
                               

A multi-feedback design for LC bandpass Delta

 

−

 

Sigma modulators

 

Omid Shoaei and W. Martin Snelgrove
Department of Electronics, Carleton University

 Ottawa, Ontario, Canada K1S 5B6 
1-613-788-2381

omid@doe.carleton.ca & snelgar@doe.carleton.ca
ABSTRACT
A new technique for designing an LC bandpass Delta-
Sigma modulator is presented. This method is based on
pulse shaping of a DAC output signal such that one can
realize a desired (arbitrary) loop transfer function. Espe-
cially for higher-order modulators where extra LC sections
are added, sufficient number of parameters are provided in
the feedback loop. It is shown that by creating more degrees
of freedom one can achieve the maximum SNR in a given
modulator order without constraining the noise transfer
function of the modulator.

I. INTRODUCTION
Switched-C techniques have been used to implement band-
pass Delta-Sigma analog/digital converters [1]-[3]. Contin-
uous-time modulators can be far faster than their switched-
C counterparts. The proper s-domain loop transfer functions
for implementing a continuous-time equivalent from a
given discrete-time (Switched-C) modulator have been
recently reported [4]. A new architecture for a transconduc-
tor-C ∆Σ modulator has been given too [4]. For implement-
ing a bandpass continuous-time ∆Σ modulator loop filter,
however, the cascade of LC resonators as shown in Fig. 1
with

  ( 1)

is attractive. Because 1) its architecture is simple, 2) a pas-
sive LC resonator has much less nonlinearity than an active
resonator such as transconductor-C, and 3) LC type filters
can present higher frequency capability than active filters. It
is, however, difficult to construct linear high-Q LC resona-
tors on-chip, so these converters have generally relied on
off-chip inductors [5]-[7]. Since for a bandpass continuous-
time ∆Σ modulator, a high-Q1 resonator is required [4], for
on-chip inductance implementation some Q enhancement
technique [10] is necessary. The other problem is that the

1. In [4] it is shown that in a fourth-order multiple-
pole bandpass ∆Σ modulator for getting the maxi-
mum achievable SNR, the typical Q required is at 
least 50.

cascade of LC resonators shown in Fig. 1 provides a trans-
fer function with a numerator having only bandpass term
like the transfer functions implemented in [5]-[7]

( 2)

where  is the number of cascade stages,  is the resonant
frequency, and  is the overall filter gain. As shown in [4],
in a continuous-modulator with order of 2n the proper s-
domain loop transfer function numerator is a th-
order polynomial with non-zero coefficients having 
distinct zeros, while (2) has  zeros at . For example,
for a multiple-pole fourth-order system the loop filter [4] is

( 3)

In this paper we will address this problem in LC modula-
tors. We will show how we can get the appropriate loop
impulse response from a cascade of simple LC resonators
by adding extra feedback loops.

II. MULTI-FEEDBACK DESIGN 
We begin with a second-order bandpass case. The discrete-
time loop transfer function ([2], [8]) is

 . (4)

The loop impulse response of this system is a cosine wave-
form with its first two samples zero:
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Fig. 1: A differential LC resonator.
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In a continuous-time modulator the overall loop impulse
response is obtained by convolution of the s-domain loop
filter with the DAC impulse response. Three different possi-
ble DAC feedbacks are non-return to-zero (NZ), return to-
zero (RZ), and half-delay return to-zero (HZ). Their
impulse responses represented by ,  and

 are shown in Fig. 2. Hence, the overall loop func-

tion in a continuous-time modulator employing a simple LC
filter i.e.  where

 and , for NZ, RZ, and
HZ feedback pulses respectively are

( 6)

As (6) shows the loop impulse response of a system includ-
ing any feedback: NZ, RZ, or HZ by itself can not imple-
ment the required cosine loop impulse response given in
(5). In particular, none of them provides a pure  term to
make the second sample zero. However, with a linear com-
bination of any of two preceding feedback pulses given in
(6), for example, RZ and HZ as shown in Fig. 3, it is possi-
ble to produce the desired second-order loop function

. This requires finding two unknown coeffi-
cients from two simple linear equations. For example, for

 and  from (6) and (4) the equality

 ( 7)

implies that  and . 
As shown in Fig. 3 there is no digital delay in the ∆Σ loop
preceding the DACs. This represents a zero-delay continu-

ous-time scheme [8], [9]. It should be noted that it is possi-
ble to have a second-order continuous-time system in which
one delay is realized digitally [8], [9]. The coefficients of
the zero-delay second-order system (shown in Fig. 3) for
three different combinations of NZ, RZ and HZ pulses are
given in Table 1. The corresponding coefficients for one-

delay scheme is given in Table 1 too. Although the one-
delay scheme will cost an extra flip-flop, the modulator sen-
sitivity to extra non-ideal loop delays (propagation delay
time in comparator and DAC,...) is reduced. 

