QUARTERLY OF APPLIED MATHEMATICS VOLUME LXIX, NUMBER 2 JUNE 2011, PAGES 317-330 S 0033-569X(2011)01219-3 Article electronically published on March 9, 2011

A MULTI-DIMENSIONAL BLOW-UP PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE IN \mathbb{R}^N

Βy

C. Y. CHAN (Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010)

AND

P. TRAGOONSIRISAK (Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, Georgia 31030)

Abstract. Let *B* be an *N*-dimensional ball $\{x \in \mathbb{R}^N : |x| < R\}$ centered at the origin with a radius *R*, and ∂B be its boundary. Also, let $\nu(x)$ denote the unit inward normal at $x \in \partial B$, and let $\chi_B(x)$ be the characteristic function, which is 1 for $x \in B$, and 0 for $x \in \mathbb{R}^N \setminus B$. This article studies the following multi-dimensional semilinear parabolic problem with a concentrated nonlinear source on ∂B :

$$u_t - \triangle u = \alpha \frac{\partial \chi_B(x)}{\partial \nu} f(u) \text{ in } \mathbb{R}^N \times (0, T],$$

$$u(x, 0) = \psi(x) \text{ for } x \in \mathbb{R}^N, u(x, t) \to 0 \text{ as } |x| \to \infty \text{ for } 0 < t \le T,$$

where α and T are positive numbers, f and ψ are given functions such that $f(0) \geq 0$, f(u) and f'(u) are positive for u > 0, $f''(u) \geq 0$ for u > 0, and ψ is nontrivial on ∂B , nonnegative, and continuous such that $\psi \to 0$ as $|x| \to \infty$, $\int_{\mathbb{R}^N} \psi(x) dx < \infty$, and $\Delta \psi + \alpha (\partial \chi_B(x) / \partial \nu) f(\psi(x)) \geq 0$ in \mathbb{R}^N . It is shown that the problem has a unique nonnegative continuous solution before blowup occurs. We assume that $\psi(x) = M(0) > \psi(y)$ for $x \in \partial B$ and $y \notin \partial B$, where $M(t) = \sup_{x \in \mathbb{R}^N} u(x, t)$. It is proved that if u blows up in a finite time, then it blows up everywhere on ∂B . If, in addition, ψ is radially symmetric about the origin, then we show that if u blows up, then it blows up on ∂B only. Furthermore, if $f(u) \geq \kappa u^p$, where κ and p are positive constants such that p > 1, then it is proved that for any α , u always blows up in a finite time for $N \leq 2$; for $N \geq 3$, it is shown that there exists a unique number α^* such that u exists globally for $\alpha \leq \alpha^*$ and blows up in a finite time for $\alpha > \alpha^*$. A formula for computing α^* is given.

1. Introduction. Let $H = \partial/\partial t - \Delta$, T be a positive real number, $x = (x_1, x_2, ..., x_N)$ be a point in the N-dimensional Euclidean space \mathbb{R}^N , $\Omega = \mathbb{R}^N \times (0, T]$, B be an

Received October 12, 2009.

©2011 Brown University

²⁰⁰⁰ Mathematics Subject Classification. Primary 35K60, 35K57, 35B35.

Key words and phrases. Concentrated nonlinear source, Existence, Uniqueness, Blowup.

E-mail address: chan@louisiana.edu

E-mail address: tragoonsirisakp@fvsu.edu

N-dimensional ball $\{x \in \mathbb{R}^N : |x - \overline{b}| < R\}$ centered at a given point \overline{b} with a radius *R*, ∂B be the boundary of *B*, $\nu(x)$ denote the unit inward normal at $x \in \partial B$, and

$$\chi_B(x) = \begin{cases} 1 \text{ for } x \in B, \\ 0 \text{ for } x \in \mathbb{R}^N \setminus B \end{cases}$$

be the characteristic function. Without loss of generality, let \bar{b} be the origin. We would like to study the following multi-dimensional semilinear parabolic problem with a source on the surface of the ball:

$$Hu = \alpha \frac{\partial \chi_B(x)}{\partial \nu} f(u) \text{ in } \Omega,$$

$$u(x,0) = \psi(x) \text{ for } x \in \mathbb{R}^N, u(x,t) \to 0 \text{ as } |x| \to \infty \text{ for } 0 < t \le T,$$

$$(1.1)$$

where α is a positive constant, f and ψ are given functions such that $f(0) \geq 0$, f(u)and f'(u) are positive for u > 0, $f''(u) \geq 0$ for u > 0, and ψ is nontrivial on ∂B , nonnegative, and continuous such that $\psi \to 0$ as $|x| \to \infty$, $\int_{\mathbb{R}^N} \psi(x) dx < \infty$, and $\Delta \psi + \alpha (\partial \chi_B(x) / \partial \nu) f(\psi(x)) \geq 0$ in \mathbb{R}^N . We note that such a problem in a bounded domain, instead of \mathbb{R}^N , was studied by Chan and Tian ([2], [3]).

A solution u is said to blow up at the point (x, t_b) if there exists a sequence $\{(x_n, t_n)\}$ such that $u(x_n, t_n) \to \infty$ as $(x_n, t_n) \to (x, t_b)$.

In Section 2, we show that the nonlinear integral equation corresponding to the problem (1.1) has a unique nonnegative continuous solution u, which is a nondecreasing function of t. We then prove that u is the unique solution of the problem (1.1). Let M(t) denote $\sup_{x \in \mathbb{R}^N} u(x, t)$. We assume that

$$\psi(x) = M(0) > \psi(y) \text{ for } x \in \partial B \text{ and } y \notin \partial B.$$
 (1.2)

If t_b is finite, we show that u blows up everywhere on ∂B . If, in addition, ψ is radially symmetric about the origin, then we prove that if u blows up, then it blows up everywhere on ∂B only. Let κ and p be positive constants such that p > 1. If $f(u) \ge \kappa u^p$, then we prove, in Section 3, that for any α , u always blows up in a finite time if $N \le 2$. This behavior is completely different from that for $N \ge 3$. In Section 4, we show that for $N \ge 3$, there exists a unique number α^* such that u exists globally for $\alpha \le \alpha^*$ and blows up in a finite time for $\alpha > \alpha^*$. We also derive a formula for computing α^* . We note that whether a solution of the heat equation without a concentrated source in an unbounded domain blows up in a finite time was studied by Fujita [7], and Pinsky [8].

