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Abstract. Let B be an N -dimensional ball
{
x ∈ R

N : |x| < R
}
centered at the origin

with a radius R, and ∂B be its boundary. Also, let ν (x) denote the unit inward normal

at x ∈ ∂B, and let χB (x) be the characteristic function, which is 1 for x ∈ B, and 0

for x ∈ R
N \B. This article studies the following multi-dimensional semilinear parabolic

problem with a concentrated nonlinear source on ∂B:

ut −�u = α
∂χB (x)

∂ν
f (u) in R

N × (0, T ],

u (x, 0) = ψ (x) for x ∈ R
N , u (x, t) → 0 as |x| → ∞ for 0 < t ≤ T,

where α and T are positive numbers, f and ψ are given functions such that f (0) ≥ 0,

f (u) and f ′ (u) are positive for u > 0, f ′′ (u) ≥ 0 for u > 0, and ψ is nontrivial on

∂B, nonnegative, and continuous such that ψ → 0 as |x| → ∞,
∫
RN ψ (x) dx < ∞, and

�ψ + α (∂χB (x) /∂ν) f (ψ (x)) ≥ 0 in R
N . It is shown that the problem has a unique

nonnegative continuous solution before blowup occurs. We assume that ψ (x) = M (0) >

ψ (y) for x ∈ ∂B and y /∈ ∂B, where M (t) = supx∈RN u (x, t). It is proved that if

u blows up in a finite time, then it blows up everywhere on ∂B. If, in addition, ψ is

radially symmetric about the origin, then we show that if u blows up, then it blows up

on ∂B only. Furthermore, if f (u) ≥ κup, where κ and p are positive constants such that

p > 1, then it is proved that for any α, u always blows up in a finite time for N ≤ 2; for

N ≥ 3, it is shown that there exists a unique number α∗ such that u exists globally for

α ≤ α∗ and blows up in a finite time for α > α∗. A formula for computing α∗ is given.

1. Introduction. Let H = ∂/∂t−�, T be a positive real number, x = (x1, x2, . . . ,

xN ) be a point in the N -dimensional Euclidean space R
N , Ω = R

N × (0, T ], B be an
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318 C. Y. CHAN AND P. TRAGOONSIRISAK

N -dimensional ball
{
x ∈ R

N :
∣∣x− b̄

∣∣ < R
}
centered at a given point b̄ with a radius R,

∂B be the boundary of B, ν (x) denote the unit inward normal at x ∈ ∂B, and

χB (x) =

{
1 for x ∈ B,

0 for x ∈ R
N \B

be the characteristic function. Without loss of generality, let b̄ be the origin. We would

like to study the following multi-dimensional semilinear parabolic problem with a source

on the surface of the ball:

Hu = α
∂χB (x)

∂ν
f (u) in Ω,

u (x, 0) = ψ (x) for x ∈ R
N , u (x, t) → 0 as |x| → ∞ for 0 < t ≤ T,

⎫⎬
⎭ (1.1)

where α is a positive constant, f and ψ are given functions such that f (0) ≥ 0, f (u)

and f ′ (u) are positive for u > 0, f ′′ (u) ≥ 0 for u > 0, and ψ is nontrivial on ∂B,

nonnegative, and continuous such that ψ → 0 as |x| → ∞,
∫
RN ψ (x) dx < ∞, and

�ψ + α (∂χB (x) /∂ν) f(ψ (x)) ≥ 0 in R
N . We note that such a problem in a bounded

domain, instead of RN , was studied by Chan and Tian ([2], [3]).

A solution u is said to blow up at the point (x, tb) if there exists a sequence {(xn, tn)}
such that u (xn, tn) → ∞ as (xn, tn) → (x, tb) .

In Section 2, we show that the nonlinear integral equation corresponding to the prob-

lem (1.1) has a unique nonnegative continuous solution u, which is a nondecreasing

function of t. We then prove that u is the unique solution of the problem (1.1). Let

M (t) denote supx∈RN u (x, t). We assume that

ψ (x) = M (0) > ψ (y) for x ∈ ∂B and y /∈ ∂B. (1.2)

If tb is finite, we show that u blows up everywhere on ∂B. If, in addition, ψ is radially

symmetric about the origin, then we prove that if u blows up, then it blows up everywhere

on ∂B only. Let κ and p be positive constants such that p > 1. If f (u) ≥ κup, then we

prove, in Section 3, that for any α, u always blows up in a finite time if N ≤ 2. This

behavior is completely different from that for N ≥ 3. In Section 4, we show that for

N ≥ 3, there exists a unique number α∗ such that u exists globally for α ≤ α∗ and blows

up in a finite time for α > α∗. We also derive a formula for computing α∗. We note that

whether a solution of the heat equation without a concentrated source in an unbounded

domain blows up in a finite time was studied by Fujita [7], and Pinsky [8].

