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Abstract: Currently, the cloud computing systems use simple key-value data processing, which cannot support similarity search

effectively due to lack of efficient index structures, and with the increase of dimensionality, the existing tree-like index structures could

lead to the problem of “the curse of dimensionality”. In this paper, a novel VF-CAN indexing scheme is proposed. VF-CAN integrates

content addressable network (CAN) based routing protocol and the improved vector approximation file (VA-file) index. There are two

index levels in this scheme: global index and local index. The local index VAK-file is built for the data in each storage node. VAK-file

is the k-means clustering result of VA-file approximation vectors according to their degree of proximity. Each cluster forms a separate

local index file and each file stores the approximate vectors that are contained in the cluster. The vector of each cluster center is stored

in the cluster center information file of corresponding storage node. In the global index, storage nodes are organized into an overlay

network CAN, and in order to reduce the cost of calculation, only clustering information of local index is issued to the entire overlay

network through the CAN interface. The experimental results show that VF-CAN reduces the index storage space and improves query

performance effectively.

Keywords: Cloud computing, index, similarity search, clustering, vector approximation file (VA-file), content addressable network

(CAN).

1 Introduction

With the rapid development of the computer and Inter-

net technology, cloud computing, as a new computing plat-

form, has emerged[1, 2]. Though the unified definition of

cloud computing has not been confirmed, it is considered as

a revolution in IT industry and has attracted great interest

from both academic and industrial communities. Due to the

commercial potential of the cloud computing, many com-

panies are increasing their investments in cloud research,

such as Google′s cloud computing platform, Amazon elas-

tic compute cloud (EC2)[3] and IBM′s blue cloud[4]. These

cloud computing systems have a large number of computer

nodes, store vast amounts of data, support large-scale data

processing and retrieval applications, and provide extensi-

ble and reliable service to the end users.

In the cloud computing systems, data storage is

mostly dependent on the underlying distributed file system

(DFS)[5,6] to store data and adopts key-value-based[7−9]

way to manage massive data. Dataset is divided into data

chunks with equal size in DFS, and each data chunk is dis-

tributed in the computing node of cloud. Key-value model

employs a simple key/value way to store data, where both

key and value are arbitrary byte strings. This model does

not analyse the specific content of data, which enables it to
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handle almost all types of data and support high scalability

and mass data processing. However, it can only provide

key-based insertion and query operations, which cannot ef-

fectively support complex queries. In the real world, users

query operations are often not simple point query. For ex-

ample, in YouTube, each video could be stored in a key-

value store with a unique video ID as the key and video in-

formation, including title, upload time and number of views

as the value[10]. Although the video can be efficiently re-

trieved via video ID, sometimes the end user wants to find

videos with given titles or within a date range. Therefore,

this storage model cannot support complex queries effec-

tively, such as range query or similarity query, which is dif-

ficult to support personalized on-demand retrieval in cloud

systems. Some tree-based indexing structures are proposed

to support range query for data with different dimensions,

however, they cannot support similarity search effectively

and easily lead to the “curse of dimensionality” as the di-

mensionality increases.

This paper presents VF-CAN, an indexing structure for

supporting similarity search. It combines content address-

able network (CAN-based)[11] routing protocol and the im-

proved vector approximation file (VA-file)[12] index. VF-

CAN has two index levels: global index and local index.

The data in cloud system are divided into data chunks and

then stored on different computer nodes. To realize efficient

local data management, each computer node builds its lo-

cal index by an improved VA-file, named VAK-file. First

the data are quantified and compressed into approximation

vectors of VA-file, and then the approximation vectors are

clustered by k-means. To avoid performance bottleneck, the
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global index are distributed over each storage node which

is organized into an overlay network CAN. Since the num-

ber of cluster centers has reduced significantly, it is feasible

that only cluster information of local index is issued into

the overlay network through CAN interface, which reduces

the estimated cost of different index publishing strategies

and improves query performance.