2. Existence, uniqueness, and blowup. To derive the integral equation from the problem (1.1), we use the adjoint operator $(-\partial/\partial t - \Delta)$ of H. Using Green's second identity, we obtain

$$u(x,t) = \int_{\mathbb{R}^N} g(x,t;\xi,0) \,\psi\left(\xi\right) d\xi + \alpha \int_0^t \int_{\mathbb{R}^N} g\left(x,t;\xi,\tau\right) \frac{\partial \chi_B\left(\xi\right)}{\partial \nu} f\left(u\left(\xi,\tau\right)\right) d\xi d\tau,$$

where

$$g(x,t;\xi,\tau) = \begin{cases} \frac{1}{\left[4\pi \left(t-\tau\right)\right]^{N/2}} \exp\left(-\frac{|x-\xi|^2}{4\left(t-\tau\right)}\right), \ t > \tau, \\ 0, \ t < \tau \end{cases}$$
(2.1)

is Green's function (cf. Stakgold [10, p. 198]) corresponding to the problem (1.1). Using integration by parts and the Divergence Theorem, we have

$$u(x,t) = \int_{\mathbb{R}^N} g(x,t;\xi,0) \psi(\xi) d\xi + \alpha \int_0^t \int_{\partial B} g(x,t;\xi,\tau) f(u(\xi,\tau)) dS_{\xi} d\tau \qquad (2.2)$$

(cf. Chan and Tragoonsirisak [4]). We note that $\int_{\mathbb{R}^N} \psi(x) dx < \infty$ is used to show that the first term on the right-hand side is continuous, and Lemma 2.1 of Chan and Tragoonsirisak [4] is used to show that the second term is continuous for t > 0.

To establish the next two results, we modify the techniques in proving Theorems 3 and 4 of Chan and Tian [2] for a blow-up problem in a bounded domain, and Theorems 2.1 and 2.2 of Chan and Tragoonsirisak [4] for a quenching problem in \mathbb{R}^N .

THEOREM 2.1. There exists some t_b such that for $0 \le t < t_b$, the integral equation (2.2) has a unique continuous nonnegative solution u, and u is a nondecreasing function of t. If t_b is finite, then u is unbounded in $[0, t_b)$.

Our next result shows that the solution of the integral equation (2.2) is the solution of the problem (1.1).

THEOREM 2.2. The problem (1.1) has a unique solution u for $0 \le t < t_b$.

Henceforth, we assume that (1.2) holds. Our next result shows that at t_b , u blows up everywhere on the surface of the ball.

THEOREM 2.3. If t_b is finite, then at t_b , u blows up everywhere on ∂B .

Proof. By Theorems 2.1 and 2.2, there exists some t_b such that for $0 \le t < t_b$, the problem (1.1) has a unique nonnegative continuous solution u, which is a nondecreasing function of t. Since u(x,t) on $\partial B \times (0,t_b)$ is known, let us denote it by $\tilde{g}(x,t)$, and rewrite the problem (1.1) as two initial-boundary value problems:

$$Hu = 0 \text{ in } B \times (0, t_b),$$

$$u(x, 0) = \psi(x) \text{ on } \overline{B}, u(x, t) = \widetilde{g}(x, t) \text{ on } \partial B \times (0, t_b);$$
(2.3)

$$Hu = 0 \text{ in } (\mathbb{R}^N \setminus B) \times (0, t_b),$$

$$u(x, 0) = \psi(x) \text{ on } \mathbb{R}^N \setminus B, u(x, t) = \tilde{g}(x, t) \text{ on } \partial B \times (0, t_b),$$

$$u(x, t) \to 0 \text{ as } |x| \to \infty \text{ for } 0 < t < t_b.$$
(2.4)

Let us consider the problem (2.3). From the strong maximum principle (cf. Friedman [6, p. 34]), u attains its maximum somewhere on ∂B for t > 0. For the problem (2.4), $u(x,t) \to 0$ as $|x| \to \infty$. Since u is a nondecreasing function of t, it follows from the Phragmén-Lindelöf Principle (cf. Protter and Weinberger [9, pp. 183-185]) that u attains its maximum somewhere on ∂B for t > 0. Thus for each given $\rho \in (0, t_b)$, u attains its maximum for $0 \le t \le \rho$ somewhere on $\partial B \times \{\rho\}$.

Suppose that there exists a smallest positive value of t, say t_1 , and some $\bar{y} \notin \partial B$ such that $u(\bar{y}, t_1) = \min_{x \in \partial B} u(x, t_1)$. We claim that for $x \in \partial B, u(x, t_1) = u(\bar{y}, t_1)$. If this is not true, then there exists some $\bar{x} \in \partial B$ such that $u(\bar{x}, t_1) > \min_{x \in \partial B} u(x, t_1)$. Since u is continuous, there exists some point (\tilde{y}, t_1) in a neighborhood of (\bar{x}, t_1) such that $\tilde{y} \notin \partial B$ and $u(\tilde{y}, t_1) > \min_{x \in \partial B} u(x, t_1)$. This contradicts the definition of t_1 . Thus, u attains

its maximum at (\bar{y}, t_1) for $0 \le t \le t_1$. If $\bar{y} \in B$, then it follows from the strong maximum principle and the continuity of u that $u \equiv u(\bar{y}, t_1)$ on $\bar{B} \times [0, t_1]$. This contradicts (1.2). If $\bar{y} \in (\mathbb{R}^N \setminus \bar{B})$, then let \tilde{B} be an N-dimensional ball $\left\{x \in \mathbb{R}^N : |x| < \tilde{R}\right\}$ such that $\bar{y} \in \tilde{B}$. By the strong maximum principle and the continuity of $u, u \equiv u(\bar{y}, t_1)$ on $(\tilde{B} \setminus B) \times [0, t_1]$. Again, this contradicts (1.2). Thus for any t > 0,

$$u(x,t) > u(y,t)$$
 for any $x \in \partial B$ and any $y \notin \partial B$. (2.5)

We claim that for each t > 0, u attains the same value for $x \in \partial B$. If this is not true, then for some t > 0, there exists some $\tilde{x} \in \partial B$ such that $u(\tilde{x}, t) > \min_{x \in \partial B} u(x, t)$. By continuity, there exists some point (\hat{y}, t) in a neighborhood of (\tilde{x}, t) such that $\hat{y} \notin \partial B$ and $u(\hat{y}, t) > \min_{x \in \partial B} u(x, t)$. This contradicts (2.5). Hence for any t > 0,

$$u(x,t) = M(t) \text{ for } x \in \partial B, M(t) > u(y,t) \text{ for any } y \notin \partial B.$$
 (2.6)

This implies that for each t > 0, u attains its absolute maximum on ∂B . Thus, if u blows up, then it blows up there. Since t_b is finite, it follows from Theorem 2.1 that u blows up everywhere on ∂B .

