
A Multi-Encoding Approach for

LTL Symbolic Satisfiability Checking∗

Kristin Y. Rozier12† and Moshe Y. Vardi2

1 NASA Ames Research Center, Moffett Field CA, 94035, USA.

Kristin.Y.Rozier@nasa.gov, http://ti.arc.nasa.gov/profile/kyrozier/
2 Rice University, Houston, Texas 77005, USA.

vardi@cs.rice.edu, http://www.cs.rice.edu/ṽardi/

Abstract. Formal behavioral specifications written early in the system-design

process and communicated across all design phases have been shown to increase

the efficiency, consistency, and quality of the system under development. To pre-

vent introducing design or verification errors, it is crucial to test specifications

for satisfiability. Our focus here is on specifications expressed in linear temporal

logic (LTL).

We introduce a novel encoding of symbolic transition-based Büchi automata and

a novel, “sloppy,” transition encoding, both of which result in improved scalabil-

ity. We also define novel BDD variable orders based on tree decomposition of

formula parse trees. We describe and extensively test a new multi-encoding ap-

proach utilizing these novel encoding techniques to create 30 encoding variations.

We show that our novel encodings translate to significant, sometimes exponential,

improvement over the current standard encoding for symbolic LTL satisfiability

checking.

1 Introduction

In property-based design formal properties, written in temporal logics such as LTL [31],

are written early in the system-design process and communicated across all design

phases to increase the efficiency, consistency, and quality of the system under develop-

ment [34, 36]. Property-based design and other design-for-verification techniques cap-

ture design intent precisely, and use formal logic properties both to guide the design

process and to integrate verification into the design process [24]. The shift to specifying

desired system behavior in terms of formal logic properties risks introducing specifi-

cation errors in this very initial phase of system design, raising the need for property

assurance [30, 34].

The need for checking for errors in formal LTL properties expressing desired sys-

tem behavior first arose in the context of model checking, where vacuity checking aims

* A full version of this paper with appendices is available at http://ti.arc.nasa.gov/m/profile/

kyrozier/papers/RozierVardiFM2011.pdf.

†Work contributing to this paper was completed at Rice University, Cambridge University, and

NASA, was supported in part by the Shared University Grid at Rice (SUG@R), and was funded

by NSF under Grant EIA-0216467, NASA’s Airspace Systems Program, and a partnership

between Rice University, Sun Microsystems, and Sigma Solutions, Inc.

2 Kristin Y. Rozier and Moshe Y. Vardi

at reducing the likelihood that a property that is satisfied by the model under verifi-

cation is an erroneous property [2, 27]. Property assurance is more challenging at the

initial phases of property-based design, before a model of the implementation has been

specified. Inherent vacuity checking is a set of sanity checks that can be applied to a

set of temporal properties, even before a model of the system has been developed, but

many possible errors cannot be detected by inherent vacuity checking [19].

A stronger sanity check for a set of temporal properties is LTL realizability check-

ing, in which we test whether there is an open system that satisfies all the properties

in the set [32], but such a test is very expensive computationally. In LTL satisfiability

checking, we test whether there is a closed system that satisfies all the properties in

the set. The satisfiability test is weaker than the realizability test, but its complexity is

lower; it has the same complexity as LTL model checking [39]. In fact, LTL satisfiability

checking can be implemented via LTL model checking; see below.

Indeed, the need for LTL satisfiability checking is widely recognized [14, 23, 25,

28, 35]. Foremost, it serves to ensure that the behavioral description of a system is in-

ternally consistent and neither over- or under-constrained. If an LTL property is either

valid, or unsatisfiable this must be due to an error. Consider, for example, the speci-

fication always(b1 → eventually b2), where b1 and b2 are propositional formulas. If

b2 is a tautology, then this property is valid. If b2 is a contradiction, then this prop-

erty is unsatisfiable. Furthermore, the collective set of properties describing a system

must be satisfiable, to avoid contradictions between different requirements. Satisfiabil-

ity checking is particularly important when the set of properties describing the design

intent continues to evolve, as properties are added and refined, and have to be checked

repeatedly. Because of the need to consider large sets of properties, it is critical that the

satisfiability test be scalable, and able to handle complex temporal properties. This is

challenging, as LTL satisfiability is known to be PSPACE-complete [39].

As pointed out in [35], satisfiability checking can be performed via model check-

ing: a universal model (that is, a model that allows all possible traces) does not satisfy

a linear temporal property ¬ f precisely when f is satisfiable. In [35] we explored the

effectiveness of model checkers as LTL satisfiability checkers. We compared there the

performance of explicit-state and symbolic model checkers. Both use the automata-

theoretic approach [43] but in a different way. Explicit-state model checkers translate

LTL formulas to Büchi automata explicitly and then use an explicit graph-search algo-

rithm [11]. For satisfiability checking, the construction of the automaton is the more

demanding task. Symbolic model checkers construct symbolic encodings of automata

and then use a symbolic nonemptiness test. The symbolic construction of the automaton

is easy, but the nonemptiness test is computationally demanding. The extensive set of

experiments described in [35] showed that the symbolic approach to LTL satisfiability

is significantly superior to the explicit-state approach in terms of scalability.

