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Abstract. This paper presents a novel model of Extreme Learning Ma-
chines (ELMs) for incomplete data. ELMs are fast accurate randomized
neural networks. Nevertheless ELM can only be applied on the complete
dataset. Therefore, a novel Multi-ELM Model for incomplete data is pro-
posed, consisting of multiple secondary ELMs and one primary ELM. The
secondary ELMs are approximating the primary ELM’s hidden neurons’
outputs for the data with missing values. As summarized in the experimen-
tal Section, this model can be applied on data with any missing patterns,
without using imputations and can outperform the traditional imputation
methods within a reasonable fraction of missing values, as it avoids the
noises introduced by imputations.

1 Introduction

Datasets with missing values (incomplete data) are observed in many real-world
machine learning tasks. Values are missing because of human errors, device
malfunction, missing intentionally and so on [1]. The commonly used strategies
for dealing with incomplete data include discarding the incomplete data and
creating imputations of the incomplete data[2]. Both strategies can work well
when the fraction of missing values is small[3]. When a considerable amount of
data is missing, simply discarding the incomplete data becomes impractical, and
imputation tends to introduce more noises and error to the data[4, 5].

The most straightforward imputation is the Mean imputation (MI), in which
the mean of the observed values for each variable is computed and the missing
values for that variable are imputed by this mean. MI is a very popular method
when only a few samples contain missing values. However MI can introduce
severely biased estimates (see [6, 7]).

Another widely used imputation method is the K Nearest Neighbors (KNN)
imputation [8], which searches for the k closest neighbors to the incomplete
observations based on the known values and then impute the missing values
based on the non-missing values in the neighbors. KNN imputation can be
effective when only a few values are missing [8], but is ineffective when multiple
components are missing for one data sample.

Besides imputation and discarding the incomplete data, the third approach is
to apply the machine learning models directly on the incomplete data to avoid the
errors introduced by imputations, however, not many machine learning models
can handle incomplete data directly[3]. This paper proposes a novel machine
learning model based on the Extreme Learning Machines [9, 10], which could
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be applied directly on the incomplete data, without performing any imputation.
This proposed method is capable of handling a variety of missing patterns in the
data, and has been proved to be more efficient when the percentage of missing
values is high in data.

In the Section 2 the detailed methodology of this proposed method is ex-
plained. Next in Section 3 the experiments have been conducted to test the
performance of the proposed method. Conclusions are drawn in Section 4.

2 Methodology

2.1 Extreme Learning Machines

The Extreme Learning Machines [11, 12] are Single-Layer Feed-forward Net-
works (SLFNs) [13]. According to Huang et al. in [11], ELM has universal
approximation capability , ELM can approximate any continuous target func-
tion with adjustable hidden nodes and produce good generalized performance
with extremely fast learning process.

ELM contains three layers of neurons. In ELM the input layer weights (w)
and biases (b) are generated randomly and stay unchanged afterwards. These
input weights map the input data x to a higher-dimensional feature space. A
nonlinear transformation is followed after the mapping process and produce the
hidden layer output as: hipxq “ φpxTwi ` biq, i P r1, Ls, where φ is called an
activation function (see [14]), L is the number of neurons in the ELM’s hidden
layer. This hidden layer output serves as the input of an ordinary least square
(OLS) problem: T “

řL

i“1
βihipxq, where β is the weight to be solved in the

OLS problem, and T is the target variable or the dependent variable.
To solve the above OLS problem in ELM for a set of N distinct pair of

observations pxj , tjq, j P r1, N s, with xj P R
d being the input, and tj being the

corresponding target, the matrix form of hi is introduced as H and the OLS
problem is represented as: β˚ “ argmin

β

‖Hβ ´ T‖
2

2
, and

H “

¨

˚

˝

h1px1q . . . hLpx1q

. . .
. . . . . .

h1pxN q . . . hLpxN q

˛

‹

‚
. (1)

The final solution β˚ is solved as β˚ “ pHTHq´1HTT. With the optimal
OLS weights, approximation of the target value t̂, and the ELM function Epxq

can be written as the following equation. t̂ “ Epxq “
řL

i“1
β˚

i hipxq.