2. Existence, uniqueness, and blowup. To derive the integral equation from the

problem (1.1), we use the adjoint operator (−∂/∂t−�) of H. Using Green’s second

identity, we obtain

u (x, t) =

∫
RN

g (x, t; ξ, 0)ψ (ξ) dξ + α

∫ t

0

∫
RN

g (x, t; ξ, τ )
∂χB (ξ)

∂ν
f (u (ξ, τ )) dξdτ,

where

g (x, t; ξ, τ ) =

⎧⎪⎨
⎪⎩

1

[4π (t− τ )]
N/2

exp

(
− |x− ξ|2

4 (t− τ )

)
, t > τ,

0, t < τ

(2.1)
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A MULTI-DIMENSIONAL BLOW-UP PROBLEM 319

is Green’s function (cf. Stakgold [10, p. 198]) corresponding to the problem (1.1). Using

integration by parts and the Divergence Theorem, we have

u (x, t) =

∫
RN

g (x, t; ξ, 0)ψ (ξ) dξ + α

∫ t

0

∫
∂B

g (x, t; ξ, τ ) f (u (ξ, τ )) dSξdτ (2.2)

(cf. Chan and Tragoonsirisak [4]). We note that
∫
RN ψ (x) dx < ∞ is used to show

that the first term on the right-hand side is continuous, and Lemma 2.1 of Chan and

Tragoonsirisak [4] is used to show that the second term is continuous for t > 0.

To establish the next two results, we modify the techniques in proving Theorems 3

and 4 of Chan and Tian [2] for a blow-up problem in a bounded domain, and Theorems

2.1 and 2.2 of Chan and Tragoonsirisak [4] for a quenching problem in R
N .

Theorem 2.1. There exists some tb such that for 0 ≤ t < tb, the integral equation (2.2)

has a unique continuous nonnegative solution u, and u is a nondecreasing function of t.

If tb is finite, then u is unbounded in [0, tb).

Our next result shows that the solution of the integral equation (2.2) is the solution

of the problem (1.1).

Theorem 2.2. The problem (1.1) has a unique solution u for 0 ≤ t < tb.

Henceforth, we assume that (1.2) holds. Our next result shows that at tb, u blows up

everywhere on the surface of the ball.

Theorem 2.3. If tb is finite, then at tb, u blows up everywhere on ∂B.

Proof. By Theorems 2.1 and 2.2, there exists some tb such that for 0 ≤ t < tb, the

problem (1.1) has a unique nonnegative continuous solution u, which is a nondecreasing

function of t. Since u (x, t) on ∂B × (0, tb) is known, let us denote it by g̃ (x, t), and

rewrite the problem (1.1) as two initial-boundary value problems:

Hu = 0 in B × (0, tb) ,

u (x, 0) = ψ (x) on B̄, u (x, t) = g̃ (x, t) on ∂B × (0, tb) ;

}
(2.3)

Hu = 0 in
(
R

N\B̄
)
× (0, tb) ,

u (x, 0) = ψ (x) on R
N \B, u (x, t) = g̃ (x, t) on ∂B × (0, tb) ,

u (x, t) → 0 as |x| → ∞ for 0 < t < tb.

⎫⎬
⎭ (2.4)

Let us consider the problem (2.3). From the strong maximum principle (cf. Friedman

[6, p. 34]), u attains its maximum somewhere on ∂B for t > 0. For the problem (2.4),

u (x, t) → 0 as |x| → ∞. Since u is a nondecreasing function of t, it follows from the

Phragmén-Lindelöf Principle (cf. Protter and Weinberger [9, pp. 183-185]) that u attains

its maximum somewhere on ∂B for t > 0. Thus for each given ρ ∈ (0, tb), u attains its

maximum for 0 ≤ t ≤ ρ somewhere on ∂B × {ρ}.
Suppose that there exists a smallest positive value of t, say t1, and some ȳ /∈ ∂B such

that u (ȳ, t1) = minx∈∂B u (x, t1) . We claim that for x ∈ ∂B, u (x, t1) = u (ȳ, t1). If this is

not true, then there exists some x̄ ∈ ∂B such that u (x̄, t1) > minx∈∂B u (x, t1) . Since u is

continuous, there exists some point (ỹ, t1) in a neighborhood of (x̄, t1) such that ỹ /∈ ∂B

and u (ỹ, t1) > minx∈∂B u (x, t1) . This contradicts the definition of t1. Thus, u attains
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320 C. Y. CHAN AND P. TRAGOONSIRISAK

its maximum at (ȳ, t1) for 0 ≤ t ≤ t1. If ȳ ∈ B, then it follows from the strong maximum

principle and the continuity of u that u ≡ u (ȳ, t1) on B̄ × [0, t1]. This contradicts (1.2).