2 Related work

Indexing structure in the cloud environment can be di-

vided into one-dimensional index and multi-dimensional

index. For single-dimensional data, we can build one-

dimensional index, such as B-tree index and hash index.

A scalable distributed B-tree is proposed in order to sup-

port large scale data index in a cluster[13]. In this sys-

tem, computer nodes can be divided into server nodes and

client nodes. B-tree is distributed across servers, the client

lazily replicates all inner B-tree nodes, and the servers syn-

chronously maintain a B-tree version table for validation.

The scalable distributed B-tree system uses distributed

transactions to make changes to B-tree nodes, and B-tree

nodes can be migrated online between servers for load-

balancing. The main advantages of this index are mas-

sive scalability, low cost, fault-tolerance and manageability.

But its weakness is that the client nodes need to lazily repli-

cate all the corresponding internal nodes, which incurs high

maintenance cost. A general indexing framework for cloud

computing system is proposed in [14], and there are three

layers in this framework. In the middle layer, computational

resources are provided to users. Each node builds local in-

dex for the data stored in it to speed up the query, and

establishes global index by selecting and publishing part of

local indexes to overlay network. In the lower layer, process-

ing nodes are organized in a structured overlay for routing

and facilitating node′s joining and leaving. And in the up-

per layer, it provides a data access interface to the user′s
applications based on the global index. The users can select

different data access methods for different queries. Another

hierarchical index structure is presented in [10] to process

one-dimensional data in the cloud. First of all, it builds

B-tree index for the local data stored in each node. Then,

all the nodes are organized into a structured network BA-

TON. In addition, it proposes an adaptive algorithm to

select B+-tree node to publish according to query patterns.

This index structure can support range query and improve

query efficiency. Both of the index schemes in [10, 14] use

two index levels, and build local index for the data stored in

the slave nodes and global index in the server nodes. Dur-

ing querying, they locate the local index through the global

index, and then search data in the slave nodes. Though

these can reduce query time, they cannot support multi-

dimensional query effectively. Unlike tree index structure,

bitmap index is affected slightly by data growth, therefore,

a bitmap-based indexing mechanism is proposed in [15]. It

is built for the local data, with BATON to organize its

nodes. The advantage of this scheme is that bitmap in-

dexes can improve query efficiency, however, it is better

than the B-tree index only when there are a lot of dupli-

cate values in a column and when to use “and” and “or”

operations. Reference [16] proposed a regional bitmap in-

dex, which is a secondary index for data management in

cloud computing environment. This index structure com-

bines the advantages of centralized and distributed logical

secondary indexing structures, and it has good scalability.

Several indexing structures for multi-dimensional data

are proposed in [17−21], which use two index levels. effi-

cient multi-dimensional index with node cube (EMINC)[17]

uses the combination of R-tree and KD-tree to organize

data and develops the node bounding technique to reduce

query processing cost on the cloud platform. Moreover, an

index update strategy based on cost estimation is also pro-

posed to reduce the cost of index publishing. However, in

the relative nodes locating phase, EMINC chooses all the

slave nodes in the cluster as the candidates of the query,

which leads to high cost. RT-CAN[18] introduces an effi-

cient multi-dimensional index structure to support complex

queries in a cloud system based on the routing protocol of

CAN and R-tree indexing scheme. RT-CAN uses R-tree to

build index for the data that are locally stored and CAN to

organize storage nodes. Furthermore, it proposes a query-

conscious cost model to select beneficial local R-tree nodes

for publishing. But the query performance of R-tree will

decrease significantly for high-dimensional data manage-

ment. In addition, an extensible framework for implement-

ing database management systems (DBMS)-like indexes in

the cloud is proposed in [19] and it defines a methodol-

ogy to map various types of data and peer to peer (P2P)

overlays to a generalized Cayley graph structure which can

support a variety of index structure flexibly, such as hash

index and B-tree index. Finally, an adaptive strategy to

optimize index performance is proposed. A novel quad-

tree based multi-dimensional index structure is proposed

in [20] for efficient data management and query processing

in cloud computing systems. It also adopts two index lev-

els. Each computer node builds local quad-tree index to

manage the data residing in it. And all computer nodes

are organized in a chord-based overlay network. Reference

[21] introduces a complemental clustering index: CCIndex,

which creates several complemental clustering index tables

for performance, leverages region-to-server information to

estimate result size, and supports incremental data recov-

ery. CCIndex can support multi-dimensional range queries

and solve the issues of high performance, low space over-

head, and high reliability.

