at each stage we use the previous drawing. Two important properties of such a hierarchy are:

o the depth of the hierarchy (number of levels),
o the distribution of the vertices in the levels.

A shallow hierarchy (e.g. constant depth) implies that as we go from one level to the next, more than
a constant fraction of the vertices are added. Usually this means that information from the old level is
not sufficient to create a good drawing on the new level. On the other hand, a deep hierarchy (e.g. linear
in the number of vertices) is too time consuming to traverse. Thus, logarithmic depth in the number of
vertices is highly desirable.

The effectiveness of a multi-scale scheme like this also depends on the uniformity of the distribution
of the vertices at all levels of the hierarchy. The hierarchy of graphs can be thought of as containing
different levels of abstraction of the underlying graph. Uniform distribution of the vertices implies more
accurate levels of abstraction which in turn implies better drawings on each level.

Hadany and Harel [26] create a hierarchy of graphs based on the cluster number, the degree humber
and the homotopic number. Harel and Koren [27] use a simpler method to create the hierarchy of graphs,
which relies on thek-clusters problem. Since solving tleclusters problem or the relatddcenters
problem is NP-hard [25,28], their algorithm uses a straightforward 2-approximation algorithm for the
k-centers problem to create a GC filtration. The algorithm begins by producgngpé centerdGC)
filtration V = VoD V1 D --- D Vi D ¢ of the setV of vertices of the graplw, with |V;| = ¢ - x*~7, where
x > 1 andc = |V,]| is a constant. A cluster of vertices closest to each center is created for each center
and on every level. A set of weighted edges is computed between eleme¥itssof that the weights
correspond to the number of edges between the elements of the corresponding clusters. Thus the GC
filtration together with the edges forms a hierarchy of graphs.

The creation of a GC filtration proceeds as follows. Pick a random elemeh¥ and add it toV;.

Find a vertex farthest away from all the verticesipand add it toV}. Continue this process unfi;
hasc elements. Suppose we have already fohdl < i < k. To find the next seV;_; let V;_; = V;
and again continue adding ¥_; the elements that are farthest away fréfm, until |V;_1| = ¢ - x*~+1,
WhenVy is completed we have a GC filtration ®f.

While having proper graphs on each level is necessary in many applications utilizing graph hierarchies,
in the context of graph drawing we can save time and space by using just a filtration of the vertex set.
Note that in a filtration there are no edges but only vertices. As we already pointed out, logarithmic depth
and “uniform” filtrations are highly desirable for graph drawing purposes. We have developed and tested
one specific such filtration that we calln@aximal independent séw1S) filtration and we use it in this
algorithm.

Recall thatS C V is anindependent seif a graphG = (V, E) if no two elements of are connected
by an edge ofG. Equivalently,S is an independent set @ if the graph distance between any two
elements ofS is at least two. Recall that thgraph distancebetween two vertices is the length of the
shortest path between them in the graph. A maximal independent set filtrat@rso family of sets
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Vo 7 V Vs v

Fig. 3. An example of a MIS filtration. Here the underlying grapk= (V, E) is a rectangular mesh of size ¥010. The dark
vertices are included in the filtration. HeVe= Vj, V; is a standard maximal independent 3&tjs a maximal subset df1 so
that the distances between its elements are at |8ast42 and so on.

V=VyDViD---D VD, such that eacl; is a maximal subset df;_; for which the graph distance
between any pair of its elements is greater than or equdlt &e2 Fig. 3.

Since the maximum independent set problem is NP-hard [24], we use maximal independent sets
instead. Conceptually, MIS filtrations can be constructed as followsVEet V, take a random vertex
v € V* and add it toV;. Removev and all of its neighbors fron* and repeat until no more vertices can
be chosen. Suppose we constructed an ardedependent sev; of G. To constructV;,, let V* =V;
and take a random vertexe V* out of V*, and place it inV;, ;. Next remove from* all vertices whose
graph distance to is less than or equal td 2This distance factor is important in ensuring that vertices
are well distributed and in guaranteeing small depth of the filtration. Choose another eleroet",
and remove fron* the chosen vertex and all vertices whose distance e less than or equal to 2
Placew in V; 1. Repeat this procedure un#* is empty. An example of a maximal independent set
filtration is shown in Fig. 3.

The construction of a MIS filtration stops at leve$o that 2 > §(G), where§(G) is the diameter of
G. Therefore, each MIS filtration has depthl@y5(G)). MIS filtrations provide excellent distribution
of the vertices by construction, a property needed for high quality filtrations.