If ȳ ∈
(
R

N \ B̄
)
, then let B̃ be an N -dimensional ball

{
x ∈ R

N : |x| < R̃
}

such that

ȳ ∈ B̃. By the strong maximum principle and the continuity of u, u ≡ u (ȳ, t1) on(
B̃\B

)
× [0, t1]. Again, this contradicts (1.2). Thus for any t > 0,

u (x, t) > u (y, t) for any x ∈ ∂B and any y /∈ ∂B. (2.5)

We claim that for each t > 0, u attains the same value for x ∈ ∂B. If this is not true,

then for some t > 0, there exists some x̃ ∈ ∂B such that u (x̃, t) > minx∈∂B u (x, t) . By

continuity, there exists some point (ŷ, t) in a neighborhood of (x̃, t) such that ŷ /∈ ∂B

and u(ŷ, t) > minx∈∂B u (x, t) . This contradicts (2.5). Hence for any t > 0,

u (x, t) = M (t) for x ∈ ∂B, M (t) > u (y, t) for any y /∈ ∂B. (2.6)

This implies that for each t > 0, u attains its absolute maximum on ∂B. Thus, if u blows

up, then it blows up there. Since tb is finite, it follows from Theorem 2.1 that u blows

up everywhere on ∂B. �
Our next result shows that for the symmetric case, u blows up on ∂B only.

Theorem 2.4. Under the additional assumption that ψ is radially symmetric about the

origin, if tb is finite, then at tb, u blows up on ∂B only.

Proof. Let us construct a sequence {un} in Ω by u0 (x, t) = ψ (x), and for n =

0, 1, 2, . . .,

Hun+1 = α
∂χB (x)

∂ν
f (un) in Ω,

un+1 (x, 0) = ψ (x) for x ∈ R
N , un+1 (x, t) → 0 as |x| → ∞ for 0 < t ≤ T.

From (2.2),

un+1 (x, t) =

∫
RN

g (x, t; ξ, 0)ψ (ξ) dξ + α

∫ t

0

∫
∂B

g (x, t; ξ, τ ) f (un (ξ, τ )) dSξdτ. (2.7)

We note that �ψ + α (∂χB (x) /∂ν) f(ψ (x)) ≥ 0 in R
N . Thus,

H (u1 − u0) ≥ α
∂χB (x)

∂ν
(f (u0 (x, t))− f (ψ (x))) = 0 in Ω,

(u1 − u0) (x, 0) = 0 for x ∈ R
N , (u1 − u0) (x, t) → 0 as |x| → ∞ for 0 < t ≤ T.

Since g (x, t; ξ, τ ) > 0 in
{
(x, t; ξ, τ ) : x and ξ are in R

N , T ≥ t > τ ≥ 0
}
, it follows from

(2.2) that u1 (x, t) ≥ u0 (x, t) in Ω. Let us assume that for some positive integer j,

ψ ≤ u1 ≤ u2 ≤ u3 ≤ · · · ≤ uj−1 ≤ uj in Ω. We have

H (uj+1 − uj) = α
∂χB (x)

∂ν
(f (uj)− f (uj−1)) in Ω,

(uj+1 − uj) (x, 0) = 0 for x ∈ R
N , (uj+1 − uj) (x, t) → 0 as |x| → ∞ for 0 < t ≤ T.

Since f is an increasing function and uj ≥ uj−1, we have f (uj)−f (uj−1) ≥ 0. It follows

from (2.2) that uj+1 ≥ uj . By the principle of mathematical induction,

ψ ≤ u1 ≤ u2 ≤ · · · ≤ un−1 ≤ un in Ω.
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Since un is an increasing sequence as n increases, it follows from the Monotone Conver-

gence Theorem that we have (2.2) with limn→∞ un (x, t) = u (x, t).