The indexes in cloud environment mentioned above are

mainly a tree-based structure that will incur “the curse of

dimensionality” problem with the increases in dimension-

ality. In traditional distributed computing, Weber et al.[12]

proposed VA-file index to improve query efficiency by quan-

tifying and compressing the high-dimensional data and im-

plemented it. The storage space of VA-file is much smaller

than that of the original high-dimensional data. VA-file

has two significant advantages: first, the size of index file

is much smaller than the original file, so disk input/output

(I/O) cost is greatly reduced during a sequential scan; sec-

ond, it reduces the computational complexity. However it

must scan the entire approximation vector during query-
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ing, thus the cost becomes relatively large when data vol-

ume is huge. VAR-tree is presented in [22] to solve “the

curse of dimensionality” problem. It integrates VA-file and

R-tree, and adopts R-tree to manage the approximations.

A k-nearest neighbor (KNN) search algorithm is also pro-

posed to perform similarity in a VAR-tree, which improves

retrieval performance. Inspired by [22], we present a two

level index structure by improving VA-file and integrating

CAN to support similarity search.

3 VF-CAN index

The index structure of VF-CAN has two levels: global

index level and local index level. Local index is VAK-file,

which is built for the data stored in each storage node.

VAK-file index is the improvement of VA-file index by using

k-means to cluster VA-file vectors according to their degree

of proximity. The global index is built on top of the local

index and it includes cluster information of the local index.

Each storage node issues its local cluster center information

and IP address to the overlay network through the interface

of CAN. The key problem of the VF-CAN index lies in how

to build local index and issue local index into global index.

3.1 System architecture

In our cloud environment, dataset is divided into many

data chunks according to horizontal partitioning scheme.

These data chunks are distributed over different servers in

the data centers, and each server is both a storage node

and an overlay network node. The storage node is a node

in distributed storage system of the cloud data center for

storing original data chunks, local index and part of the

global index. In order to avoid the problem of performance

bottlenecks, the global index is distributed in storage nodes.

Meanwhile, in order to facilitate management, each storage

node is organized with a structure overlay CAN to manage

global index. Thus the storage node is also an overlay net-

work node logically corresponding to a partition of CAN.

Fig. 1 shows the architecture of the system.

Fig. 1 The system architecture

In Fig. 1, in order to facilitate search, each storage node

builds VAK-file index for its local data and shares a portion

of its storage space to maintain global index. The cluster

center information from local index is published into the

overlay network via the interface of CAN to form the global

index. The format of published information is (ip, uj),

where ip is IP address of the corresponding storage node

and uj is the corresponding cluster center of j-th cluster in

local index.

Similarity query processing can be divided into two

phases. In the first phase, the global index is looked up

by CAN routing mechanism and the entries that satisfy the

query are returned. In the second phase, based on the re-

ceived index entries, the query is forwarded to the storage

node via the IP address, on which the corresponding cluster

uj in local index is found out through cluster center infor-

mation file. At last, the top-K data items which are closest

touj in the cluster file would be returned.

3.2 Local index VAK-file

As multimedia data become the vector data after ab-

straction, “similarity search” has converted into similar vec-

tors query of high-dimensional space. VA-file improves

query performance by quantifying and compressing the

high-dimensional data, however it must scan the entire ap-

proximation vectors during querying, which will result in

high cost when data volume is large. In this paper, VA-file

approximation vectors are clustered by k-means according

to their degree of proximity. Each cluster forms a separate

index file which stores the approximate vectors contained

in the cluster, and the cluster center is stored in the cluster

center information file of the corresponding storage node.