In the context of explicit-state model checking, there has been extensive research

on optimized construction of automata from LTL formulas [12, 13, 20–22, 38, 40, 41],

where a typical goal is to minimize the size of constructed automata [42]. Optimizing

the construction of symbolic automata is more difficult, as the size of the symbolic rep-

resentation does not correspond directly to its optimality. An initial symbolic encoding

of automata was proposed in [6], but the optimized encoding we call CGH, proposed

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 3

by Clarke, Grumberg, and Hamaguchi [10], has become the de facto standard encoding.

CGH encoding is used by model checkers such as CadenceSMV and NuSMV, and has

been extended to symbolic encodings of industrial specification languages [9]. Surpris-

ingly, there has been little follow-up research on this topic.

In this paper, we propose novel symbolic LTL-to-automata translations and utilize

them in a new multi-encoding approach to achieve significant, sometimes exponential,

improvement over the current standard encoding for LTL satisfiability checking. First

we introduce and prove the correctness of a novel encoding of symbolic automata in-

spired by optimized constructions of explicit automata [12,22]. While the CGH encod-

ing uses Generalized Büchi Automata (GBA), our new encoding is based on Transition-

Based Büchi Automata (TGBA). Second, inspired by work on symbolic satisfiability

checking for modal logic [29], we introduce here a novel sloppy encoding of symbolic

automata, as opposed to the fussy encoding used in CGH. Sloppy encoding uses looser

constraints, which sometimes results in smaller BDDs. The sloppy approach can be ap-

plied both to GBA-based and TGBA-based encodings, provided that one uses negation-

normal form (NNF), [40], rather than the Boolean normal form (BNF) used in CGH.

Finally, we introduce several new variable-ordering schemes, based on tree decompo-

sition of the LTL parse tree, inspired by observations that relate tree decompositions to

BDD variable ordering [17]. The combination of GBA/TGBA, fussy/sloppy, BNF/NNF,

and different variable orders yields a space of 30 possible configurations of symbolic

automata encodings. (Not all combinations yield viable configurations.)

Since the value of novel encoding techniques lies in increased scalability, we evalu-

ate our novel encodings in the context of LTL satisfiability checking, utilizing a compre-

hensive and challenging collection of widely-used benchmark formulas [7, 14, 23, 35].

For each formula, we perform satisfiability checking using all 30 encodings. (We use

CadenceSMV as our experimental platform.) Our results demonstrate conclusively that

no encoding performs best across our large benchmark suite. Furthermore, no single

approach–GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or any one variable order,

is dominant. This is consistent with the observation made by others [1, 42], that in the

context of symbolic techniques one typically does not find a “winning” algorithmic con-

figuration. In response, we developed a multi-encoding tool, PANDA, which runs sev-

eral encodings in parallel, terminating when the first process returns. Our experiments

demonstrate conclusively that the multi-encoding approach using the novel encodings

invented in this paper achieves substantial improvement over CGH, the current standard

encoding; in fact PANDA significantly bested the native LTL model checker built into

CadenceSMV.

The structure of this paper is as follows. We review the CGH encoding [10] in

Section 2. Next, in Section 3, we describe our novel symbolic TGBA encoding. We

introduce our novel sloppy encoding and our new methods for choosing BDD variable

orderings and discuss our space of symbolic encoding techniques in Section 4. After

setting up our scalability experiment in Section 5, we present our test results in Section

6, followed by a discussion in Section 7. Though our construction can be used with

different symbolic model checking tools, in this paper, we follow the convention of [10]

and give examples of all constructions using the SMV syntax.

4 Kristin Y. Rozier and Moshe Y. Vardi

2 Preliminaries

We assume familiarity with LTL [16]; For convenience, Appendix A defines LTL se-

mantics. We use two normal forms:

Definition 1 Boolean Normal Form (BNF) rewrites the input formula to use only ¬,

∨, X,U, and F . In other words, we replace ∧,→, R, and G with their equivalents:
g1 ∧ g2 ≡ ¬(¬g1 ∨ ¬g2)

g1 → g2 ≡ ¬g1 ∨ g

g1 R g2 ≡ ¬(¬g1 U ¬g2)

Gg1 ≡ ¬F¬g1

Definition 2 Negation Normal Form (NNF) pushes negation inwards until only atomic

propositions are negated, using the following rules:

¬¬g ≡ g

¬(g1 ∧ g2) ≡ (¬g1) ∨ (¬g2)

¬(g1 ∨ g2) ≡ (¬g1) ∧ (¬g2)

(g1 → g2) ≡ (¬g1) ∨ g2

¬(Xg) ≡ X(¬g)

¬(g1Ug2) ≡ (¬g1R¬g2)

¬(g1Rg2) ≡ (¬g1U¬g2)

¬(Gg) ≡ F (¬g)

¬(F g) ≡ G(¬g)

In automata-theoretic model checking, we represent LTL formulas with Büchi automata.

Definition 3 A Generalized Büchi Automaton (GBA) is a quintuple (Q, Σ, δ,Q0, F),

where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ ⊆ Q × Σ × Q is a transition relation.

• Q0 ⊆ Q is a set of initial states.

• F ⊆ 2Q is a set of accepting state sets.

A run of a Büchi automaton A over an infinite trace π = π0, π1, π2, . . . ∈ Σ is a sequence

q0, q1, q2, . . . of states such that q0 ∈ Q0, and 〈qi, πi, qi+1〉 ∈ δ for all i ≥ 0. A accepts

π if the run over π visits states in every set in F infinitely often. We denote the set of

infinite traces accepted by A by Lω(A).