The three different filtrations considered have their advantages and disadvantages. The number of
vertices in the MIS filtration sets is controlled by the topology of the graph, whereas in the graph centers
filtration the sizes are arbitrarily set by the user. While we cannot guarantee sub-quadratic time and space
MIS filtrations are faster to create and use very little space compared to GC filtrations.

3.3. Finding vertex neighborhood$; (v)

One of the key ideas of the hierarchical force-directed graph layout method is that at each stage of
the construction a force-directed position refinement method is applied to a giverV]ayfea filtration
only locally. More precisely, for a given energy functi@ghandv € V;, the gradient of£ atpos|[v] is
computed not folE but for the restriction o to some neighborhood¥; (v) of v in V;. A good filtration
of V and an efficient local position refinement strategy are the key means of achieving a sub-quadratic
lower bound for space and time complexity of our method.

This section describes a procedure of constructing the neighborhoodvsets, and the definition
of the functionnbr s (i) which determines the size @f;(v). Intuitively, each stage of the hierarchical
graph drawing strategy should result in a closer approximation of the final drawing of the graph. Ideally,
at the last stage, when we perform a force-directed local refinement of the position of eachy\afrtex
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the graph, it should be enough to takg(v) to be the set of adjacent verticeswofThe time complexity
of this last stage calculation is

Y No(v)=c-n-avgDeg(G),
veV
whereavgDeg(G) is the average degree @f andc is a constant. We would like to make- n -
avgDeg(G) an upper bound for the complexity of calculations at each stage of graph drawing
construction. Therefore, we set

nbrs(i):@(angleV#).

Suppose) is a logarithmic depth filtration of the s&t of vertices ofG. The calculation of the sets
Ni(v), Ny_1(v), ..., No(v) is performed for each elemente V only once, when it is added to a set
of already placed vertices; see Fig. 1. We require ffidb) contains® (nbr s(i)) elements for each
i=kk—1,...,0. Therefore, the space complexity of this strategy is bounded above by

Z'V Visal(nbr s() +nbrs(2) +--- +nbrs()). (1)

SinceV,-+1 c V;,we havelV; — V. 1| = |Vi| — | V11|, and after simplifications, (1) takes the form

k
Z |ViInbr s(i) < COZ Vi anDT‘?l(G) =co» avgDeg(G) n
i=0

= coangeg(G) (k + Dn. (2)

Similarly we can show that there exists a positive constantso that Eq. (1) is greater than
c1avgDeg(G) - (k+ Dn. Thus, the storage complexity of the above strategy for findip@), N;_1(v),

., No(v) for all v € V is ®(avgDeg(G)kn). If G is of bounded degree, then(avgDeg(G)kn) =
®(kn), wherek = logn for a GC filtration, andk = log§(G) for a MIS filtration.

Let thedepth of a vertexdept h(v), with respect toV be the largest/, such thatv € V,;. The sets
Ni(v), Ny_1(v), ..., No(v) are created by repeated application of a breadth-first search algorithm. A new
vertex with depthd is placed in each oV; (v), for j <d, if N;(v) is not already full. The process stops
when allN; (v)s are full. Note that the running time of this procedure is bounded above by

k
> IVil(1-nbrs(1) +2-nbrs(2) +---+i-nbrs(). (3)
i=1
As in the case of the expression (1), (3) is equal to
k

£ avgDeg(G) - n a
D_ilVinbr (i) S co ) ilVil——p = =co)_iavgDeg(G) -
i=0 i=0 ! i=0

(k + Dk
n.

= coavgDeg(G) - 4

Similarly we can show that there exists a positive constgnso that Eq. (3) is greater than
c;avgDeg(G) - “tD%,. The time complexity of this strategy for finding (v), Ni_1(v), ..., No(v) for
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allv e Vis ®(avgDeg(G)k?n). If G is of bounded degree, théh(avgDeg(G)k?n) = © (k’n), where
k =logn for a GC filtration, andk = logs(G) for a MIS filtration.