In this way, the query of the second phase will only be for-

warded to the corresponding cluster without scanning the

entire approximate vectors, which improves the query effi-

ciency.

Assuming that the dimensionality of initial vector data

which are abstracted from multimedia data is n, and there

are m records in all. The algorithm to establish the local

index VAK-file is described as follows:

Algorithm 1. The establishment of local index VAK-file

Step 1. Quantify and compress the initial vector data,

as VA-file, assuming that the approximate vector set after

compression is V = {V1, · · · , Vm}.
Step 2. Cluster the approximate vector set V .

1) Select k approximation vectors randomly from m

approximation vectors as initial cluster centers, namely:

u1, u2, · · · , uk ∈ V .

2) For the rest of the m-k approximation vectors, calcu-

late their distance from the cluster centers by the Euclidean

distance:

dij = sqrt(
n∑

r=1

(Vir − ujr)
2) (1)

where 1 � i � m − k, 1 � j � k, 1 � r � n. dij indicates

the distance between the i-th approximation vector and the

j-th cluster center vector. Vir denotes the r-th dimensional

data of the i-th approximation vector, and ujr denotes the



112 International Journal of Automation and Computing 11(1), February 2014

r-th dimensional data of the j-th approximation vector.

3) Assign each vector to its nearest cluster; for each ap-

proximate vector, calculate the cluster which should belong

to

ci = arg max
j

(dij) (2)

here, 1 � j � k. ci represents the cluster that is nearest to

the approximate vector Vi.

4) Update each cluster center uj :

uj =
1

Nj

Nj∑

i=1

Vij (3)

where 1 � i � Nj , Nj is the number of approximate vectors

in the j-th cluster, uj indicates the j-th cluster center, Vij

is the i-th approximate vector of the j-th cluster.

5) Repeat steps 2) – 3) until the standard measure func-

tion begins to converge. Here we use mean-square deviation

as standard measure function, as follows:

σj = sqrt

⎛

⎝ 1

Nj

Nj∑

i=1

(Vi − uj)
2

⎞

⎠ (4)

where σj indicates the mean-square deviation of the j-th

cluster. Nj is the number of approximate vectors belonging

to the j-th cluster.

Step 3. The cluster center and the number of each clus-

ter are stored in the cluster center information file.

The following is an example of local index. Fig. 2 (a)

shows the initial vector data which are abstracted from

multimedia data. Dimensionality n is 2 and the number

of records is 6.

Fig. 2 Example of approximations

Fig. 2 (b) shows the approximate vectors after compres-

sion according to Step 1 of algorithm when the number of

clusters is k = 2.

Fig. 3 shows the clustering results of the approximate vec-

tors in Fig. 2 according to Step 2.

In Fig. 3 (a), initial data are clustered into two classes.

Fig. 3 (b) shows two cluster files u1 and u2 that store the

corresponding approximate vectors, and each cluster corre-

sponds to a cluster center. The cluster center information

file is displayed in Table 1.

Fig. 3 Example of approximations clustering

Table 1 Example of cluster center information file

Cluster center Cluster number

〈0.75, 2.5〉 u1

〈3.0, 0.5〉 u2

There are two clusters in Table 1 which include the center

and number of each cluster.

3.3 Global index

1) Content addressable network (CAN)

VF-CAN organizes storage nodes into an overlay net-

work CAN for better routing, because none of the other

overlays except CAN can support multi-dimensional query

naturally. CAN[11] is a scalable, self-organized structured

peer-to-peer overlay network. A d-dimensional CAN par-

titions a virtual d-dimensional Cartesian coordinate space

containing all nodes, and assigns each node a d-dimensional

zone. A node in CAN maintains data mapped to its zone.

Key of each data is mapped to a point P in the coordinate

space based on distributed hash table (DHT). Data item

(key, value) is stored in the CAN node whose zone contains

the point P. Each node in CAN maintains a routing table

which contains the IP address that is adjacent to this node.