Our next result shows that for the symmetric case, u blows up on ∂B only.

THEOREM 2.4. Under the additional assumption that ψ is radially symmetric about the origin, if t_b is finite, then at t_b , u blows up on ∂B only.

Proof. Let us construct a sequence $\{u_n\}$ in Ω by $u_0(x,t) = \psi(x)$, and for $n = 0, 1, 2, \ldots$,

$$Hu_{n+1} = \alpha \frac{\partial \chi_B(x)}{\partial \nu} f(u_n) \text{ in } \Omega,$$
$$u_{n+1}(x,0) = \psi(x) \text{ for } x \in \mathbb{R}^N, u_{n+1}(x,t) \to 0 \text{ as } |x| \to \infty \text{ for } 0 < t \le T.$$

From (2.2),

$$u_{n+1}(x,t) = \int_{\mathbb{R}^N} g(x,t;\xi,0) \,\psi(\xi) \,d\xi + \alpha \int_0^t \int_{\partial B} g(x,t;\xi,\tau) \,f(u_n(\xi,\tau)) \,dS_\xi d\tau.$$
(2.7)

We note that $\Delta \psi + \alpha \left(\partial \chi_B(x) / \partial \nu \right) f(\psi(x)) \geq 0$ in \mathbb{R}^N . Thus,

$$H(u_1 - u_0) \ge \alpha \frac{\partial \chi_B(x)}{\partial \nu} \left(f(u_0(x, t)) - f(\psi(x)) \right) = 0 \text{ in } \Omega,$$

$$(u_1 - u_0)(x, 0) = 0 \text{ for } x \in \mathbb{R}^N, (u_1 - u_0)(x, t) \to 0 \text{ as } |x| \to \infty \text{ for } 0 < t \le T.$$

Since $g(x,t;\xi,\tau) > 0$ in $\{(x,t;\xi,\tau) : x \text{ and } \xi \text{ are in } \mathbb{R}^N, T \ge t > \tau \ge 0\}$, it follows from (2.2) that $u_1(x,t) \ge u_0(x,t)$ in Ω . Let us assume that for some positive integer j, $\psi \le u_1 \le u_2 \le u_3 \le \cdots \le u_{j-1} \le u_j$ in Ω . We have

$$H\left(u_{j+1} - u_{j}\right) = \alpha \frac{\partial \chi_{B}\left(x\right)}{\partial \nu} \left(f\left(u_{j}\right) - f\left(u_{j-1}\right)\right) \text{ in } \Omega,$$
$$\left(u_{j+1} - u_{j}\right)\left(x, 0\right) = 0 \text{ for } x \in \mathbb{R}^{N}, \ \left(u_{j+1} - u_{j}\right)\left(x, t\right) \to 0 \text{ as } |x| \to \infty \text{ for } 0 < t \leq T.$$

Since f is an increasing function and $u_j \ge u_{j-1}$, we have $f(u_j) - f(u_{j-1}) \ge 0$. It follows from (2.2) that $u_{j+1} \ge u_j$. By the principle of mathematical induction,

$$\psi \le u_1 \le u_2 \le \dots \le u_{n-1} \le u_n$$
 in Ω

Since u_n is an increasing sequence as n increases, it follows from the Monotone Convergence Theorem that we have (2.2) with $\lim_{n\to\infty} u_n(x,t) = u(x,t)$.

Since $\psi(x)$ is radially symmetric about the origin, namely $\psi(x) = \psi(|x|)$, it follows from (2.1) and the construction (2.7) that

$$u_{1}(x,t) = \frac{1}{(4\pi t)^{N/2}} \int_{\mathbb{R}^{N}} \exp\left(-\frac{|x-\xi|^{2}}{4t}\right) \psi\left(|\xi|\right) d\xi + \alpha \int_{0}^{t} \frac{1}{[4\pi (t-\tau)]^{N/2}} \int_{\partial B} \exp\left(-\frac{|x-\xi|^{2}}{4(t-\tau)}\right) f\left(\psi\left(|\xi|\right)\right) dS_{\xi} d\tau = \frac{1}{(4\pi t)^{N/2}} \lim_{r \to \infty} \int_{B(0,r)} \exp\left(-\frac{|x-\xi|^{2}}{4t}\right) \psi\left(|\xi|\right) d\xi + \alpha \int_{0}^{t} \frac{1}{[4\pi (t-\tau)]^{N/2}} \int_{\partial B} \exp\left(-\frac{|x-\xi|^{2}}{4(t-\tau)}\right) f\left(\psi\left(|\xi|\right)\right) dS_{\xi} d\tau,$$

where B(0, r) is the N-dimensional ball centered at the origin with a radius r. Thus, $u_1(x,t)$ is radially symmetric about the origin. We assume that for some positive integer $j, u_j(x,t)$ is radially symmetric about the origin, namely $u_j(x,t) = u_j(|x|,t)$. Then,

$$u_{j+1}(x,t) = \frac{1}{(4\pi t)^{N/2}} \lim_{r \to \infty} \int_{B(0,r)} \exp\left(-\frac{|x-\xi|^2}{4t}\right) \psi\left(|\xi|\right) d\xi + \alpha \int_0^t \frac{1}{[4\pi (t-\tau)]^{N/2}} \int_{\partial B} \exp\left(-\frac{|x-\xi|^2}{4(t-\tau)}\right) f\left(u_j\left(|\xi|,\tau\right)\right) dS_{\xi} d\tau$$

is also radially symmetric about the origin. By the principle of mathematical induction, $u_n(x,t)$ is radially symmetric about the origin for n = 0, 1, 2, ... Hence, $u(x,t) = \lim_{n\to\infty} u_n(x,t)$ is radially symmetric about the origin.