For implementing the fourth-order bandpass system from a
cascade of two simple LC resonators, , as
shown in Fig. 4 four coefficients are required. In Fig. 4 the
shorter loops (the paths with  coefficients) each contains
a resonator whose convolution with the corresponding feed-
back pulse results in the transfer functions given in (6). The
longer loops (the paths with  coefficients) each includes a
cascade of two resonators ,
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Fig. 2: NZ, RZ, and HZ DAC impulse responses.
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Table 1: Second-order LC modulator parameters. 
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delay 
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Fig. 3: A second-order multi-feedback (RZ and HZ) ∆Σ 
modulator with a LC resonator loop filter.
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where  and
. The transfer functions on these paths for NZ,

RZ, and HZ feedback pulses respectively are

( 8)

The required multiple-pole loop transfer function for a

fourth-order system as shown in [3], [4] is
. The discrete-time loop impulse

response of this system is 

( 9)

which is shown in Fig. 5 with sample points represented by
‘x’. It can be shown [9] that NZ pulse response of the multi-
ple-pole fourth-order loop filter given in (3) results in the
overall continuous-time loop impulse response, . As
shown in Fig. 5  is defined by  and 
whereas

(10)

and for normalized 

It should be noted that because of a  discrete delay factor
inside the loop (Fig. 4) the overall continuous-time loop
impulse response is shifted by  in Fig. 5. The continuous-

time loop impulse response (10) matches the discrete-time
loop response (9) at the sampling times as shown in Fig. 5.
The continuous-time loop filter shown in (3) can be imple-
mented by a transconductor-C architecture directly [4]. For
fourth-order LC modulator, however, it is obvious from (8)
that none of the simple NZ, RZ or HZ modulators can
implement this transfer function directly. However, from (6)
and (8), it can be shown that with any combination of two
pulses like RZ and HZ it is possible to build the ideal
fourth-order loop transfer function. This requires solving
four linear equations (two from (8) and two from (6)) to
obtain the four unknown coefficients. The coefficients of the
fourth-order multiple-pole system (with one digital delay
inside the loop like the one shown in Fig. 4) for three differ-
ent combinations of NZ, RZ and HZ pulses are given in
Table 2. For instance, the four RZ and HZ coefficients
shown in Fig. 4 are , ,

 and . It should be men-
tioned that there is a zero-delay solution [8], [9] for a multi-
ple-pole fourth-order continuous-time modulator too.
However, for practical reasons it is very sensitive to extra
loop delays which reduces its usefulness especially for high
speed applications, so it is not shown here.

III. SIMULATION RESULTS 
The preceding second-order and fourth-order discrete-time
and their corresponding LC systems are simulated to obtain
the SNR. Although as mentioned, the loop transfer function
of the given LC systems and their discrete-time counter-
parts are equal, their input signal transfer functions are dif-
ferent [8], [9]:  in the second-order and  in the
fourth-order systems shown in Fig. 3 and Fig. 4 respec-
tively. This signal gain difference causes the same SNR in
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Fig. 4: A fourth-order multi-feedback (RZ and HZ) ∆Σ 
modulator with cascade of two LC resonator loop filter.

ŷhz t( )

x̂ t( )
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Fig. 5: Loop impulse response of the fourth-order multiple-
pole modulator. 
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LC systems to happen at different input signal levels. 

The maximum SNRs in a 2MHz bandwidth, with a sinusoi-
dal input at 50MHz, for the second-order discrete-time and
LC systems were 47.9dB and 46.4dB which occurred at
input amplitude 0.49 and 0.39 respectively. For the fourth-
order discrete-time and LC systems, the maximum SNRs in
the same bandwidth and frequency were 65.4dB and
64.27dB which happened at input amplitude 0.49 and 0.31
respectively. The bit stream spectrum of the multiple-pole
fourth-order LC modulator for a 0.31 input sine wave at
50MHz is shown in Fig. 6 (clock rate is at 200MHz).
 

IV. CONCLUSION
The design of a continuous-time LC bandpass ∆Σ modula-
tor has been discussed. It has been shown that by employing
a DAC pulse shaping technique it is possible to force the
time domain response of a cascaded LC ∆Σ modulator loop
to match that of the discrete-time ∆Σ modulator loop equiv-
alent. The general architecture for a LC ∆Σ modulator with
DAC pulse shaping is given. Adding two degrees of free-
dom at the input of each simple bandpass LC resonator sec-
tion by means of pulse shaping allows complete control of
noise shaping for an arbitrary ∆Σ modulator order. At any
LC bandpass ∆Σ modulator with order of 2n, the new 2n
unknown coefficients can easily be found by solving a set of
2n linear equations. A second-order and a multiple-pole
fourth-order modulator, the two most common examples,
have been shown. The simulation results for these examples
verified the theory. 
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Table 2:  Multiple-pole fourth-order LC modulator 
parameters.

Coefficients
Combinations

RZ−HZ NZ−RZ NZ−HZ

Fourth-
Order 
coefficie
nts

Second-
Order 
coefficie
nts

k4nz 1.08678 0.450158–

k4rz 0.450158– 1.53694–

k4hz 1.08678 1.53694

k2nz 2.98744 0.633883–

k2rz 0.633883– 3.62132–

k2hz 2.98744 3.62132

Fig. 6: The bit stream spectrum of simulated 4th-order LC 
modulator (input frequency is at 50MHz). 
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