According to this routing table, user′s query can be routed

between any two points of the coordinate space. Once node

gets a query for a certain key, first it maps the data item

via its key to a point P in virtual coordinate space based

on DHT, the query destination address is the coordinate of

P ; and then it routes the query to a neighbor whose zone is

nearest to the point P , the query result will be returned by

the neighbor. In a d-dimensional CAN with N nodes, the

average number of routing hops for a query is d
4
N

1
d , and

each node maintains 2d neighbors in its routing table[18].

2) Publishing in the VF-CAN index

The size of local index is proportional to the amount of

data stored. We cannot issue all the approximate vectors
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into global index in order to reduce maintenance cost. In

our work, each cluster corresponds to a cluster center, and

the number of cluster centers is significantly less than the

total number of approximate vectors, thus only the cluster

center information of the local index is issued. The process

is as follows:

Each storage node, in accordance with the CAN node

mapping algorithm, maps the clustering center uj , the key

of (ip, uj), to a point P in the coordinate space based on

DHT, that is P = hashCAN(uj), then (ip, uj) is stored

in the CAN node whose zone contains the point P . Once

node gets a query for a certain uj , it can use the same

hash function to find corresponding point P according to

uj , and then get the relevant value which corresponds to uj

from the node whose zone contains P . All the clustering

information of all storage nodes is issued, so we can locate

every vector of local index according to the global index.

For example, in Fig. 3 (b) and Table 1:

The first cluster center is 〈0.75, 2.5〉, and the second is

〈3.0, 0.5〉, we issue (ip1, 〈0.75, 2.5〉) and (ip1, 〈3.0, 0.5〉) to

global index, where ip1 is the IP address of corresponding

storage node. Suppose the 2-dimensional coordinate space

is divided into nine areas, as shown in Fig. 4, virtual coor-

dinate space of each partition is dynamically allocated to

each node of CAN. The index publishing strategy above

is that the clustering center information of local index is

mapped to a node whose zone includes the center area. For

example, the clustering center of (ip1, 〈0.75, 2.5〉) is 〈0.75,
2.5〉, through P = hashCAN(〈0.75, 2.5〉), it would get point

P which corresponds to node A in Fig. 4. So (ip1, 〈0.75,
2.5〉) would be published to node A whose zone contains

the area of 〈0.75, 2.5〉. In the same way, (ip1, 〈3.0, 0.5〉)
would be issued to the node B.

Fig. 4 2-dimensional virtual coordinate

3.4 Comparison of several indexes

In this section, we will compare VF-CAN against sev-

eral typical indexes. Existing index structures for cloud

environment are mostly based on the B-tree, KD-tree and

R-tree.

The B-tree is a balanced m-way search tree which is an

extension of a binary search tree. A B-tree of order m has

the following characteristics: 1) Each node has m children

at most. 2) The root node has at least two children if it is

not a leaf node. 3) Each non-leaf node (except root) has

�m/2� children at least. 4) Each path from the root to the

leaf has the same length which means that all leaf nodes are

at the same level. The main advantage of B-tree is that it is

fast and simple; however it cannot handle multi-dimensional

data.

KD-tree is the advancement of the binary tree in multi-

dimensional data space, and it is the K-dimensional binary

tree. All the non-leaf nodes can be regarded as implicitly

generating a hyperplane that divides the space into two

parts, known as half-spaces. Points on the left of this hy-

perplane represent the left subtree of that node, and points

on the right of the hyperplane represent the right subtree.

But as an unbalanced tree, with the increase of the amount

of data, the height of KD-tree increases rapidly which is

unsuitable for the query of vast amounts of data.

R-tree family is a kind of balanced tree with a hierar-

chical structure similar to B-tree, which mainly includes

R+-tree and R*-tree. The data stored in the R-tree are the

minimum bounding rectangle (MBR) of these data, instead

of the original data. The shortcoming of R-tree is that it is

prone to cause the “curse of dimensionality” in processing

high-dimensional data and it cannot guarantee the success

with one path search during lookup operation.