From the problem (2.4), we have

$$\begin{aligned} u_t - \left(u_{rr} + \frac{N-1}{r}u_r\right) &= 0 \text{ in } (R,\infty) \times (0,t_b), \\ u\left(r,0\right) &= \psi\left(r\right) \text{ on } [R,\infty), \\ u\left(R,t\right) &= M\left(t\right), u\left(r,t\right) \to 0 \text{ as } r \to \infty \text{ for } 0 < t < t_b. \end{aligned}$$

From Theorem 2.1, $u_t(x,t) \ge 0$ in $(\mathbb{R}^N \setminus \overline{B}) \times (0,t_b)$. Thus,

$$u_{rr} + \frac{N-1}{r}u_r = u_t \ge 0.$$

We note from (2.6) and the parabolic version of Hopf's lemma (cf. Friedman [6, p. 49]) that $u_r(R,t) < 0$ for $0 < t < t_b$. Hence for $0 < t < t_b$, $\lim_{r \to R^+} u_{rr}(r,t) \ge 0$ for $N \ge 1$. Therefore, if u blows up, then it blows up on ∂B only.

For the problem (2.3), it follows from Theorem 2.1 that $u_t(x,t) \ge 0$ in $B \times (0,t_b)$. By Corollary 2 of Friedman [6, p. 74], u is infinitely differentiable. Hence, $Hu_t = 0$ in $B \times (0, t_b)$. If $u_t = 0$ somewhere in $B \times (0, t_b)$, say at $t = t_2$, then it follows from the problem (2.3) and the strong maximum principle that $u_t \equiv 0$ in $B \times (0, t_2]$, and hence $u(x,t) = \psi(x)$ for $(x,t) \in B \times (0, t_2]$. By continuity, we have for $(x,t) \in \partial B \times [0, t_2]$, $u(x,t) = \psi(x) = M(0)$, which is bounded. Since the solution u is continuous on $\partial B \times [0, t_b)$, there exists some $t_3 (\geq t_2)$ such that $u_t > 0$ in $B \times [t_3, t_b)$. Because u is radially symmetric, we have

$$u_{t} - \left(u_{rr} + \frac{N-1}{r}u_{r}\right) = 0 \text{ in } (0, R) \times (0, t_{b}),$$

$$u(r, 0) = \psi(r) \text{ on } [0, R],$$

$$u_{r}(0, t) = 0, u(R, t) = M(t) \text{ for } 0 < t < t_{b}.$$

Thus,

$$u_{rr} + \frac{N-1}{r}u_r = u_t > 0 \tag{2.8}$$

in $B \times [t_3, t_b)$. Since $\lim_{r \to 0} u_{rr} + (N-1) \lim_{r \to 0} (u_r/r) = N u_{rr}(0, t)$, we have $u_{rr}(0, t) > 0$, implying that u is concave up near the origin r = 0. Because $u_r(0, t) = 0$ for $t_3 \leq t < t_b$, we have $u_r > 0$ near the origin for $t_3 \leq t < t_b$. We would like to show that u(0, t) is bounded as t tends to t_b . Let us assume, on the contrary, that u(0, t) tends to infinity as t tends to t_b . If $u_t(0, t)$ is bounded, say by a constant k_1 , then

$$u(0,t) \le u(0,0) + k_1 t$$
 for $0 < t < t_b$.

Because u(0,0) is bounded, we have a contradiction. Thus, $u_t(0,t)$ tends to infinity as t tends to t_b . Since $u_t(0,t) = Nu_{rr}(0,t)$, we have $u_{rr}(0,t)$ tending to infinity as ttends to t_b . Thus for $t_3 \leq t < t_b$, there are points in a neighborhood of the origin r = 0with values larger than u(0,t), and hence, u should blow up before t_b . This contradicts the definition of t_b . Hence, u(0,t) is bounded as t tends to t_b . Next, we would like to show that the graph of u is concave up near ∂B . Since u(r,t) tends to infinity as rtends to R and t tends to t_b , and u is a strictly increasing function of $t \in [t_3, t_b)$, we have for any given number M_1 sufficiently large, that there exists \tilde{r} sufficiently close to R and some \tilde{t} such that $u(r,t) > M_1$ for $r \in [\tilde{r}, R]$ and $t \in [\tilde{t}, t_b)$. We claim that for any given large number M_2 , we can choose \tilde{r} and \tilde{t} such that $u_t(r,t) > M_2$ for $r \in [\tilde{r}, R]$ and $t \in [\tilde{t}, t_b)$. To prove this, let us assume that $u_t(r,t)$ is bounded, say by a constant M_2 . Then, $u(r,t) \leq u(r,0) + M_2t$. We note that for $M_1 > u(R,0) + M_2t_b$, we have \tilde{r} sufficiently close to R and some \tilde{t} such that $u(r,t) > M_1$ for $r \in [\tilde{r}, R]$ and $t \in [\tilde{t}, t_b)$. Thus,

$$u(r,t) \le u(r,0) + M_2 t \le u(R,0) + M_2 t_b < M_1$$

for $r \in [\tilde{r}, R]$ and $t \in [\tilde{t}, t_b)$. We have a contradiction. Hence, $u_t(r, t)$ can be made as large as we please. By choosing r and t sufficiently close to R and t_b respectively, if $u_{rr}(r, t) \leq 0$, then it follows from (2.8) that $u_r(r, t)$ can be made as large as we please. This gives a contradiction to $u_{rr}(r, t) \leq 0$ since u(r, t) can be made as large as we wish. Thus, u is concave up near ∂B . Because t_b is finite, it follows from Theorem 2.3 that ublows up on ∂B only.

3. $N \leq 2$. In the sequel, we assume that $f(u) \geq \kappa u^p$, where κ and p are positive constants such that p > 1. Let

$$I(x,t) = \int_{\partial B} g(x,t;\xi,0) \, dS_{\xi}.$$

Lemma 3.1 of Chan and Tragoonsirisak [4] states that for $t \ge 1$ and any $x \in \overline{B}$,

$$(4\pi)^{-N/2} e^{-R^2} \omega_N R^{N-1} t^{-N/2} \le I(x,t) \le (4\pi)^{-N/2} \omega_N R^{N-1} t^{-N/2}, \qquad (3.1)$$

where ω_N denotes the surface area of an N-dimensional unit sphere.