Since ψ (x) is radially symmetric about the origin, namely ψ (x) = ψ (|x|), it follows

from (2.1) and the construction (2.7) that

u1 (x, t) =
1

(4πt)
N/2

∫
RN

exp

(
−|x− ξ|2

4t

)
ψ (|ξ|) dξ

+ α

∫ t

0

1

[4π (t− τ )]N/2

∫
∂B

exp

(
− |x− ξ|2

4 (t− τ )

)
f (ψ (|ξ|)) dSξdτ

=
1

(4πt)N/2
lim
r→∞

∫
B(0,r)

exp

(
−|x− ξ|2

4t

)
ψ (|ξ|) dξ

+ α

∫ t

0

1

[4π (t− τ )]
N/2

∫
∂B

exp

(
− |x− ξ|2

4 (t− τ )

)
f (ψ (|ξ|)) dSξdτ,

where B (0, r) is the N -dimensional ball centered at the origin with a radius r. Thus,

u1 (x, t) is radially symmetric about the origin. We assume that for some positive integer

j, uj (x, t) is radially symmetric about the origin, namely uj (x, t) = uj (|x| , t). Then,

uj+1 (x, t) =
1

(4πt)N/2
lim
r→∞

∫
B(0,r)

exp

(
−|x− ξ|2

4t

)
ψ (|ξ|) dξ

+ α

∫ t

0

1

[4π (t− τ )]N/2

∫
∂B

exp

(
− |x− ξ|2

4 (t− τ )

)
f (uj (|ξ| , τ )) dSξdτ

is also radially symmetric about the origin. By the principle of mathematical induction,

un (x, t) is radially symmetric about the origin for n = 0, 1, 2, . . .. Hence, u (x, t) =

limn→∞ un (x, t) is radially symmetric about the origin.

From the problem (2.4), we have

ut −
(
urr +

N − 1

r
ur

)
= 0 in (R,∞)× (0, tb) ,

u (r, 0) = ψ (r) on [R,∞) ,

u (R, t) = M (t) , u (r, t) → 0 as r → ∞ for 0 < t < tb.

From Theorem 2.1, ut (x, t) ≥ 0 in
(
R

N\B̄
)
× (0, tb). Thus,

urr +
N − 1

r
ur = ut ≥ 0.

We note from (2.6) and the parabolic version of Hopf’s lemma (cf. Friedman [6, p. 49])

that ur(R, t) < 0 for 0 < t < tb. Hence for 0 < t < tb, limr→R+ urr (r, t) ≥ 0 for N ≥ 1.

Therefore, if u blows up, then it blows up on ∂B only.

For the problem (2.3), it follows from Theorem 2.1 that ut (x, t) ≥ 0 in B × (0, tb).

By Corollary 2 of Friedman [6, p. 74], u is infinitely differentiable. Hence, Hut = 0 in

B × (0, tb). If ut = 0 somewhere in B × (0, tb), say at t = t2, then it follows from the

problem (2.3) and the strong maximum principle that ut ≡ 0 in B × (0, t2], and hence

u (x, t) = ψ (x) for (x, t) ∈ B × (0, t2]. By continuity, we have for (x, t) ∈ ∂B × [0, t2],

u (x, t) = ψ (x) = M (0), which is bounded. Since the solution u is continuous on
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∂B × [0, tb), there exists some t3 (≥ t2) such that ut > 0 in B × [t3, tb). Because u is

radially symmetric, we have

ut −
(
urr +

N − 1

r
ur

)
= 0 in (0, R)× (0, tb) ,

u (r, 0) = ψ (r) on [0, R] ,

ur (0, t) = 0, u (R, t) = M (t) for 0 < t < tb.

Thus,

urr +
N − 1

r
ur = ut > 0 (2.8)

in B×[t3, tb). Since limr→0 urr+(N − 1) limr→0 (ur/r) = Nurr (0, t), we have urr (0, t) >

0, implying that u is concave up near the origin r = 0. Because ur (0, t) = 0 for

t3 ≤ t < tb, we have ur > 0 near the origin for t3 ≤ t < tb. We would like to show

that u (0, t) is bounded as t tends to tb. Let us assume, on the contrary, that u (0, t)

tends to infinity as t tends to tb. If ut (0, t) is bounded, say by a constant k1, then

u (0, t) ≤ u (0, 0) + k1t for 0 < t < tb.