VF-CAN in this paper first quantifies and compresses

the high-dimensional data with bit strings according to the

method of VA-file. Each dimension of data space is quanti-

fied into a number of intervals which are separated by grid

lines and indicated by bit strings with a small space. The

corresponding bit strings of each dimension are connected as

approximation vectors to represent high-dimensional data.

After that, approximation vectors are clustered by k-means

according to their similarity degree. The quantifying and

compressing of high-dimensional data reduce the data stor-

age space significantly, and the clustering of approximation

vectors improves query performance.

4 KNN query in VF-CAN

The range query and KNN query of multi-dimensional

data are collectively referred to as “similar” query[22], how-

ever, the KNN query is more popular in the majority of

practical applications. Given a KNN query Query(key,K),

our algorithm will return the top-K data items which are

closest to key. In order to distinguish the same parame-

ters k between k-means algorithm and KNN query, we use

lowercase k in k-means and uppercase K in KNN.

As discussed before, we locate the local index according

to global index, and then the query is routed to the cor-

responding storage node and processed locally, which can

reduce search time significantly.

The algorithm is as follows:

Algorithm 2. KNN query processing in VF-CAN

Step 1. Calculate the approximate vector V ′ of vector

data key for the query.

Step 2. Query the global index according to CAN rout-
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ing mechanism, calculate the distance d between approxi-

mate vector V ′ and each cluster center, and return cluster

Ci (ip, uj) of the minimum distance.

Step 3. Locate the corresponding storage node and clus-

ter according to the IP address and uj of Ci (ip, uj), and

then do the KNN query in cluster uj .

Step 4. If the number of the returned data items is

less than K, then jump to Step 2 and select the subopti-

mal cluster and continue to query. Otherwise, the query

completes.

5 Experiments and results analysis

The establishment of index is to accelerate the speed of

data query, so query efficiency is an important indicator

to reflect index structure performance. In this section, we

evaluate the performance of our scheme from four aspects:

the size of index structure file, query response time, query

throughput and the quality of query results. The size of

index structure file reflects the space cost. Query response

time and throughput are used to evaluate the speed and

scalability of this scheme. The quality of query results re-

flects the similarity between query results and the query

data. In the following experiments, we will compare the

performance of our VF-CAN with that of the original VA-

file index and RT-CAN, a typical index of the tree structure

existing in cloud environment.

Our testing infrastructure includes 3 machines which are

connected together to simulate cloud computing platforms

in laboratory LAN. One machine plays the role of mas-

ter node which is responsible for the start of the pro-

gram and task allocation, the other two simulate 32 to

128 slave nodes which are responsible for program exe-

cution and the results will be returned to master node.

Communication bandwidth is 10 Mbps, each machine has

a 2.40 Hz Inter(R) Core(TM) i5 CPU, 2.00 GB of mem-

ory, and a 320 G disk. We use Java 1.0.0.17 to implement

our scheme. The test data is high dimensional feature

database ColorHistogram.asc[23] extracted from the Corel

image set. It is a general dataset for multi-dimensional

data management. The dimensionality of the dataset is 32

with a total of 68 040 records. It can be downloaded from

http://kdd.ics.uci.edu.

5.1 Size of index file

In order to compare the size of the index file, we extract

10 000 rows from the test data to form data file Vector1.dat,

and extract 68 040 rows to form file Vector2.dat. Table 2

shows the data file after extraction and the size information

of corresponding local index.

Table 2 File size corresponding to different index

structures (MB)

Index file Vector1.dat Vector2.dat

Original vector file 2.94 20.0

VA-file 0.44 3.02

VF-CAN 0.48 3.11

RT-CAN 4.74 32.2

Table 2 shows that the space occupied by the VF-CAN

is slightly larger than the VA-file, and this is because that

VF-CAN needs to store the cluster center information. But

the space occupied by the VF-CAN is much smaller than

RT-CAN index structure and the original file. Therefore, it

is easier to store it into memory to improve query efficiency.