2.2 A Multi-ELM Model for Incomplete Data

2.2.1 Notations for Incomplete Data

In a dataset X, a data point x “ px1, x2, . . . , xdqT is a complete data point if
none of the d variables are missing; otherwise if any of the d variables are missing
it is an incomplete data point. Typically in an incomplete dataset, there is a

542

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 

and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 

Available from http://www.i6doc.com/en/.  



portion of complete data, which is denoted as XC . The incomplete data subset
is denoted as XM .

Depending on how the variables are missing, each of the incomplete data
point x P XM has a unique missing pattern pj “ pp1, p2, . . . , pdq, where pi “ 1
means the ith variable is missing, pi “ 0 means variable i is known. x can be
reorganized according to it’s missing pattern pj as xpj

“ pxcT
pj
,xmT

pj
qT , where

xc
pj

consists of all the known variables that are associated with pi “ 0, xm
pj

con-

sists of the variables with pi “ 1. For instance, if an incomplete data point xpj

follows a missing pattern pj “ p1, 1, 0, 1, 0q, xc
pj

“ px3, x5q, xm
pj

“ px1, x2, x4q.
The same logic applies to the hidden neurons’ weights w in ELM. According

to a missing pattern pj , wpj
“ pwcT

pj
,wmT

pj
qT , where wc

pj
are the weights for

xc
pj
, and wm

pj
for xm

pj
. Therefore, the hidden neuron’s output hpxpj

q for xpj
, is

represented as

hpxpj
q “ hcpxc

pj
q ` hmpxm

pj
q “ φpxcT

pj
wc

pj
q ` φpxmT

pj
wm

pj
q, (2)

For simplicity the bias term b is omitted. By applying equation 2, the matrix
form of the hidden neurons’ outputs H becomes H “ Hc ` Hm, where

Hc “

¨

˚

˝

hc
1
pxc

1
q . . . hc

Lpxm
1

q

. . .
. . . . . .

hc
1
pxc

N q . . . hc
Lpxm

N q

˛

‹

‚
, Hm “

¨

˚

˝

hm
1

pxc
1
q . . . hm

L pxm
1

q

. . .
. . . . . .

hm
1

pxc
N q . . . hm

L pxm
N q

˛

‹

‚
. (3)

In equation 3, the subscripts on h indicate the hidden neuron index, while
the subscripts on x denote the sample index. In the above representations, pj ,
xc
pj
, and both wc

pj
and wm

pj
are known values, while xm

pj
is unknown. Therefore,

hmpxmq and Hm can not be computed directly, however, they can be approxi-
mated by other ELMs as discussed in the section 2.2.2.

2.2.2 The Secondary ELMs and The Primary ELM

Two types of ELMs are used in this model. The primary ELM is the single ELM
that is predicting the original target values, t̂ “ Epxq. In the primary ELM Hm

is unknown. To approximate Hm, secondary ELMs are built to learn an un-
derlying functional relationship between the known values of xc

pj
, wm

pj
and the

unknown hmpxm
pj

q, however, the missing pattern of each data point determines
the predictability of hmpxm

pj
q. Hence, a distinct functional relationship is con-

sidered for each missing pattern pj , fpj
: pxc

pj
,wm

pj
q Ñ hmpxm

pj
q. A unique ELM

is constructed for each pj to learn such a function, hmpxm
pj

q “ Epj
pxc

pj
,wm

pj
q.

These Epj
s are called the secondary ELMs. The total number of the possible

missing patterns pj is 2
d´1, if x has d variables. Hence in total, 2d´1 secondary

ELMs are constructed.
The secondary ELMs must be trained upon the complete data XC , and each

secondary ELM must be trained upon different missing patterns, because of the
distinct nature of each function fpj

. For each secondary ELM, Epj
, the complete
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data points x P XC are split into xc
pj

and xm
pj

according to a missing pattern
pj . Both xc

pj
and xm

pj
are known values in this case. xm

pj
s are used to calculate

the true target values hmpxm
pj

qs as the training targets for the secondary ELMs.
xc
pj
, and wm

pj
are the input values in the secondary ELM training set.