Because u (0, 0) is bounded, we have a contradiction. Thus, ut (0, t) tends to infinity

as t tends to tb. Since ut (0, t) = Nurr (0, t), we have urr (0, t) tending to infinity as t

tends to tb. Thus for t3 ≤ t < tb, there are points in a neighborhood of the origin r = 0

with values larger than u (0, t), and hence, u should blow up before tb. This contradicts

the definition of tb. Hence, u (0, t) is bounded as t tends to tb. Next, we would like to

show that the graph of u is concave up near ∂B. Since u (r, t) tends to infinity as r

tends to R and t tends to tb, and u is a strictly increasing function of t ∈ [t3, tb), we

have for any given number M1 sufficiently large, that there exists r̃ sufficiently close to

R and some t̃ such that u (r, t) > M1 for r ∈ [r̃, R] and t ∈
[
t̃, tb

)
. We claim that for

any given large number M2, we can choose r̃ and t̃ such that ut (r, t) > M2 for r ∈ [r̃, R]

and t ∈
[
t̃, tb

)
. To prove this, let us assume that ut (r, t) is bounded, say by a constant

M2. Then, u (r, t) ≤ u (r, 0) +M2t. We note that for M1 > u (R, 0) +M2tb, we have r̃

sufficiently close to R and some t̃ such that u (r, t) > M1 for r ∈ [r̃, R] and t ∈
[
t̃, tb

)
.

Thus,

u (r, t) ≤ u (r, 0) +M2t ≤ u (R, 0) +M2tb < M1

for r ∈ [r̃, R] and t ∈
[
t̃, tb

)
. We have a contradiction. Hence, ut (r, t) can be made as

large as we please. By choosing r and t sufficiently close to R and tb respectively, if

urr (r, t) ≤ 0, then it follows from (2.8) that ur (r, t) can be made as large as we please.

This gives a contradiction to urr (r, t) ≤ 0 since u (r, t) can be made as large as we wish.

Thus, u is concave up near ∂B. Because tb is finite, it follows from Theorem 2.3 that u

blows up on ∂B only. �

3. N ≤ 2. In the sequel, we assume that f (u) ≥ κup, where κ and p are positive

constants such that p > 1. Let

I (x, t) =

∫
∂B

g (x, t; ξ, 0) dSξ.
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Lemma 3.1 of Chan and Tragoonsirisak [4] states that for t ≥ 1 and any x ∈ B̄,

(4π)
−N/2

e−R2

ωNRN−1t−N/2 ≤ I (x, t) ≤ (4π)
−N/2

ωNRN−1t−N/2, (3.1)

where ωN denotes the surface area of an N -dimensional unit sphere.

Theorem 3.1. If N ≤ 2, then for any α and any ψ (x), the solution u of the problem

(1.1) always blows up in a finite time.

Proof. Let

h (x) =
e−|x|2

πN/2
.

We note that h (x) > 0, h (x) → 0 as |x| → ∞,

∫
RN

h (x) dx =

∫ ∞

−∞

e−x2
1

√
π
dx1 · · ·

∫ ∞

−∞

e−x2
N

√
π

dxN = 1,

∫
∂B

h (x) dSx =
e−R2

πN/2

∫
∂B

dSx =
e−R2

ωNRN−1

πN/2
,∫

B̄

h (x) dx <

∫
RN

h (x) dx = 1,

�h =
4e−|x|2 |x|2

πN/2
− 2Nh (x) ≥ −2Nh (x) . (3.2)

Let

F (t) =

∫
RN

u (x, t)h (x) dx.

Since u is the solution of the problem (1.1), F (t) may be regarded as a distribution.

Thus,

F ′ (t) =

∫
RN

ut (x, t)h (x) dx

=

∫
RN

(
�u (x, t) + α

∂χB (x)

∂ν
f(u (x, t))

)
h (x) dx

≥
∫
RN

�u (x, t)h (x) dx+ ακ

∫
RN

∂χB (x)

∂ν
up (x, t)h (x) dx

=

∫
RN

�u (x, t)h (x) dx+ ακ

∫
∂B

up (x, t)h (x) dSx.
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Using Green’s second identity and (3.2), we have∫
RN

� u (x, t)h (x) dx

= lim
R̃→∞

∫
|x|<R̃

�u (x, t)h (x) dx

= lim
R̃→∞

∫
|x|<R̃

u (x, t)� h (x) dx

=

∫
RN

u (x, t)� h (x) dx

≥ −2N

∫
RN

u (x, t)h (x) dx

= −2NF (t) .

From (2.6),

F (t) ≤ M (t)

∫
RN

h (x) dx = M (t) .

Thus, ∫
∂B

up (x, t)h (x) dSx = Mp (t)

∫
∂B

h (x) dSx

≥ F p (t)

∫
∂B

h (x) dSx

=
e−R2

ωNRN−1F p (t)

πN/2
.

Hence,

F ′ (t) + 2NF (t) ≥ ακe−R2

ωNRN−1

πN/2
F p (t) .