3.4. Initial placement of vertices

Most graph drawing algorithms begin by placing all the vertices of the graph randomly in the plane
or in 3D. In this algorithm we have adopted a different approach in that we add vertices to the current
drawing one at a time and only after we have found a suitable place for them. Here we describe the proces:s
in two dimensional space, but in practice it can be done in any Euclidean Bp&seall that in the first
step of the algorithm we compute a filtratidh= Vo D V1 D --- D Vi D @. If necessary, we modify the
last one or two sets of the filtration so that the last one has exactly three eleMesisu, v, w}. We
assume tha is connected (if not, each connected component can be drawn independently). We start
the process of drawin@ by placingu, v andw as follows: we find a triangle with endpoints given by
pos[u], pos[v], pos[w], so that

di st g2(u, v) =di st g(u, v),
di st g2(v, w) =di st g(v, w),
di st p2(w, u) =di st g(w, u),

wheredi st p2(u, v) is the Euclidean distance betwepns[u] and pos[v], anddi st (u, v) is the
graph distance betweenandv.

In general, after refining the positions of the verticed/inwe need to find initial positions for the
vertices inV;_, — V;. Once all vertices irV;_; are placed their positions are refined, and we proceed
to the next level. This two-stage process continues until all vertices have been drawn. A natural way to
place a new vertex given the placement of several others is to use the graph distance from the new verte»
to several of its closest neighbors that have already been placed. We base our placement strategy on thi
simple idea.

Suppose that we are looking for a place for a new verte¥; _; — V;. Furthermore, suppose that we
know two verticest, v € V; which have already been placed. Then using their position veqorgu]
andpos|[v], and the graph distancds st 5 («, t) anddi st (v, 1), itis straightforward to find a position
pos[z] of ¢ in the plane so that

di st g2(u,t) =di st g(u, t),
di st g2(v, 1) =di st g(v, 1),

as shown in Fig. 4(a). This idea can be generalized so that three or more already placed vertices are use
to determine the location of new vertices. For each verteX;_1 — V; we find its three closest neighbors

u,v, w € V; via a BFS; see Fig. 4. Sinae v andw have already been placed we can obtain a suitable
place fort by solving the following system of equations feyv, w andt

(-x _-xu)2+ (y - yu)2=d| st G(u7t)27
(x —x)% 4 (y — y)? =di st (v, 1)?,
(X _xw)2+ (y - yw)z =di st G(wv I)Z’

WherepOS[u] = (x4, yu)’ pos[v] = (xva yv)v pos[w] = (Xy, yw)’ pos[t] = (x, y) Since this SyStem
of equations is over-determined and may not have any solutions, we solve the following three pairs of
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(a) (b)

Fig. 4. Initial placement for a new vertexdarkly shaded vertices have already been placed. (a) Given two vertiBéstimere
are up to two possible places farbased on its graph distanceit@ndv. (b) Using three vertices i in a similar fashion
results in a better placement far

equations instead

di st g2(u, t) =di st g(u, 1),
di st gz(v, 1) =di st g(v, 1),
di st gz(v, 1) =di st g(v, 1),
di st gz(w, t) =di st g(w, 1),
di st g2(u,t) =di st g(u, ),
di st gz(w, t) =di st g(w, 1).

Solving these three systems of quadratic equations we obtain up to six different solutions. We choose the
three closest to each other, call thghz, , 77, and place at their barycentepos|7] = (1, +1; +13)/3;
see Fig. 4(b).

3.5. Local temperature calculations

A common problem with most force-directed algorithms is determining the scaling factor of the
displacement vector at each phase. Clearly, in the early iterations vertices should move farther than in the
last iteration, but coming up with a schedule for scaling the displacement vector that works well for most
graphs is generally difficult. One of the reasons for this difficulty is that initially the vertices are placed
at random and as a result can be arbitrarily far from their final position. As a result of the intelligent
placement of vertices in our algorithms, this is much less of a problem. This approach is similar to
that used in the GEM system [5]. The local temperatueat [v] of v is simply a scaling factor of the
displacement vectodi sp[v] of v. One particular implementation is considered in detail in [22] but
regardless of the specifics of the implementation, the time complexity for updating the local temperature
for eachv is constant and thus the total time complexity for local temperature calculations is linear.