THEOREM 3.1. If $N \leq 2$, then for any α and any $\psi(x)$, the solution u of the problem (1.1) always blows up in a finite time.

Proof. Let

$$h(x) = \frac{e^{-|x|^2}}{\pi^{N/2}}.$$

We note that h(x) > 0, $h(x) \to 0$ as $|x| \to \infty$,

$$\int_{\mathbb{R}^{N}} h(x) dx = \int_{-\infty}^{\infty} \frac{e^{-x_{1}^{2}}}{\sqrt{\pi}} dx_{1} \cdots \int_{-\infty}^{\infty} \frac{e^{-x_{N}^{2}}}{\sqrt{\pi}} dx_{N} = 1,$$

$$\int_{\partial B} h(x) dS_{x} = \frac{e^{-R^{2}}}{\pi^{N/2}} \int_{\partial B} dS_{x} = \frac{e^{-R^{2}} \omega_{N} R^{N-1}}{\pi^{N/2}},$$

$$\int_{\bar{B}} h(x) dx < \int_{\mathbb{R}^{N}} h(x) dx = 1,$$

$$\Delta h = \frac{4e^{-|x|^{2}} |x|^{2}}{\pi^{N/2}} - 2Nh(x) \ge -2Nh(x).$$
(3.2)

Let

$$F(t) = \int_{\mathbb{R}^N} u(x,t) h(x) dx.$$

Since u is the solution of the problem (1.1), F(t) may be regarded as a distribution. Thus,

$$F'(t) = \int_{\mathbb{R}^{N}} u_t(x,t) h(x) dx$$

= $\int_{\mathbb{R}^{N}} \left(\bigtriangleup u(x,t) + \alpha \frac{\partial \chi_B(x)}{\partial \nu} f(u(x,t)) \right) h(x) dx$
 $\geq \int_{\mathbb{R}^{N}} \bigtriangleup u(x,t) h(x) dx + \alpha \kappa \int_{\mathbb{R}^{N}} \frac{\partial \chi_B(x)}{\partial \nu} u^p(x,t) h(x) dx$
= $\int_{\mathbb{R}^{N}} \bigtriangleup u(x,t) h(x) dx + \alpha \kappa \int_{\partial B} u^p(x,t) h(x) dS_x.$

Using Green's second identity and (3.2), we have

$$\begin{split} \int_{\mathbb{R}^N} & \bigtriangleup u\left(x,t\right) h\left(x\right) dx \\ &= \lim_{\tilde{R} \to \infty} \int_{|x| < \tilde{R}} \bigtriangleup u\left(x,t\right) h\left(x\right) dx \\ &= \lim_{\tilde{R} \to \infty} \int_{|x| < \tilde{R}} u\left(x,t\right) \bigtriangleup h\left(x\right) dx \\ &= \int_{\mathbb{R}^N} u\left(x,t\right) \bigtriangleup h\left(x\right) dx \\ &\ge -2N \int_{\mathbb{R}^N} u\left(x,t\right) h\left(x\right) dx \\ &= -2NF\left(t\right). \end{split}$$

From (2.6),

$$F(t) \le M(t) \int_{\mathbb{R}^N} h(x) \, dx = M(t) \, .$$

Thus,

$$\int_{\partial B} u^{p}(x,t) h(x) dS_{x} = M^{p}(t) \int_{\partial B} h(x) dS_{x}$$
$$\geq F^{p}(t) \int_{\partial B} h(x) dS_{x}$$
$$= \frac{e^{-R^{2}} \omega_{N} R^{N-1} F^{p}(t)}{\pi^{N/2}}.$$

Hence,

$$F'(t) + 2NF(t) \ge \frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{\pi^{N/2}} F^p(t) \,.$$

Solving this Bernoulli inequality, we obtain

$$F^{1-p}(t) \le \frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N \pi^{N/2}} + C e^{2N(p-1)t},$$

where C is to be determined. We can choose for $\tilde{t} \ge 0$,

$$C = \left(F^{1-p}\left(\tilde{t}\right) - \frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N\pi^{N/2}}\right) e^{2N(1-p)\tilde{t}}.$$

Thus for $t > \tilde{t} \ge 0$,

$$F^{p-1}(t) \ge \left[\frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N\pi^{N/2}} + \left(F^{1-p}\left(\tilde{t}\right) - \frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N\pi^{N/2}}\right) e^{2N(p-1)\left(t-\tilde{t}\right)}\right]^{-1}.$$
(3.3)

We would like to show that there exists \tilde{t} such that

$$F^{1-p}\left(\tilde{t}\right) - \frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N\pi^{N/2}} < 0.$$
(3.4)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

From (2.2) and (2.6),

$$u(x,t) \ge \alpha \kappa \int_0^t \int_{\partial B} g(x,t;\xi,\tau) u^p(\xi,\tau) dS_{\xi} d\tau$$
$$= \alpha \kappa \int_0^t \int_{\partial B} g(x,t;\xi,\tau) M^p(\tau) dS_{\xi} d\tau.$$

For t > 1,

$$u(x,t) \ge \alpha \kappa \int_{0}^{t-1} M^{p}(\tau) \int_{\partial B} g(x,t;\xi,\tau) \, dS_{\xi} d\tau.$$

Since u is a nondecreasing function of t, we have $M^{p}(\tau) \geq M^{p}(0) > 0$. Thus,

$$u(x,t) \geq \alpha \kappa M^{p}(0) \int_{0}^{t-1} \int_{\partial B} g(x,t;\xi,\tau) \, dS_{\xi} d\tau$$
$$= \alpha \kappa M^{p}(0) \int_{0}^{t-1} I(x,t-\tau) \, d\tau$$
$$= \alpha \kappa M^{p}(0) \int_{1}^{t} I(x,\theta) \, d\theta.$$