Solving this Bernoulli inequality, we obtain

F 1−p (t) ≤ ακe−R2

ωNRN−1

2NπN/2
+ Ce2N(p−1)t,

where C is to be determined. We can choose for t̃ ≥ 0,

C =

(
F 1−p

(
t̃
)
− ακe−R2

ωNRN−1

2NπN/2

)
e2N(1−p)t̃.

Thus for t > t̃ ≥ 0,

F p−1 (t) ≥
[
ακe−R2

ωNRN−1

2NπN/2
+

(
F 1−p

(
t̃
)
− ακe−R2

ωNRN−1

2NπN/2

)
e2N(p−1)(t−t̃)

]−1

.

(3.3)

We would like to show that there exists t̃ such that

F 1−p
(
t̃
)
− ακe−R2

ωNRN−1

2NπN/2
< 0. (3.4)
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From (2.2) and (2.6),

u (x, t) ≥ ακ

∫ t

0

∫
∂B

g (x, t; ξ, τ )up (ξ, τ ) dSξdτ

= ακ

∫ t

0

∫
∂B

g (x, t; ξ, τ )Mp (τ ) dSξdτ .

For t > 1,

u (x, t) ≥ ακ

∫ t−1

0

Mp (τ )

∫
∂B

g (x, t; ξ, τ )dSξdτ.

Since u is a nondecreasing function of t, we have Mp (τ ) ≥ Mp (0) > 0. Thus,

u (x, t) ≥ ακMp (0)

∫ t−1

0

∫
∂B

g (x, t; ξ, τ )dSξdτ

= ακMp (0)

∫ t−1

0

I (x, t− τ ) dτ

= ακMp (0)

∫ t

1

I (x, θ) dθ.

Using (3.1), we have for any x ∈ B̄,

u (x, t) ≥ ακMp (0) (4π)
−N/2

e−R2

ωNRN−1

∫ t

1

θ−N/2dθ

=

{
2ακMp (0) (4π)

−N/2
e−R2

ωNRN−1
(
t1/2 − 1

)
if N = 1,

ακMp (0) (4π)−N/2 e−R2

ωNRN−1 ln t if N = 2.

Thus, there exists t̃ such that for t ≥ t̃,

u (x, t) >

(
2NπN/2

)1/(p−1)

α1/(p−1)
(
κe−R2ωNRN−1

)1/(p−1) (∫
B̄
h (x) dx

)
for any x ∈ B̄. Then,

F p−1
(
t̃
)
=

(∫
RN

u
(
x, t̃

)
h (x) dx

)p−1

≥
(∫

B̄

u
(
x, t̃

)
h (x) dx

)p−1

>

[ (
2NπN/2

)1/(p−1)

α1/(p−1)
(
κe−R2ωNRN−1

)1/(p−1) (∫
B̄
h (x) dx

)
]p−1 (∫

B̄

h (x) dx

)p−1

=
2NπN/2

ακe−R2ωNRN−1
,

which gives (3.4). From (3.3), there exists a finite time tb
(
> t̃

)
such that limt→tb F (t) =

∞. Thus, u (x, t) blows up in a finite time. �
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4. N ≥ 3. In this section, we show that the blow-up behavior for N ≥ 3 is completely

different from that for N ≤ 2.

Theorem 4.1. (i) For N ≥ 3, if α is sufficiently small, then the solution u of the problem

(1.1) exists globally.

(ii) For N ≥ 3, if α is sufficiently large, then the solution u of the problem (1.1) blows

up in a finite time.

Proof. (i) Since f ′(u) > 0, we have f(u) ≤ f(2M (0)) for u(x, t) ≤ 2M (0). Thus for

u(x, t) ≤ 2M (0), it follows from (2.2) and
∫
RN g (x, t; ξ, 0)dξ = 1 (cf. Evans [5, p. 46])

that

u (x, t) ≤ M (0)

∫
RN

g (x, t; ξ, 0) dξ + α

∫ t

0

∫
∂B

g (x, t; ξ, τ ) f (2M (0)) dSξdτ

= M (0) + αf (2M (0))

∫ t

0

∫
∂B

g (x, t; ξ, τ )dSξdτ .

Let η = (ξi − xi) /(2
√
t− τ). Using

∫∞
−∞ e−η2

dη =
√
π, we have∫

∂B

g (x, t; ξ, τ )dSξ ≤ 1

2
√
π (t− τ )

1/2
.