3.6. Multi-dimensional drawing

One of the major advantages of a simple local temperature calculation is that unlike the Newton—
Raphson and the majority of other classical optimization methods, it works with minor changes in
any dimension. In order to obtain an embedding of a grapR"inwe can simply mak@os[v] ann
dimensional vector. A problem with drawings in dimensions higher than three is that they cannot be
trivially displayed. An obvious solution to this problem is to find a projection fifrinto R* or R?.
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Consider the case in which a four dimensional drawing is projected down to three dimensions. The
projection method described below generalizes to higher dimensions as well. We begin by taking a
random vectoeg, in R* and normalizing iteg = ey/llegll. Next we find three vectors’, €5, e} € R*
so thateo, e, €5, e} are linearly independent iR*. We find these vectors by repeatedly choosing a
random vector and checking if it is independent from the previous ones until we have four vectors. We
then use the Gram—-Schmidt orthogonalization process to produce an orthonormabhasi®,, ez of
R* usingey, e}, €5, e5. The three vectors,, e, €3 span a three-dimensional subspacef R* which
is perpendicular to the vecte. The orthogonal projectiop : R* — S from R* onto S in the direction
of the vectoreg is given by the formula

p(v) =v — (€9, V) * €,

where(eg, v) is the scalar product betweeg andv. Yet to displayv on the screen using OpenGL, we
need the coordinate®1, v, v3) of the projectionp (v) of v onto S with respect to the basis vectags,
e, e3. We get these by a simple scalar product calculatios: (e1, v), v, = (€2, V), v3= (€3, V).

The above procedure easily generalizes to higher dimensions. Fer any, we find a projection of
R™ onto some three-dimensional subspacef R™ by specifyingm — 3 linearly independent vectors
€y €1,...,e,_, (generalized projection directions), and complete them to a legsis;,....e),_;
of R™. Next, using the Gram—Schmidt orthogonalization process we create an orthonormal basis
€o,€1,...,e,_1 of R", The last three vectors,,_3, €,,_», €,,_1 form a basis of a three-dimensional
subspaces of R, and the coordinate@s, vy, v3) of the orthogonal projection of anye R™ onto S are
given by the formulay; = (e,,_3, v), v = (€,,_2, V), v3=(€,,_3, V).

Our experiments with four dimensional drawings yield results that are noticeably different from
regular three dimensional drawings. In particular, note the problems with the drawings of the Moebius
strip directly in 3D in Fig. 5 and the much better quality drawings of the same graphs drawn in 4D and
projected to 3D in Fig. 6.

Fig. 6. The same Moebius strips as in Fig. 5 but drawn in 4D and projected in 3D. Note the smooth twists.
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3.7. Space and time complexity

Main Theorem. If G is a graph of bounded degree amdis a GC filtration or a MIS filtration of the
setV of vertices ofG, then the time complexity of our algorithm, after constructings ®(n - k%) and

the space required i®(n - k), wherek = logn if V is a GC filtration, andk = logé(G) if V is a MIS

filtration.

Proof. The proof of the theorem follows from the fact that after building a filtratignall parts of

the algorithm take linear time and space, except the procedure for fingig, N,_1(v), ..., No(v) for

each element of V. Thus both time and space complexity of the algorithm is determined by the time and
space complexity of the procedure for finding the neighborhoodé€ts. In Section 3.3, we showed
that the time required for finding the seWs(v) is ® (n - k%) and the space required &(n - k), which
concludes the proof. O

4, Conclusion and future work

We have presented a novel algorithm for drawing large graphs. The algorithm employs a vertex
filtration together with intelligent placement of vertices and fast energy minimization. The algorithm
produces drawings in two, three and higher dimensions in sub-quadratic time and space. One of the
problems that remains to be addressed concerns the running time and space complexity for the creatior

Fig. 7. This drawing of the Sierpinski pyramid was created with@Rk P system, which is based on the algorithm described
in this paper. The graph contains 8,194 vertices and the drawing took 22 seconds on a 550 MHz Pentium processor.
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of the maximal independent set filtration. While our tests indicate that the running time and space required
are sub-quadratic in the number of vertices in the graph, this remains to be proved. While the algorithm
works very well for sparse graphs and graphs of low degree, it does not produce high quality drawings
for all graphs. In particular, well-connected graphs and graphs with small diameter pose significant
challenges as the vertex filtrations become very shallow. Also, our algorithm works best on sparse graphs.
While the majority of large graphs that need to be visualized have low average degree, sometimes the
maximum degree can be as big a&:® An algorithm for general graphs with sub-quadratic time and
space complexity would be highly desirable.

The algorithm described in this paper is used in the design dBid® system Graph dRawing with
I ntelligentPlacement) [22] which produced the drawings in Figs. 5 and 6. We include one more example
of an interesting class of graphs called Sierpinski graphs. The drawing of the Sierpinski pyramid of the
6th order, which contains 8194 vertices, was produced UaRidP in 22 seconds on a 550 MHz Pentium
processor; see Fig. 7.
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