A trace satisfying LTL formula f is an infinite run over the alphabet Σ = 2Prop, where

Prop is the underlying set of atomic propositions. We denote by models(f) the set of

traces satisfying f . The next theorem relates the expressive power of LTL to that of

Büchi automata.

Theorem 1 [44] Given an LTL formula f , we can construct a generalized Büchi au-

tomaton A f =
〈

Q, Σ, δ,Q0, F
〉

such that |Q| is in 2O(| f |), Σ = 2Prop, andLω(A f) is exactly

models(f).

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness

checking, as f is satisfiable iff models(f) , ∅ iff Lω(A f) , ∅.

LTL satisfiability checking relates to LTL model checking as follows. We use a

universal model M that generates all traces over Prop such that Lω(M) = (2Prop)ω.

The code for this model appears in [35] and Appendix B. We now have that M does not

satisfy ¬ f iff f is satisfiable. We use a symbolic model checker to check the formula ¬ f

against M; f is satisfiable precisely when the model checker finds a counterexample.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 5

CGH encoding In this paper we focus on LTL to symbolic Büchi automata compilation.

We recap the CGH encoding [10], which assumes that the formula f is in BNF, and then

forms a symbolic GBA. We first define the CGH-closure of an LTL formula f as the set

of all subformulas of f (including f itself), where we also add the formula X(g U h)

for each subformula of the form g U h. The X-formulas in the CGH-closure of f are

called elementary formulas.

We declare a Boolean SMV variable ELXg for each elementary formula Xg in the

CGH-closure of f . Also, each atomic proposition in f is declared as a Boolean SMV

variable. We define an auxiliary variable S h for every formula h in the CGH-closure

of f . (Auxiliary variables are substituted away by SMV and do not required allocated

BDD variables.) The characteristic function for an auxiliary variable S h is defined as

follows:
S h = p if p ∈ AP S h =!S g if h = ¬g

S h = ELh if h is a formula Xg

S h = S g1|S g2 if h = g1 ∨ g2

S h = S g2|(S g1&SX(g1 U g2)
) if h = g1 U g2

We now generate the SMV model M f :

MODULE main

VAR

a: boolean; /*declare a Boolean var for each atomic prop in f */

EL_Xg: boolean; /*declare a Boolean var for every formula Xg in the CGH-closure*/

DEFINE /*auxiliary vars according to characteristic function */

S_h := ...

TRANS /*for every formula Xg in the CGH-closure, add a transition constraint*/

(S_Xg = next(S_g))

FAIRNESS !S_gUh | S_h /*for each subformula gUh */

FAIRNESS TRUE /*or a generic fairness condition otherwise*/

SPEC !(S_f & EG true) /*end with a SPEC statement*/

The traces of M f correspond to the accepting runs of A f , starting from arbitrary states.

Thus, satisfiability of f corresponds to nonemptiness of M f , starting from an initial

state. We can model check such nonemptiness with SPEC !(S f & EG true). A coun-

terexample is an infinite trace starting at a state where S f holds. Thus, the model checker

returns a counterexample that is a trace satisfying f .

Remark 1 While the syntax we use is shared by CadenceSMV and NuSMV, the precise

semantics of CTL model checking in these model checkers is not fully documented and

there are some subtle but significant differences between the two tools. Therefore, we

use CadenceSMV semantics here and describe these subtleties in Appendix C.

3 A Symbolic Transition-Based Generalized Büchi Automata

(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to as TGBA, inspired by the

explicit-state transition-based Generalized Büchi automata of [22]. Such automata are

used by SPOT [15], which was shown experimentally [35] to be the best explicit LTL

translator for satisfiability checking.

Definition 4 A Transition-Based Generalized Büchi Automaton (TGBA) is a quin-

tuple (Q, Σ, δ,Q0, F), where:

6 Kristin Y. Rozier and Moshe Y. Vardi

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ ⊆ Q × Σ × Q is a transition relation.

• Q0 ⊆ Q is a set of initial states.

• F ⊆ 2δ is a set of accepting transitions.

A run of a TGBA over an infinite trace π = π0, π1, π2, . . . ∈ Σ is a sequence 〈q0, π0, q1〉,

〈q1, π1, q2〉, 〈q2, π2, q3〉, . . . of transitions in δ such that q0 ∈ Q0. The automaton accepts

π if it has a run over π that traverses some transition from each set in F infinitely often.

The next theorem relates the expressive power of LTL to that of TGBAs.

Theorem 2 [12,22] Given an LTL formula f , we can construct a TGBA A f =
〈

Q, Σ, δ,

Q0, F
〉

such that |Q| is in 2O(| f |), Σ = 2Prop, and Lω(A f) is exactly models(f).

Expressing acceptance conditions in terms of transitions rather than states enables a

significant reduction in the size of the automata corresponding to LTL formulas [12,22].

Our new encoding of symbolic automata, based on TGBAs, assumes that the input

formula f is in NNF. (This is due to the way that the satisfaction of U-formulas is

handled by means of promise variables; see below.) As in CGH, we first define the

closure of an LTL formula f . In the case of TGBAs, however, we simply define the

closure to be the set of all subformulas of f (including f itself). Note that, unlike in the

CGH encoding,U- andF - formulas do not require the introduction of new X-formulas.

The set of elementary formulas now contains: f ; all U-, R-, F -, G-, and GF -

subformulas in the closure of f , as well as all subformulas g where Xg is in the closure

of f . Note that we treat the common GF combination as a single operator.