For 0 < t ≤ 1, we have

u (x, t) ≤ M (0) +
αf (2M (0))

2
√
π

∫ t

0

dτ

(t− τ )
1/2

≤ M (0) +
αf (2M (0))√

π
.

For t > 1, and for any b ∈ ∂B,

u (x, t) ≤ u (b, t)

≤ M (0)+αf(2M (0))

(∫ t−1

0

∫
∂B

g (b, t; ξ, τ )dSξdτ+

∫ t

t−1

∫
∂B

g (b, t; ξ, τ )dSξdτ

)

≤ M (0) + αf(2M (0))

(∫ t−1

0

I (b, t− τ ) dτ +

∫ t

t−1

dτ

2
√
π (t− τ )1/2

)

= M (0) + αf(2M (0))

(∫ t

1

I (b, θ) dθ +
1√
π

)

≤ M (0) + αf(2M (0))

(∫ ∞

1

I (b, θ) dθ +
1√
π

)
. (4.1)

Using (3.1), we have for N ≥ 3,∫ ∞

1

I (b, θ) dθ ≤ (4π)−N/2 ωNRN−1

∫ ∞

1

θ−N/2dθ

=
(4π)

−N/2
ωNRN−1

N/2− 1
< ∞.

Thus, we can choose α (> 0) sufficiently small such that the right-hand side of (4.1) is

less than or equal to 2M (0). Hence, the solution u of the problem (1.1) exists globally.
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(ii) Let t̃ = 0 in (3.3). We have

F p−1 (t) ≥
[
ακe−R2

ωNRN−1

2NπN/2
+

(
F 1−p (0)− ακe−R2

ωNRN−1

2NπN/2

)
e2N(p−1)t

]−1

.

We note that F (0) =
∫
RN ψ (x)h (x) dx. We would like to choose α sufficiently large such

that F 1−p (0)− ακe−R2

ωNRN−1/(2NπN/2) < 0. This can be accomplished by choosing

α >
2NπN/2F 1−p (0)

κe−R2ωNRN−1
.

Thus, there exists a finite time tb such that limt→tb F (t) = ∞ and hence u (x, t) blows

up in a finite time. �
Let k denote the positive constant

∫
RN ψ (ξ) dξ. Then,

∫
RN

exp

(
−|x− ξ|2

4t

)
ψ (ξ) dξ ≤

∫
RN

ψ (ξ) dξ = k.

We have ∫
RN

g (x, t; ξ, 0)ψ (ξ) dξ =
1

(4πt)
N/2

∫
RN

exp

(
−|x− ξ|2

4t

)
ψ (ξ) dξ

≤ k

(4πt)N/2
,

which tends to 0 as t → ∞. This shows that the initial data do not affect the solution

as t tends to infinity. The fundamental solution (cf. Evans [5, pp. 22 and 615]) of the

Laplace equation for N ≥ 3 is given by

G (x) =
Γ
(
N
2 + 1

)
N (N − 2)πN/2

1

|x|N−2
.

The proof of the following result is the same as that of Theorem 4.2 of Chan and Tra-

goonsirisak [4].

Theorem 4.2. If u (x, t) ≤ C for some positive constant C, then u (x, t) converges from

below to a solution U (x) = limt→∞ u (x, t) of the nonlinear integral equation,

U (x) = α

∫
∂B

G (x− ξ) f(U (ξ))dSξ. (4.2)

The next result shows that there exists a critical value for α.

Theorem 4.3. For N ≥ 3, there exists a unique α∗ such that u exists globally for α < α∗,

and u blows up in a finite time for α > α∗.

Proof. To show that the larger the α, the larger the solution, let α > β, and consider

the sequence {vn} given by v0 (x, t) = ψ (x), and for n = 0, 1, 2, . . .,

vn+1 (x, t) =

∫
RN

g (x, t; ξ, 0)ψ (ξ) dξ + β

∫ t

0

∫
∂B

g (x, t; ξ, τ ) f (vn (ξ, τ )) dSξdτ .
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Similar to the construction of the sequence {un} in Ω in the proof of Theorem 2.4, we

obtain

v (x, t) = lim
n→∞

vn (x, t)

=

∫
RN

g (x, t; ξ, 0)ψ (ξ) dξ + β

∫ t

0

∫
∂B

g (x, t; ξ, τ ) f (v (ξ, τ )) dSξdτ.