Xi “ rpxcT
1
,wm

i q, pxcT
2
,wm

i q, . . . , pxcT
n ,wm

i qsT denotes the inputs for a sec-
ondary ELM Epj

. T
m
i “ phm

i pxm
1

q, hm
i pxm

2
q, ..., hm

i pxm
n qqT denotes the outputs.

i indicates the hidden neuron index in the primary ELM. Each trained secondary
ELM is able to approximate the missing values of hmpxm

pj
q. The approximation

is ĥmpxm
pj

q “ Epj
pxc

pj
,wm

pj
q, where in this step, the incomplete data xpj

P XM

is used. Finally, the approximated results for all x P XM are generated by all
the secondary ELMs, and are used to construct the complete H matrix in the
primary ELM .

The complete H matrix in the primary ELM is obtained by adding the ap-
proximations from the secondary ELMs on top of the known values: H˚ “
Hc ` Ĥ

m
. Hence the β in the primary ELM can be solved by plugging in the

H˚ as β˚ “ pH˚TH˚q´1H˚TT. Therefore, the primary ELM can generate
approximations for the original target T.

3 Experiments

Experiments on two incomplete datasets have been conducted to examine the
performance of the proposed method. The proposed method is compared with
other imputation methods, including the mean imputation and the KNN impu-
tation. The mean squared errors are adopted as the final measurements of the
performances. To create fair comparison, one single primary ELM is built and is
used to compute the MSEs for all three methods. For the mean imputation and
the KNN imputation methods, the missing values are imputed first then tested
using the primary ELM. For the Multi-ELM model, the missing values are not
imputed and directly used to generate the final results from the primary ELM.

The dataset used in this experiments is summarized in the following table 1.

Table 1: Experiment Dataset

Name of the dataset Sample size Input Variables Target Variable
Abalone [15] 2784 7 Age of Abalone

Wine Quality [16] 4898 11 Quality of The Wine

Both dataset have been divided into training set and validation set. Missing
entrees have been created in the dataset randomly according to the percentage of
missing values. 15% of missing values have been used for both Abalone and Wine
Quality to compare the performance of algorithms across the different datasets.
5% of missing values is used for Abalone dataset to allow the comparison crossing
different missing percentages. (see in table 2).
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Table 2: Incomplete Dataset

Level of Incompleteness 5% 15%
Name of the dataset Abalone Wine Abalone Wine
Incomplete Samples 1818 / 2318 4105
Complete Samples 966 / 466 793
Total Missing Entrees 974 / 2923 8081

Both the validation and the training sets are normalized to zero mean and
unit standard deviation using the training set’s mean and STD.

In the experiments, the configurations of the Primary and the Secondary
ELMs are listed in the table 3.

Table 3: ELM Configurations

Level of Incompleteness 5% 15%
Name of the dataset Abalone Wine Abalone Wine
Primary ELM Neurons 36 / 27 33
Secondary ELM Neurons 443 / 272 214

The experiments were conducted on the Sabine High performance computing
cluster at the University of Houston, with 1 node 8 cores and 128G RAM.

The validation MSEs of all three methods are listed in the table 4.

Table 4: MSE Comparison

Level of Incompleteness 5% 15%
Name of the dataset Abalone Wine Abalone Wine
Muilt-ELM Model 0.06 / 0.08 0.74
Mean Imputation 0.57 / 0.35 0.85
KNN Imputation 0.07 / 0.09 0.77

4 Conclusion

According to the performed experiments on the two datasets, for a reasonable
amount of missing data the Multi-ELM model is outperforming the compared
imputation methods. Even when the percentage of missing values increases to
15%, the Multi-ELM model has robust performance. In different data-based
concepts, the Multi-ELM model decreases the noises from imputing the missing
values directly. Furthermore, it can be concluded that the Multi-ELM model is
capable of handling different missing patterns, even if they have never shown up
in the training set. Multi-ELM model has the suitability for big data as it can
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be paralleled easily. In the future, the Multi-ELM model for incomplete data
will be extended and tested for it’s speed and performance on diverse datasets
especially large datasets.
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