Using (3.1), we have for any $x \in \overline{B}$,

$$u(x,t) \ge \alpha \kappa M^{p}(0) (4\pi)^{-N/2} e^{-R^{2}} \omega_{N} R^{N-1} \int_{1}^{t} \theta^{-N/2} d\theta$$

=
$$\begin{cases} 2\alpha \kappa M^{p}(0) (4\pi)^{-N/2} e^{-R^{2}} \omega_{N} R^{N-1} (t^{1/2} - 1) & \text{if } N = 1, \\ \alpha \kappa M^{p}(0) (4\pi)^{-N/2} e^{-R^{2}} \omega_{N} R^{N-1} \ln t & \text{if } N = 2. \end{cases}$$

Thus, there exists \tilde{t} such that for $t \geq \tilde{t}$,

$$u(x,t) > \frac{(2N\pi^{N/2})^{1/(p-1)}}{\alpha^{1/(p-1)} \left(\kappa e^{-R^2} \omega_N R^{N-1}\right)^{1/(p-1)} \left(\int_{\bar{B}} h(x) \, dx\right)}$$

for any $x \in \overline{B}$. Then,

$$\begin{split} F^{p-1}\left(\tilde{t}\right) &= \left(\int_{\mathbb{R}^{N}} u\left(x,\tilde{t}\right)h\left(x\right)dx\right)^{p-1} \\ &\geq \left(\int_{\bar{B}} u\left(x,\tilde{t}\right)h\left(x\right)dx\right)^{p-1} \\ &> \left[\frac{\left(2N\pi^{N/2}\right)^{1/(p-1)}}{\alpha^{1/(p-1)}\left(\kappa e^{-R^{2}}\omega_{N}R^{N-1}\right)^{1/(p-1)}\left(\int_{\bar{B}}h\left(x\right)dx\right)}\right]^{p-1} \left(\int_{\bar{B}}h\left(x\right)dx\right)^{p-1} \\ &= \frac{2N\pi^{N/2}}{\alpha\kappa e^{-R^{2}}\omega_{N}R^{N-1}}, \end{split}$$

which gives (3.4). From (3.3), there exists a finite time $t_b (> \tilde{t})$ such that $\lim_{t \to t_b} F(t) = \infty$. Thus, u(x, t) blows up in a finite time.

4. $N \geq 3$. In this section, we show that the blow-up behavior for $N \geq 3$ is completely different from that for $N \leq 2$.

THEOREM 4.1. (i) For $N \ge 3$, if α is sufficiently small, then the solution u of the problem (1.1) exists globally.

(ii) For $N \ge 3$, if α is sufficiently large, then the solution u of the problem (1.1) blows up in a finite time.

Proof. (i) Since f'(u) > 0, we have $f(u) \le f(2M(0))$ for $u(x,t) \le 2M(0)$. Thus for $u(x,t) \le 2M(0)$, it follows from (2.2) and $\int_{\mathbb{R}^N} g(x,t;\xi,0) d\xi = 1$ (cf. Evans [5, p. 46]) that

$$\begin{split} u\left(x,t\right) &\leq M\left(0\right) \int_{\mathbb{R}^{N}} g\left(x,t;\xi,0\right) d\xi + \alpha \int_{0}^{t} \int_{\partial B} g\left(x,t;\xi,\tau\right) f\left(2M\left(0\right)\right) dS_{\xi} d\tau \\ &= M\left(0\right) + \alpha f\left(2M\left(0\right)\right) \int_{0}^{t} \int_{\partial B} g\left(x,t;\xi,\tau\right) dS_{\xi} d\tau. \end{split}$$

Let $\eta = \left(\xi_{i} - x_{i}\right) / \left(2\sqrt{t-\tau}\right)$. Using $\int_{-\infty}^{\infty} e^{-\eta^{2}} d\eta = \sqrt{\pi}$, we have
 $\int_{\partial B} g\left(x,t;\xi,\tau\right) dS_{\xi} \leq \frac{1}{2\sqrt{\pi}\left(t-\tau\right)^{1/2}}. \end{split}$

For $0 < t \leq 1$, we have

$$u(x,t) \le M(0) + \frac{\alpha f(2M(0))}{2\sqrt{\pi}} \int_0^t \frac{d\tau}{(t-\tau)^{1/2}} \\ \le M(0) + \frac{\alpha f(2M(0))}{\sqrt{\pi}}.$$

For t > 1, and for any $b \in \partial B$,

$$u(x,t) \leq u(b,t)$$

$$\leq M(0) + \alpha f(2M(0)) \left(\int_{0}^{t-1} \int_{\partial B} g(b,t;\xi,\tau) \, dS_{\xi} d\tau + \int_{t-1}^{t} \int_{\partial B} g(b,t;\xi,\tau) \, dS_{\xi} d\tau \right)$$

$$\leq M(0) + \alpha f(2M(0)) \left(\int_{0}^{t-1} I(b,t-\tau) \, d\tau + \int_{t-1}^{t} \frac{d\tau}{2\sqrt{\pi} (t-\tau)^{1/2}} \right)$$

$$= M(0) + \alpha f(2M(0)) \left(\int_{1}^{t} I(b,\theta) \, d\theta + \frac{1}{\sqrt{\pi}} \right)$$

$$\leq M(0) + \alpha f(2M(0)) \left(\int_{1}^{\infty} I(b,\theta) \, d\theta + \frac{1}{\sqrt{\pi}} \right).$$

$$(4.1)$$

Using (3.1), we have for $N \geq 3$,

$$\int_{1}^{\infty} I(b,\theta) \, d\theta \le (4\pi)^{-N/2} \, \omega_N R^{N-1} \int_{1}^{\infty} \theta^{-N/2} d\theta$$
$$= \frac{(4\pi)^{-N/2} \, \omega_N R^{N-1}}{N/2 - 1} < \infty.$$

Thus, we can choose $\alpha (> 0)$ sufficiently small such that the right-hand side of (4.1) is less than or equal to 2M(0). Hence, the solution u of the problem (1.1) exists globally.