Since un > vn for n = 1, 2, 3, . . ., we have u ≥ v. Hence, the solution u is a nondecreasing

function of α. It follows from Theorem 4.1 that there exists a unique α∗ such that u

exists globally for α < α∗ and u blows up in a finite time for α > α∗. �
We note that the critical value α∗ is determined as the supremum of all positive values

α for which a solution U of (4.2) exists. The proof of the next result (showing that the

solution u exists globally when α = α∗) for the case f (0) > 0 is a modification of that for

Theorem 7 of Chan and Jiang [1] for a degenerate one-dimensional problem in a bounded

domain.

Theorem 4.4. For N ≥ 3,

α∗ =
(N − 2) π(N−3)/2

RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

sup
M(0)<s<∞

(
s

f (s)

)
, (4.3)

where for N = 3,
∏N−3

i=1

∫ π

0
sini ϕdϕ = 1. Furthermore, u does not blow up in infinite

time.

Proof. From (2.6), U (x) = limt→∞ u (x, t) attains its maximum at b ∈ ∂B. From

(4.2),

U (b) = α

∫
∂B

G (b− ξ) f (U (b)) dSξ.

Thus,

α =

(
1∫

∂B
G (b− ξ) dSξ

)(
U (b)

f (U (b))

)
,

and hence,

α∗ =

(
1∫

∂B
G (b− ξ) dSξ

)
sup

M(0)<s<∞

(
s

f (s)

)
.

From the proof of Theorem 4.5 of Chan and Tragoonsirisak [4],

∫
∂B

G (b− ξ) dSξ =

RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

(N − 2)π(N−3)/2
.

Thus, we have (4.3).

Let us consider the function ϕ (s) = s/f (s).

Case 1. If f (0) = 0, then we claim that ϕ (s) is a decreasing function for s > 0. Since

f is a convex function (cf. Stromberg [11, p. 199]) in (0,∞), we have for any 0 < s < s2,

f ((1− t) s+ ts2) ≤ (1− t) f (s) + tf (s2) , t ∈ [0, 1] .

Letting s → 0, we have

f (ts2) ≤ tf (s2) .
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Let t = s1/s2, where 0 < s1 < s2. Then,

f (s1) ≤
s1
s2

f (s2) ,

which gives

ϕ (s2) ≤ ϕ (s1) ,

implying that ϕ (s) is a nonincreasing function of s (> 0). It follows from (4.3) that

α∗ =
(N − 2)π(N−3)/2

RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

(
M (0)

f (M (0))

)
. (4.4)

Case 2. If f (0) > 0, then ϕ (s) > 0 for s > 0, and ϕ (0) = 0 = lims→∞ ϕ (s).

We have ϕ′ (s) = (f (s)− sf ′ (s)) /f2 (s). Therefore, a relative maximum or minimum

occurs at s̃ ∈ (0,∞), where f (s̃) = s̃f ′ (s̃). Since ϕ′′ (s̃) = −s̃f ′′ (s̃) /f2 (s̃) < 0, ϕ (s)

attains its absolute maximum when ϕ (s̃) = 1/f ′ (s̃). Thus, sup0<s<∞ (s/f (s)) occurs

at s = s̃ ∈ (0,∞). We note that the function ϕ (s) is a strictly increasing function for

0 ≤ s < s̃, and a strictly decreasing function for s > s̃. Thus, if M (0) < s̃, then

α∗ =
(N − 2)π(N−3)/2

RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

(
s̃

f (s̃)

)
. (4.5)

If M (0) ≥ s̃, then it follows from ϕ (s) being a strictly decreasing function for s > s̃ that

ϕ (s) attains its supremum at M (0). Thus,

α∗ =
(N − 2)π(N−3)/2

RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

(
M (0)

f (M (0))

)
. (4.6)

From (4.4) to (4.6), α∗ occurs at some finite positive value. Hence for α ≤ α∗, u exists

globally. Since u blows up in a finite time for α > α∗, u does not blow up in infinite

time. �
For an illustration, we give below two examples on calculating α∗ for some given

functions f and some given initial data on the surface of the ball M (0).

Example 4.5. Let f (u) = up. Since f (0) = 0, it follows from (4.4) that

α∗ =
(N − 2)π(N−3)/2

Mp−1 (0)RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

.
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Example 4.6. Let f (u) = (u+ 1)
p
. Since f (0) > 0, we have s̃ = 1/ (p− 1). From

(4.5) and (4.6),

α∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p− 1)
p−1

(N − 2)π(N−3)/2

ppRΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

if M (0) <
1

p− 1
,

M (0) (N − 2)π(N−3)/2

(M (0) + 1)p RΓ
(
N−1
2

)N−3∏
i=1

∫ π

0
sini ϕdϕ

if M (0) ≥ 1

p− 1
.
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