Again, we declare a Boolean SMV variable ELg for every elementary formula g

as well as Boolean variables for each atomic proposition in f . In addition, we declare

a Boolean SMV promise variable Pg for every U-, F -, and GF -subformula in the

closure. These formulas are used to define fairness conditions. Intuitively, Pg holds

when g is a promise for the future that is not yet fulfilled. If Pg does not hold, then the

promise must be fulfilled immediately. To ensure satisfaction of eventualities we require

that each promise variable Pg is false infinitely often. The TGBA encoding creates fewer

EL variables than the CGH encoding, but it does add promise variables.

Again, we define an auxiliary variable S h for every formula h in the closure of f .The

characteristic function for S h is defined as in the CGH encoding, with the following

changes: S h = S g1&S g2 if h = g1 ∧ g2

S h = next(ELg) if h = Xg

S h = S g2|(S g1&Pg1 U g2&(next(ELg1 U g2))) if h = g1 U g2

S h = S g2&(S g1|(next(ELg1 R g2))) if h = g1 R g2

S h = S g&(next(ELG g)) if h = G g

S h = S g|(PF g&next(ELF g)) if h = F g

S h = (next(ELGF g))&(S g|PGF g) if h = GF g

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 7

Since we reason directly over the temporal subformulas of f (and not over Xg for
temporal subformula g as in CGH), the transition relation associates elementary for-
mulas with matching elements of our characteristic function. Finally, we generate our
symbolic TGBA; here is our SMV model M f :

MODULE main

VAR /*declare a boolean variable for each atomic proposition in f*/

a : boolean;

...

VAR /*declare a new variable for each elementary formula*/

EL_f : boolean; /*f is the input LTL formula*/

EL_g1 : boolean; /*g is an X-, F-, U-, or GF-formula*/

...

DEFINE /*characteristic function definition*/

S_g = ...

...

TRANS /*for each EL-var, generate a line here*/

(EL_g1 = S_g1) & /*a line for every EL variable*/

...

FAIRNESS (!P_g1) /*fairness constraint for each promise variable*/

...

FAIRNESS TRUE /*only needed if there are no promise variables*/

SPEC !(EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas because the model checker

tries to guess a sequence of values for each of the promise variables to satisfy the subfor-

mulas, which does not work for negativeU-formulas. (This is also the case for explicit

state model checking; SPOT also requires NNF for TGBA encoding [12].) Consider the

formula f = ¬(aU b) and the trace a=1,b=0, a=1,b=1, ... Clearly, (aU b) holds

in the trace, so f fails in the trace. If, however, we chose P aUb to be false at time 0,

then EL aUb is false at time 0, which means that f holds at time 0. The correctness of

our construction is summarized by the following theorem.

Theorem 3 Let M f be the SMV program made by the TGBA encoding for LTL formula

f . Then M f does not satisfy the specification !(EL f & EG true) iff f is satisfiable.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four components: (1) Normal Form: BNF or

NNF, described above, (2) Automaton Form: GBA or TGBA, described above, (3) Tran-

sition Form: fussy or sloppy, described below, and (4) Variable Order: default, naı̈ve,

LEXP, LEXM, MCS-MIN, MCS-MAX, described below. In total, we have 30 novel encodings,

since BNF can only be used with fussy-encoded GBAs, as explained below. CGH cor-

responds to BNF/fussy/GBA; we encode this combination with all six variable orders.

Automaton Form As discussed earlier, CGH is based on GBA, in combination with

BNF. We can combine, however, GBA also with NNF. For this, we need to expand the

characteristic function for symbolic GBAs in order to form them from NNF formulas:
S h = S g1&S g2 if h = g1 ∧ g2

S h = S g2&(S g1|SX(g1 R g2)
) if h = g1 R g2

S h = S g&SX(Gg)
if h = Gg

S h = S g|SX(F g)
if h = F g

8 Kristin Y. Rozier and Moshe Y. Vardi

Since our focus here is on symbolic encoding, PANDA, unlike CadenceSMV, does

not apply formula rewriting and related optimizations; rather, PANDA’s symbolic au-

tomata are created directly from the given normal form of the formula. Formula rewrit-

ing may lead to further improvement in PANDA’s performance.

Sloppy Encoding: A Novel Transition Form CGH employs iff-transitions, of the form

TRANS (EL g=(S g)). We refer to this as fussy encoding. For formulas in NNF, we can

use only-if transitions of the form TRANS (EL g->(S g)), which we refer to as sloppy

encoding. A similar idea was shown to be useful in the context of modal satisfiability

solving [29]. Sloppy encoding increases the level of non-determinism, yielding a looser,

less constrained encoding of symbolic automata, which in many cases results in smaller

BDDs. A side-by-side example of the differences between GBA and TGBA encodings

(demonstrating the sloppy transition form) for formula f = ((Xa)&(bU (!a))) is given

in Figures 1-2.