(ii) Let $\tilde{t} = 0$ in (3.3). We have

$$F^{p-1}(t) \ge \left[\frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N\pi^{N/2}} + \left(F^{1-p}(0) - \frac{\alpha \kappa e^{-R^2} \omega_N R^{N-1}}{2N\pi^{N/2}}\right) e^{2N(p-1)t}\right]^{-1}$$

We note that $F(0) = \int_{\mathbb{R}^N} \psi(x) h(x) dx$. We would like to choose α sufficiently large such that $F^{1-p}(0) - \alpha \kappa e^{-R^2} \omega_N R^{N-1}/(2N\pi^{N/2}) < 0$. This can be accomplished by choosing

$$\alpha > \frac{2N\pi^{N/2}F^{1-p}(0)}{\kappa e^{-R^2}\omega_N R^{N-1}}.$$

Thus, there exists a finite time t_b such that $\lim_{t \to t_b} F(t) = \infty$ and hence u(x, t) blows up in a finite time.

Let k denote the positive constant $\int_{\mathbb{R}^N} \psi(\xi) d\xi$. Then,

$$\int_{\mathbb{R}^N} \exp\left(-\frac{|x-\xi|^2}{4t}\right) \psi\left(\xi\right) d\xi \le \int_{\mathbb{R}^N} \psi\left(\xi\right) d\xi = k.$$

We have

$$\begin{split} \int_{\mathbb{R}^N} g\left(x,t;\xi,0\right)\psi\left(\xi\right)d\xi &= \frac{1}{\left(4\pi t\right)^{N/2}}\int_{\mathbb{R}^N}\exp\left(-\frac{|x-\xi|^2}{4t}\right)\psi\left(\xi\right)d\xi\\ &\leq \frac{k}{\left(4\pi t\right)^{N/2}}, \end{split}$$

which tends to 0 as $t \to \infty$. This shows that the initial data do not affect the solution as t tends to infinity. The fundamental solution (cf. Evans [5, pp. 22 and 615]) of the Laplace equation for $N \ge 3$ is given by

$$G(x) = \frac{\Gamma(\frac{N}{2}+1)}{N(N-2)\pi^{N/2}} \frac{1}{|x|^{N-2}}.$$

The proof of the following result is the same as that of Theorem 4.2 of Chan and Tragoonsirisak [4].

THEOREM 4.2. If $u(x,t) \leq C$ for some positive constant C, then u(x,t) converges from below to a solution $U(x) = \lim_{t\to\infty} u(x,t)$ of the nonlinear integral equation,

$$U(x) = \alpha \int_{\partial B} G(x-\xi) f(U(\xi)) dS_{\xi}.$$
(4.2)

The next result shows that there exists a critical value for α .

THEOREM 4.3. For $N \ge 3$, there exists a unique α^* such that u exists globally for $\alpha < \alpha^*$, and u blows up in a finite time for $\alpha > \alpha^*$.

Proof. To show that the larger the α , the larger the solution, let $\alpha > \beta$, and consider the sequence $\{v_n\}$ given by $v_0(x,t) = \psi(x)$, and for n = 0, 1, 2, ...,

$$v_{n+1}(x,t) = \int_{\mathbb{R}^N} g(x,t;\xi,0) \,\psi(\xi) \,d\xi + \beta \int_0^t \int_{\partial B} g(x,t;\xi,\tau) \,f(v_n(\xi,\tau)) \,dS_{\xi} d\tau.$$

Similar to the construction of the sequence $\{u_n\}$ in Ω in the proof of Theorem 2.4, we obtain

$$\begin{split} v\left(x,t\right) &= \lim_{n \to \infty} v_n\left(x,t\right) \\ &= \int_{\mathbb{R}^N} g\left(x,t;\xi,0\right)\psi\left(\xi\right)d\xi + \beta \int_0^t \int_{\partial B} g\left(x,t;\xi,\tau\right)f\left(v\left(\xi,\tau\right)\right)dS_{\xi}d\tau. \end{split}$$

Since $u_n > v_n$ for n = 1, 2, 3, ..., we have $u \ge v$. Hence, the solution u is a nondecreasing function of α . It follows from Theorem 4.1 that there exists a unique α^* such that u exists globally for $\alpha < \alpha^*$ and u blows up in a finite time for $\alpha > \alpha^*$.

We note that the critical value α^* is determined as the supremum of all positive values α for which a solution U of (4.2) exists. The proof of the next result (showing that the solution u exists globally when $\alpha = \alpha^*$) for the case f(0) > 0 is a modification of that for Theorem 7 of Chan and Jiang [1] for a degenerate one-dimensional problem in a bounded domain.

THEOREM 4.4. For $N \geq 3$,

$$\alpha^{*} = \frac{(N-2)\pi^{(N-3)/2}}{R\Gamma\left(\frac{N-1}{2}\right)\prod_{i=1}^{N-3}\int_{0}^{\pi}\sin^{i}\varphi d\varphi} \sup_{M(0) < s < \infty} \left(\frac{s}{f(s)}\right),$$
(4.3)

where for N = 3, $\prod_{i=1}^{N-3} \int_0^{\pi} \sin^i \varphi d\varphi = 1$. Furthermore, *u* does not blow up in infinite time.

Proof. From (2.6), $U(x) = \lim_{t\to\infty} u(x,t)$ attains its maximum at $b \in \partial B$. From (4.2),

$$U(b) = \alpha \int_{\partial B} G(b-\xi) f(U(b)) dS_{\xi}.$$

Thus,

$$\alpha = \left(\frac{1}{\int_{\partial B} G\left(b-\xi\right) dS_{\xi}}\right) \left(\frac{U\left(b\right)}{f\left(U\left(b\right)\right)}\right),$$

and hence,

$$\alpha^* = \left(\frac{1}{\int_{\partial B} G\left(b-\xi\right) dS_{\xi}}\right) \sup_{M(0) < s < \infty} \left(\frac{s}{f\left(s\right)}\right).$$

From the proof of Theorem 4.5 of Chan and Tragoonsirisak [4],

$$\int_{\partial B} G\left(b-\xi\right) dS_{\xi} = \frac{R\Gamma\left(\frac{N-1}{2}\right) \prod_{i=1}^{N-3} \int_{0}^{\pi} \sin^{i}\varphi d\varphi}{(N-2) \pi^{(N-3)/2}}.$$

Thus, we have (4.3).

Let us consider the function $\varphi(s) = s/f(s)$.