5.2 Query response time

Response time is the time from submitting a query re-

quest to the results returned. It reflects the influence

of the index structure on the query speed, and is an

important indicator to evaluate index structure perfor-

mance. Therefore, in order to verify the response time

of VF-CAN, we randomly select the 2-dimensional, 5-

dimensional, 20-dimensional, 32-dimensional data from the

original database, and select 100 records as query samples.

Here, the number of nodes is set to 32, K in KNN is 50.

The average response time of 100 times query tests is shown

in Fig. 5.

Fig. 5 Response time with different dimensionalities

It can be seen in Fig. 5 that when data dimension is small,

the difference in three indexes′ response time is not obvious.

With the increasing of the dimensionality, query response

time of three different index structures all increases, but

the advantage of the VF-CAN is becoming more obvious,

which is due to the fact that VF-CAN does not need to scan

all of the vector data, and only query in the corresponding

cluster, therefore, its response time is shorter than that

of the VA-file and RT-CAN. In RT-CAN structure, with

the increasing of the dimensionality, the boundary rectan-

gle overlap of R-tree increases dramatically, which leads to

a rapid decrease in performance and larger increase in re-

sponse time.

5.3 Query throughput

Query throughput represents the number of queries pro-

cessed per second, which reflects the number of queries that

index structure can support. It is also an important factor

to evaluate the performance of index structure. In this sec-

tion, we compare the throughput of the KNN queries of

three index structures when the amount of data, value of

K in KNN, data dimensionality and the number of nodes

are different respectively. 100 records are randomly selected

from the database as query samples, and we use the aver-

age throughput of 100 times query tests on the basis of their

performance.
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First of all, in order to evaluate the performance of VF-

CAN in different data volume, we randomly select 500,

2 000, 10 000, 30 000, 50 000 data records from the 32-

dimensional original feature database, and compare the

throughput of three index structures when data quantity

gradually becomes larger. The experimental results are

shown in Fig. 6, where the number of nodes is 32, K in

KNN is 50.

Fig. 6 Corresponding throughput of different data size

As can be seen in Fig. 6, with the increase of data vol-

ume, the throughput of three different index structures all

decreases. Due to the overlap of bounding rectangle in R-

tree under high-dimensionality of data, RT-CAN′s perfor-

mance is the worst. When the amount of data is small,

we find that VA-file performs better than VF-CAN, which

is because the cost of scanning all data in VA-file is less

than that of VF-CAN which should cluster the vector data.

However, as the amount of data increases, the advantage of

VF-CAN is more and more obvious. It only queries in cor-

responding cluster without scanning all of the vector data,

thus the throughput is higher than that of the VA-file.

Secondly, in KNN query, the value of K has an impact

on query performance. So we select the 2-dimensional and

32-dimensional data from the original database respectively,

and compare the query throughput of three index structures

when K is 1, 10, 20, 30, 40, and 50, respectively. The

experimental results are shown in Fig. 7, where the node

number is set to 32.

We can see in Figs. 7 (a) and (b) that with the increase

of K, the throughput of three index structures all gradu-

ally reduces. This is because with the increase of K, query

space also increases and the amount of data needed to query

is larger. In Fig. 7 (a) corresponding to 32-dimensional

data, RT-CAN uses tree-based index structure, and will

cause “curse of dimensionality” in the high dimensional

case, so its performance is worse than that of VA-file and

VF-CAN. VF-CAN, which adopts clustering and two lev-

els index, does not need to scan all the vectors and sup-

port more queries in unit time, therefore, its performance

is better than that of the VA-file. Fig. 7 (b) shows that the

throughput of 2-dimensional data is better than that of 32-

dimensional data, but the trend of throughput in Figs. 7 (a)

and (b) are the same.

Then, we compare the throughput of three index struc-

tures with different number of nodes. When test data is the

32-dimensional feature database, the nodes number is 32,

64, 96, and 128, respectively. The experimental results are

shown in Fig. 8 below.