MODULE main

/*formula: ((X (a)) & ((b)U (!(a))))*/

VAR /*a Boolean var for each prop in f*/

a : boolean;

b : boolean;

VAR /*a var EL_X_g for each formula (X g) in

el_list w/primary op X, U, R, G, or F*/

EL_X_a : boolean;

EL_X__b_U_NOT_a : boolean;

DEFINE

/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=

(EL_X_a) & (S__b_U_NOT_a);

S__b_U_NOT_a :=

(!(a)) | (b & EL_X__b_U_NOT_a);

TRANS /*a line for each (X g) in el_list*/

(EL_X_a -> (next(a))) &

(EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a)))

FAIRNESS (!S__b_U_NOT_a | (!(a)))

SPEC !(S__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 1. NNF/sloppy/GBA encoding for CadenceSMV

MODULE main

/*formula: ((X (a))& ((b)U (!(a))))*/

VAR /*a Boolean var for each prop in f*/

a : boolean;

b : boolean;

VAR /*a var for each EL_var in el_list*/

EL__X_a__AND__b_U_NOT_a : boolean;

P__b_U_NOT_a: boolean;

EL__b_U_NOT_a : boolean;

DEFINE

/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=

(S_X_a) & (EL__b_U_NOT_a);

S_X_a := (next(a));

S__b_U_NOT_a := (((!(a)))

| (b& P__b_U_NOT_a & (next(EL__b_U_NOT_a))));

TRANS /*a line for each EL_var in el_list*/

(EL__X_a__AND__b_U_NOT_a ->

(S__X_a__AND__b_U_NOT_a)) &

(EL__b_U_NOT_a -> (S__b_U_NOT_a))

FAIRNESS (!P__b_U_NOT_a)

SPEC !(EL__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 2. NNF/sloppy/TGBA encoding for CadenceSMV

A New Way of Choosing BDD Variable Orders Symbolic model checkers search for

a fair trace in the model-automaton product using a BDD-based fixpoint algorithm, a

process whose efficacy is highly sensitive to variable order [5]. Finding an optimal BDD

variable order is NP-hard, and good heuristics for variable ordering are crucial.

Recall that we define state variables in the symbolic model for only certain subfor-

mulas: p ∈ AP, EL g, and P g for some subformulas g. We form the variable graph by

identifying nodes in the input-formula parse tree that correspond to the primary opera-

tors of those subformulas. Since we declare different variables for the GBA and TGBA

encodings, the variable graph for a formula f may vary depending on the automaton

form we choose. Figure 3 displays the GBA and TGBA variable graphs for an example

formula, overlaid on the parse tree for this formula. We connect each variable-labeled

vertex to its closest variable-labeled vertex descendant(s), skipping over vertices in the

parse tree that do not correspond to state variables in our automaton construction. We

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 9

(a) GBA variable graph (b) TGBA variable graph

Fig. 3. Graphs in (a) and (b) were both formed from the parse tree for f = ((Xa) ∧ (bU ¬a)).

create one node per subformula variable, irrespective of the number of occurrences of

the subformula; for example, we create only one node for the proposition a in Figure 3.

We implement five variable ordering schemes, all of which take the variable graph

as input. We compare these to the default heuristic of CadenceSMV. The naı̈ve variable

order is formed directly from a pre-order, depth-first traversal of the variable graph. We

derive four additional variable-ordering heuristics by repurposing node-ordering algo-

rithms designed for graph triangulation [26].3 We use two variants of a lexicographic

breadth-first search algorithm: variants perfect (LEXP) and minimal (LEXM). LEXP labels

each vertex in the variable graph with its already-ordered neighbors; the unordered

vertex with the lexicographic largest label is selected next in the variable order. LEXM

operates similarly, but labels unordered vertices with both their neighbors and also all

vertices that can be reached by a path of unordered vertices with smaller labels. The

maximum-cardinality search (MCS) variable ordering scheme differs in the vertex selec-

tion criterion, selecting the vertex in the variable graph adjacent to the highest number

of already ordered vertices next. We seed MCS with an initial vertex, chosen either to

have the maximum (MCS-MAX) or minimum (MCS-MIN) degree.

5 Experimental Methodology

Test Methods Each test was performed in two steps. First, we applied our symbolic

encodings to the input formula. Second, each symbolic automaton and variable order

file pair was checked by CadenceSMV. Since encoding time is minimal and heavily

dominated by model-analysis time (the time to check the model for nonemptiness to

determine LTL satisfiability) we focus exclusively on the latter here.

Platform We ran all tests on Shared University Grid at Rice (SUG@R), an Intel Xeon

compute cluster.4 SUG@R is comprised of 134 SunFire x4150 nodes, each with two

quad-core Intel Xeon processors running at 2.83GHz and 16GB of RAM per processor.

The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each test was run with exclusive

access to one node. Times were measured using the Unix time command.

Input Formulas We employed a widely-used [7, 14, 23, 35] collection of benchmark

formulas, established by [35]. All encodings were tested using three types of scalable

formulas: random, counter, and pattern. Definitions of these formulas are repeated for

convenience in Appendix B. Our test set includes 4 counter and 9 pattern formula varia-

tions, each of which scales to a large number of variables, and 60,000 random formulas.
3 Graph triangulation implementation coded by the Kavraki Lab at Rice University.
4 http://rcsg.rice.edu/sugar/

10 Kristin Y. Rozier and Moshe Y. Vardi

Correctness In addition to proving the correctness of our algorithm, the correctness

of our implementation was established by comparing for every formula in our large

benchmark suite, the results (either SAT or UNSAT) returned by all encodings studied

here, as well as the results returned by CadenceSMV for checking the same formula as

an LTL specification for the universal model. We never encountered an inconsistency.