CASE 1. If f(0) = 0, then we claim that $\varphi(s)$ is a decreasing function for s > 0. Since f is a convex function (cf. Stromberg [11, p. 199]) in $(0, \infty)$, we have for any $0 < s < s_2$,

$$f((1-t)s + ts_2) \le (1-t)f(s) + tf(s_2), t \in [0,1].$$

Letting $s \to 0$, we have

$$f\left(ts_2\right) \le tf\left(s_2\right).$$

Let $t = s_1/s_2$, where $0 < s_1 < s_2$. Then,

$$f\left(s_{1}\right) \leq \frac{s_{1}}{s_{2}}f\left(s_{2}\right),$$

which gives

$$\varphi\left(s_{2}\right) \leq \varphi\left(s_{1}\right),$$

implying that $\varphi(s)$ is a nonincreasing function of s(>0). It follows from (4.3) that

$$\alpha^{*} = \frac{(N-2)\pi^{(N-3)/2}}{R\Gamma\left(\frac{N-1}{2}\right)\prod_{i=1}^{N-3}\int_{0}^{\pi}\sin^{i}\varphi d\varphi} \left(\frac{M(0)}{f(M(0))}\right).$$
(4.4)

CASE 2. If f(0) > 0, then $\varphi(s) > 0$ for s > 0, and $\varphi(0) = 0 = \lim_{s \to \infty} \varphi(s)$. We have $\varphi'(s) = (f(s) - sf'(s))/f^2(s)$. Therefore, a relative maximum or minimum occurs at $\tilde{s} \in (0, \infty)$, where $f(\tilde{s}) = \tilde{s}f'(\tilde{s})$. Since $\varphi''(\tilde{s}) = -\tilde{s}f''(\tilde{s})/f^2(\tilde{s}) < 0$, $\varphi(s)$ attains its absolute maximum when $\varphi(\tilde{s}) = 1/f'(\tilde{s})$. Thus, $\sup_{0 < s < \infty} (s/f(s))$ occurs at $s = \tilde{s} \in (0, \infty)$. We note that the function $\varphi(s)$ is a strictly increasing function for $0 \le s < \tilde{s}$, and a strictly decreasing function for $s > \tilde{s}$. Thus, if $M(0) < \tilde{s}$, then

$$\alpha^* = \frac{(N-2)\pi^{(N-3)/2}}{R\Gamma\left(\frac{N-1}{2}\right)\prod_{i=1}^{N-3}\int_0^\pi \sin^i\varphi d\varphi} \left(\frac{\tilde{s}}{f(\tilde{s})}\right).$$
(4.5)

If $M(0) \ge \tilde{s}$, then it follows from $\varphi(s)$ being a strictly decreasing function for $s > \tilde{s}$ that $\varphi(s)$ attains its supremum at M(0). Thus,

$$\alpha^{*} = \frac{(N-2)\pi^{(N-3)/2}}{R\Gamma\left(\frac{N-1}{2}\right)\prod_{i=1}^{N-3}\int_{0}^{\pi}\sin^{i}\varphi d\varphi} \left(\frac{M(0)}{f(M(0))}\right).$$
(4.6)

From (4.4) to (4.6), α^* occurs at some finite positive value. Hence for $\alpha \leq \alpha^*$, u exists globally. Since u blows up in a finite time for $\alpha > \alpha^*$, u does not blow up in infinite time.

For an illustration, we give below two examples on calculating α^* for some given functions f and some given initial data on the surface of the ball M(0).

EXAMPLE 4.5. Let $f(u) = u^p$. Since f(0) = 0, it follows from (4.4) that

$$\alpha^* = \frac{(N-2) \pi^{(N-3)/2}}{M^{p-1}(0) R\Gamma\left(\frac{N-1}{2}\right) \prod_{i=1}^{N-3} \int_0^\pi \sin^i \varphi d\varphi}.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

EXAMPLE 4.6. Let $f(u) = (u+1)^p$. Since f(0) > 0, we have $\tilde{s} = 1/(p-1)$. From (4.5) and (4.6),

$$\alpha^{*} = \begin{cases} \frac{(p-1)^{p-1} (N-2) \pi^{(N-3)/2}}{p^{p} R \Gamma\left(\frac{N-1}{2}\right) \prod_{i=1}^{N-3} \int_{0}^{\pi} \sin^{i} \varphi d\varphi} & \text{if } M\left(0\right) < \frac{1}{p-1}, \\ \frac{M\left(0\right) (N-2) \pi^{(N-3)/2}}{(M\left(0\right)+1)^{p} R \Gamma\left(\frac{N-1}{2}\right) \prod_{i=1}^{N-3} \int_{0}^{\pi} \sin^{i} \varphi d\varphi} & \text{if } M\left(0\right) \ge \frac{1}{p-1}. \end{cases}$$

References

- C. Y. Chan, X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 62 (2004), 553–568. MR2086046 (2005e:35139)
- C. Y. Chan, H. Y. Tian, Multi-dimensional explosion due to a concentrated nonlinear source, J. Math. Anal. Appl. 295 (2004), 174–190. MR2064418 (2005d:35115)
- [3] C. Y. Chan, H. Y. Tian, A criterion for a multi-dimensional explosion due to a concentrated nonlinear source, Appl. Math. Lett. 19 (2006), 298–302. MR2202419 (2006h:35118)
- [4] C. Y. Chan, P. Tragoonsirisak, A multi-dimensional quenching problem due to a concentrated nonlinear source in R^N, Nonlinear Anal. 69 (2008), 1494–1514. MR2424525 (2009g:35128)
- [5] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998, pp. 22, 46, 615. MR1625845 (99e:35001)
- [6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, NJ, 1964, pp. 34, 49, 74. MR0181836 (31:6062)
- [7] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I **13** (1966), 109–124. MR0214914 (35:5761)
- [8] R. G. Pinsky, Existence and nonexistence of global solutions for $u_t = \Delta u + a(x) u^p$ in \mathbb{R}^d , J. Differential Equations 133 (1997), 152–177. MR1426761 (97k:35118)
- M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967, pp. 183–185. MR0219861 (36:2935)
- [10] I. Stakgold, Boundary Value Problems of Mathematical Physics, vol. II, Macmillan, New York, NY, 1968, p. 198. MR0243183 (39:4507)
- K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, CA, 1981, p. 199. MR0604364 (82c:26002)