Fig. 7 Query throughput with different K

Fig. 8 Corresponding throughput of different node number

We can see in Fig. 8 that the query throughput of three

different index structures will all increase when the number

of nodes increases. VA-file uses a quantizing and compress-

ing method, therefore, its performance is significantly better

than that of RT-CAN. Due to the frequent splitting of tree

node, RT-CAN has low performance. As VF-CAN clusters

approximate vector data, it does not need to scan all data,

therefore, its throughput is better than that of the VA-file.

At last, in order to compare the query through-

put of various numbers of dimensions, we randomly se-

lect the 2-dimensional, 5-dimensional, 20-dimensional, 32-

dimensional data from the original database for experiment.

Here, the node number is 32. The experimental results are

shown in Fig. 9.
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Fig. 9 Query throughput with different dimensionalities

It can be seen in Fig. 9 that when the dimensionality

is 2, the performance of the RT-CAN and the VA-file are

almost the same. However as the dimensionality increases,

R-tree′s performance decreases rapidly because the overlap

of its boundary rectangle increases sharply, and the cost

of index publishing strategy becomes larger. Therefore the

performance of VA-file and VF-CAN are significantly higher

than that of the tree-based structure RT-CAN.

5.4 Quality of query results in VF-CAN

For similarity search, the quality of query results is an

important factor in evaluation of the index structure and

query algorithm, and the general evaluation criteria are ε

and ρ[22]. ε denotes the difference between the query re-

sult set and the actual data. The smaller ε is, the higher

similarity is. ρ represents accuracy of the result set, and a

bigger ρ means that there are more accurate data appearing

in the result set. ε and ρ are calculated as following[22] :

ε =

∑

p∈RAKNN

D(p, q) −
∑

p∈RKNN

D(p, q)

∑

p∈RKNN

D(p, q)
(5)

ρ =
||RAKNN ∩ RKNN||

||RKNN|| (6)

where RKNN means accurate KNN query, RAKNN is approx-

imate KNN query, q is the query vector and p is the vector in

the testing dataset. We randomly select 2-dimensional, 5-

dimensional, 20-dimensional, and 32-dimensional data from

our dataset that we have downloaded as testing dataset,

and 100 records as query samples. We conduct a similarity

query and precise query experiment when K is 50, and cal-

culate the average of ε and the average of ρ. Table 3 shows

the experiment results.

Table 3 Quality of ε and ρ

Number of K=10 K=20 K=50

dimensions ε ρ(%) ε ρ(%) ε ρ(%)

2 0.0196 80.1 0.0187 81.7 0.0193 81.2

5 0.0184 81.3 0.0179 83.8 0.0181 83.4

20 0.0173 83.2 0.0166 85.3 0.0164 87.6

32 0.0152 85.7 0.0144 87.5 0.0105 90.6

In Table 3, we can see that, under different circum-

stances, ε is very small which means that the difference

is very small, therefore the data are very similar. Mean-

while, the precision of ρ is more than 80 %, which indicates

that vast majority data of accurate result set are concen-

trated in approximate results. This result can satisfy the

requirement of most applications for the “similar” query.

The experimental results show that the storage space of

proposed VF-CAN index is slightly larger than that of the

VA-file, however it is much smaller than that of R-tree and

the original file. Moreover, the throughput of the proposed

system in different situations has relatively increased and

response time has decreased, which improves data query

performance effectively.

6 Conclusions

In this paper, we present VF-CAN, a novel multi-

dimensional indexing scheme, for supporting similarity

search in cloud system. Considering the characteristics of

data storage in cloud environment, VF-CAN has two in-

dex levels: global index and local index. In the local index

VAK-file, VA-file approximation vectors are clustered by

k-means according to their degree of proximity, which ef-

fectively solves the problem that incurs high cost when data

volume is large. Each storage node issues its cluster center

information and IP address of the local index as global index

in order to reduce load and improve performance. Mean-

while, storage nodes are organized into a structured overlay

network CAN for better routing. The experimental results

show that VF-CAN can improve query performance effec-

tively. This paper focuses on the establishment of the local

index and publishing of global index, and concentrates less

on the index maintenance. So the future work is to improve

the index maintenance efficiency.
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