6 Experimental Results

Our experiments demonstrate that the novel encoding methods we have introduced sig-

nificantly improve the translation of LTL formulas to symbolic automata, as measured

in time to check the resulting automata for nonemptiness and the size of the state space

we can check. No single encoding, however, consistently dominates for all types of for-

mulas. Instead, we find that different encodings are better suited to different formulas.

Therefore, we recommend using a multi-encoding approach, a variant of the multi-

engine approach [33], of running all encodings in parallel and terminating when the

first job completes. We call our tool PANDA for “Portfolio Approach to Navigate the

Design of Automata.”

Seven configurations are not competitive While we can not predict the best encodings,

we can reliably predict the worst. The following encodings were never optimal for any

formulas in our test set. Thus, out of our 30 possible encodings, we rule out these seven:

– BNF/fussy/GBA/LEXM (essentially CGH with LEXM)

– NNF/fussy/GBA/LEXM

– NNF/fussy/TGBA/LEXM

– NNF/sloppy/GBA/LEXM

– NNF/fussy/TGBA/MCS-MAX

– NNF/sloppy/TGBA/MCS-MAX

– NNF/sloppy/TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the time. NNF encodings were

always better for all counter and pattern formulas; see, for example, Figure 4. Figure 5

demonstrates the use of both normal forms in the optimal encodings chosen by PANDA

for random formulas. BNF encodings were occasionally significantly better than NNF;

the solid point in Figure 5 corresponds to a formula for which the best BNF encoding

was more than four times faster than the best NNF encoding. NNF was best much more

often than BNF, likely because using NNF has the added benefit that it allows us to

employ our sloppy encoding and TGBAs, which often carry their own performance

advantages.

No automaton form is best. Our TGBA encodings dominated for R2, S , and U pattern

formulas and both types of 3-variable counter formulas. For instance, the log-scale plot

in Figure 6 shows that PANDA’s median model analysis time for R2 pattern formulas

grows subexponentially as a function of the number of variables, while CadenceSMV’s

median model analysis time for the same formulas grows exponentially. (The best of

PANDA’s GBA encodings is also graphed for comparison.) GBA encodings are better

for other pattern formulas, both types of 2-variable counter formulas, and the majority

of random formulas; Figure 7 demonstrates this trend for 180 length random formulas.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 11

Number of Variables

M
e

d
ia

n
M

o
d

e
l
A

n
a

ly
s
is

T
im

e
(s

e
c
o

n
d

s
)

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

PANDAbnf
CadenceSMV
PANDAnnf

R Pattern Formulas

PANDAbnf

PANDAnnf

CadenceSMV

Fig. 4. Median model analysis time for

R(n) =
∧n

i=1 (GF pi ∨ FGpi+1) for PANDA

NNF/sloppy/GBA/naı̈ve, CadenceSMV, and

the best BNF encoding.

BNF Encodings Model Analysis Times (sec)

N
N

F
E

n
c
o

d
in

g
s

M
o

d
e

l
A

n
a

ly
s
is

T
im

e
s

(s
e

c
)

10
1

10
0

10
1

10
2

10
310

1

10
0

10
1

10
2

10
3

Best BNF encoding vs best NNF encoding:
3variable, 160 length random formulas

Fig. 5. Best encodings of 500 3-variable, 160

length random formulas. Points fall below the

diagonal when NNF is better.

Number of Variables

M
e

d
ia

n
M

o
d

e
l
A

n
a

ly
s
is

T
im

e
(s

e
c
o

n
d

s
)

0 100 200 300 400 500 600 700 800 900 1000

10
2

10
1

10
0

10
1

10
2

10
3

PANDAtgba
PANDAgba
CadenceSMV

R2 Pattern Formulas

N

PANDAtgba

CadenceSMV

PANDAgba

Fig. 6. R2(n) = (..(p1 R p2) R . . .) R pn.

PANDA’s NNF/sloppy/TGBA/LEXP encoding

scales better than the best GBA encod-

ing, NNF/sloppy/GBA/naı̈ve, and exponen-

tially better than CadenceSMV.

GBA Encodings Model Analysis Times (sec)

T
G

B
A

E
n

c
o

d
in

g
s

M
o

d
e

l
A

n
a

ly
s
is

T
im

e
s

(s
e

c
)

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

Best TGBA encoding vs best GBA encoding:
3variable, 180 length random formulas

Fig. 7. Best encodings of 500 3-variable, 180

length random formulas.

No transition form is best Sloppy is the best transition form for all pattern formulas. For

instance, the log-scale plot of Figure 8 illustrates that PANDA’s median model analysis

time for U pattern formulas grows subexponentially as a function of the number of vari-

ables, while CadenceSMV’s median model analysis time for the same formulas grows

exponentially. Fussy encoding is better for all counter formulas. The best encodings of

random formulas were split between fussy and sloppy. Figure 9 demonstrates this trend

for 140 length random formulas.

No variable order is best, but LEXM is worst. The best encodings for our benchmark

formula set were split between five variable orders. The naı̈ve and default orders proved

12 Kristin Y. Rozier and Moshe Y. Vardi

Number of Variables

M
e

d
ia

n
M

o
d

e
l
A

n
a

ly
s
is

T
im

e
(s

e
c
o

n
d

s
)

200 400 600 800 1000
10

2

10
1

10
0

10
1

10
2

10
3

PANDAsloppy
CadenceSMV

U Pattern Formulas

CadenceSMV

PANDAsloppy

Fig. 8. U(n) = (. . . (p1 U p2) U . . .) U pn.

PANDA’s NNF/sloppy/TGBA/LEXP scalables

exponentially better than CadenceSMV.

Fussy Encodings Model Analysis Times (sec)

S
lo

p
p

y
E

n
c
o

d
in

g
s

M
o

d
e

l
A

n
a

ly
s
is

T
im

e
s

(s
e

c
)

10
2

10
1

10
0

10
1

10
2

10
310

2

10
1

10
0

10
1

10
2

10
3

Best fussy encoding vs best sloppy encoding:
3variable, 140 length random formulas

Fig. 9. Best encodings of 500 3-variable, 140

length random formulas. Points fall below the

diagonal when sloppy encoding is best.

optimal for more random formulas than the other orders. Figure 10 demonstrates that

neither the naı̈ve order nor the default order is better than the other for random formulas.

The naı̈ve order was optimal for E, Q, R, U2, and S patterns. MCS-MAX is optimal for 2-

and 3-variable linear counters. The LEXP variable order dominated for C1, C2, U, and

R2 pattern formulas, as well as for 2- and 3-variable counter formulas, yet it was rarely

best for random formulas. Figure 11 demonstrates the marked difference in scalability

provided by using the LEXP order over running CadenceSMV on 3-variable counter

formulas. We can analyze much larger models with PANDA using LEXP than with the

native CadenceSMV encoding before memory-out. We never found the LEXM order to

be the single best encoding for any formula.

Naive Encodings Model Analysis Times (sec)

D
e

fa
u

lt
E

n
c
o

d
in

g
s

M
o

d
e

l
A

n
a

ly
s
is

T
im

e
s

(s
e

c
)

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

Best encodings with naive vs default variable orders
3variable, 195 length random formulas

Fig. 10. Best encodings of 500 3-variable, 195

length random formulas. Points fall above the

diagonal when naı̈ve variable order is best.

M
a

x
im

u
m

S
ta

te
S

p
a

c
e

A
n

a
ly

z
e

d

0

100000

200000

300000

400000

500000

CadenceSMV

PANDAlexp

3variable Counter Formulas

Fig. 11. Maximum states analyzed before

space-out. CadenceSMV quits at 10240 states.

PANDA’s NNF/fussy/TGBA/LEXP scales to

491520 states.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 13

A formula class typically has a best encoding, but predictions are difficult While each

of our pattern and counter formulas had a best (or a pair of best) encodings, which

remained consistent as we scaled the formulas, we found that we could not reliably

predict the best encoding using any statistics gathered from parsing, such as operator

counts or ratios. For example, we found that the best encoding for a pattern formula

was not necessarily the best for a randomly-generated formula comprised of the same

temporal operators. We surmise that the best encoding is tied to the structure of the

formula on a deeper level; developing an accurate heuristic is left to future work.

There is no single best encoding; a multi-encoding approach is clearly superior We

implement a novel multi-encoding approach: our new PANDA tool creates several en-

codings of a formula and uses a symbolic model checker to check them for satisfiability

in parallel, terminating when the first check completes. Our experimental data supports

this multi-encoding approach. Figures 4, 6, and 8 highlight the significant decrease in

CadenceSMV model analysis time for R, R2, and U pattern formulas, while Figure 11

demonstrates increased scalability in terms of state space using counter formulas. Al-

together, we demonstrate that a multi-encoding approach is dramatically more scalable

than the current state-of-the-art. The increase in scalability is dependant on the spe-

cific formula, though for some formulas PANDA’s model analysis time is exponentially

better than CadenceSMV’s model analysis time for the same class of formulas.

7 Discussion

This paper brought attention to the issue of scalable construction of symbolic automata

for LTL formulas in the context of LTL satisfiability checking. We defined novel en-

codings and novel BDD variable orders for accomplishing this task. We explored the

impact of these encodings, comprised of combinations of normal forms, automaton

forms, transition forms, and combined with variable orders. We showed that each can

have a significant impact on performance. At the same time, we showed that no single

encoding outperforms all others and showed that a multi-encoding approach yields the

best result, consistently outperforming the native translation of CadenceSMV.

We do not claim to have exhaustively covered the space of possible encodings

of symbolic automata. Several papers on the automata-theoretic approach to LTL de-

scribe approaches that could be turned into alternative encodings of symbolic automata,

cf. [4, 18, 20, 37]. The advantage of the multi-encoding approach we introduced here is

its extensibility; adding additional encodings is straightforward. The multi-encoding

approach can also be combined with different back ends. In this paper we used Ca-

denceSMV as a BDD-based back end; using another symbolic back end (cf. [14]) or

a SAT-based back end (cf. [3]) would be an alternative approach, as both BDD-based

and SAT-based back ends require symbolic automata. Since LTL serves as the basis for

industrial languages such as PSL and SVA, the encoding techniques studied here may

also serve as the basis for novel encodings of such languages, cf. [8, 9].

In this paper we examined our novel symbolic encodings of LTL in the context

of satisfiability checking. An important difference between satisfiability checking and

model checking is that in the former we expect to have to handle much larger formulas,

14 Kristin Y. Rozier and Moshe Y. Vardi

since we need to consider the conjunction of properties. Also, in model checking the

size of the symbolic automata can be dwarfed by the size of the model under verifica-

tion. Thus, the issue of symbolic encoding of automata in the context of model checking

deserves a separate investigation.

References

1. N. Amla, X. Du, A. Kuehlmann, R.P. Kurshan, and K.L. McMillan. An analysis of SAT-

based model checking techniques in an industrial environment. In CHARME, LNCS 3725,

pages 254–268. Springer, 2005.

2. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL

formulas. FMSD 18, (2):141–162, 2001.

3. A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In FMICS 66:2,

ENTCS, 2002.

4. R. Bloem, A. Cimatti, I. Pill, and M. Roveri. Symbolic implementation of alternating au-

tomata. IJFCS 18, (4):727–743, 2007.

5. R.E. Bryant. Graph-based algorithms for Boolean-function manipulation. IEEE TC C-35,

(8):677–691, 1986.

6. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-

ing: 1020 states and beyond. Inform. and Computation 98, (2):142–170, Jun 1992.

7. J. Cichon, A. Czubak, and A. Jasinski. Minimal Büchi automata for certain classes of LTL

formulas. DepCoS 0, pages 17–24, 2009.

8. A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA: A modular symbolic

encoding. In FMCAD, 2006.

9. A. Cimatti, M. Roveri, and S. Tonetta. Syntactic optimizations for PSL verification. In

TACAS, pages 505–518, 2007.

10. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.

Formal Methods in System Design 10, (1):47–71, 1997.

11. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms

for the verification of temporal properties. In CAV, LNCS 531, p233–242. Springer, 1990.

12. J-M. Couvreur. On-the-fly verification of Linear Temporal Logic. In FM, p253-271, 1999.

13. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for Linear Tem-

poral Logic. In CAV, LNCS 1633, pages 249–260. Springer, 1999.

14. M. De Wulf, L. Doyen, N. Maquet, and J. Raskin. Antichains: Alternative algorithms for

LTL satisfiability and model-checking. In TACAS, pages 63–77, 2008.

15. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library using

Transition-Based Generalized Büchi Automata. In MASCOTS, pages 76–83, 2004.

16. E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,

volume B, chapter 16, pages 997–1072. Elsevier, MIT Press, 1990.

17. A. Ferrara, G. Pan, and M. Y. Vardi. Treewidth in verification: Local vs. global. In LPAR,

LNCS 3835, pages 489–503. Springer, 2005.

18. M. Fisher. A normal form for temporal logics and its applications in theorem-proving and

execution. J. Log. Comput. 7, (4):429–456, 1997.

19. D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M.Y. Vardi. A framework for inherent

vacuity. In Haifa Verification Conference, LNCS 5394, pages 7–22. Springer, 2008.

20. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV, LNCS 2102,

pages 53–65. Springer, 2001.

21. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of

Linear Temporal Logic. In PSTV, pages 3–18. Chapman & Hall, Aug 1995.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 15

22. D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL

formulae to Büchi automata. In FORTE, Nov 2002.

23. V. Goranko, A. Kyrilov, and D. Shkatov. Tableau tool for testing satisfiability in LTL: Im-

plementation and experimental analysis. ENTCS 262, pages 113–125, 2010.

24. A. Habibi and S. Tahar. Design for verification of SystemC transaction level models. In

Design, Automation and Test in Europe, pages 560–565. IEEE, 2005.

25. Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full propositional

temporal logic. In CAV, LNCS 697, pages 97–109. Springer, 1993.

26. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational

experiments. ZIB-Report 01–38, ZIB, 2001.

27. O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. STTT 4,

(2):224–233, Feb 2003.

28. S. Merz and A. Sezgin. Emptiness of Linear Weak Alternating Automata. Technical report,

LORIA, December 2003.

29. G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decision procedures for K. In CADE, LNCS

2392, pages 16–30. Springer, 2002.

30. I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti. Formal analysis of

hardware requirements. In DAC, pages 821–826. ACM, 2006.

31. A. Pnueli. The temporal logic of programs. In IEEE FOCS, pages 46–57, 1977.

32. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, p179–190, 1989.

33. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified Boolean for-

mulas. Constraints 14, (1):80–116, 2009.

34. M. Roveri. Novel techniques for property assurance. Technical report, PROSYD deliverable

1.2/2, 2004.

35. K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. In Model Checking Software

(SPIN), LNCS 4595, pages 149–167. Springer, 2007.

36. S. Ruah, A. Fedeli, C. Eisner, and M. Moulin. Property-driven specification of VLSI design.

Technical report, PROSYD deliverable 1.1/1, 2005.

37. K. Schneider. Improving automata generation for Linear Temporal Logic by considering the

automaton hierarchy. In LPAR, pages 39–54. Springer, 2001.

38. R. Sebastiani and S. Tonetta. “More deterministic” vs. “smaller” Büchi automata for efficient

LTL model checking. In CHARME, pages 126–140. Springer, 2003.

39. A.P. Sistla and E.M. Clarke. The complexity of Propositional Linear Temporal Logic. J.

ACM 32, pages 733–749, 1985.

40. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In CAV, LNCS

1855, pages 248–263. Springer, 2000.

41. X. Thirioux. Simple and efficient translation from LTL formulas to Büchi automata. ENTCS

66, (2):145–159, 2002.

42. M.Y. Vardi. Automata-theoretic model checking revisited. In VMCAI, LNCS 4349, pages

137–150. Springer, 2007.

43. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-

tion. In LICS, pages 332–344, Cambridge, Jun 1986.

44. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-

tation 115, (1):1–37, Nov 1994.

