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Abstract

In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is pro-

posed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-

Laplacian is applied to measure the focus of multi-focus images. Then the density-based

region growing algorithm is utilized to segment the focused region mask of each image.

Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a

Laplacian pyramid. The region level pyramid keeps more original information than the pixel

level. The experiment results show that RMLP has best performance in quantitative compar-

ison with other methods. In addition, RMLP is insensitive to noise and can reduces the color

distortion of the fused images on two datasets.

Introduction

Because of limited depth of field, high magnification optical cameras, such as microscopes or

macro-photography, cannot capture an object that is totally in focus. When capturing the

object/scene with the camera, typically only one or a few small regions of the image lying in

focus are clear. Multi-focus images fusion is a common remedy to solve this problem. A set of

images with different focuses are captured, then fused to produce an ‘all-in-focus’ image that

is clear everywhere [1] [2] [3] [4] [5] [6]. The process of synthesizing the all-in-focus image is

called multi-focus image fusion. Multi-focus images fusion has been proven valuable in many

applications such as microscope imaging [7], image deblurring [8], shape from focus [7] [9]

and information forensics [10].

According to fusion methods, the multi-focus images fusion can be categorized into two

types: transform domain based and spatial domain based methods. In the former one, all the

source images are firstly transformed from spatial domain to transform domain by using Fou-

rier transform, multi-scale decomposition or other methods. After being combined by certain

guidelines, the fused coefficients are inversely transformed back to spatial domain to obtain

the expected fusion image. Many transform domain based algorithms are brought forward,

such as the Laplacian pyramid (LP) [11], the Discrete Wavelet Transform (DWT) [12] [13],

the gradient pyramid [14] [15], the contrast pyramid (CP) [16], the ratio-of-low pass pyramid
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[17], the Shift-invariant DWT (SIDWT) [18], the Complex Wavelet Transform (CWT) [19]

[20] and the Contourlet Transform [21] [22] [23].

Unlike transform domain based ones, the spatial domain based methods refer to the strate-

gies that the source images are fused directly in gray space. These algorithms include weighted

average fusion, weighted linear fusion, Principal Component Analysis (PCA) [24], Neutral

Network, etc. The spatial domain based multi-focus image fusion can also be divided into two

categories: pixel based and block based methods. In the pixel based methods, pixels of source

images are fused directly after exactly matching source images. The pixel based fusion methods

can significantly improve the visual effects of the fused image, however, it is sensitive to noise

and misregistration [25] [26]. When applying the block based methods, source images are

firstly divided into N ×M blocks. After comparing the sharpness of the blocks at correspond-

ing position, the blocks with higher sharpness are spliced together to produce an all-in-focus

image [16]. This kind of methods may result in block artifacts. In addition, the size of blocks

can significantly affect the image fusion quality. Compared with the spatial domain based

ones, the transform domain based methods can produce better fusion effect, whose limitations

are the high cost and complexity of its computation.

As a representative of transform domain methods, the pyramid based methods have

already been researched widely. Since these methods belong to the pixel level image fusion in

a broad sense, most of them are sensitive to noise. Noise pixels and sharp regions of image

are both high frequency signal, so it is hard to distinguish them by their frequency bands.

The noises can be falsely identified as the pixels on the focal plane. The transform domain

based methods apply global information to produce all-in-focus image, therefore a small

change (is caused by noise) of any coefficient in the transformed domain may lead to changes

of all pixels in spatial domain [27]. To solve the problem of noisy sensitivity, gradient map

filtering(a directional change in the intensity or color in an image) [14] and multiple coeffi-

cient selection principles [28] are proposed, however, their performance depends on fine-

tuned parameters.

For image fusion, the weighted approaches are more intuitive than pyramid-based methods

[29] [30] [31]. When using weighted approaches, each pixel is assigned a weight which is calcu-

lated based on the focus degree of the source image. Fused image is the weighted summation

of all corresponding pixels. Region mosaicking is a special weighted linear fusion, which sets

one to the weight of the pixels lying at the focusing region, zero to the weight of the other pix-

els. In [32] Agarwala et al. proposed an ‘iterative digital photomontage’ method, which uses an

interactive framework to combine source images into a single image. In the process, the graph

cut algorithm is employed to segment the optimized mask. Mosaic algorithms often introduce

block artifacts, while it can preserve original information of source images. In recent years, the

sparse reconstruction methods are utilized to fuse weighted multi-focus images [10] [27] [29].

Sparse coefficients with the over complete dictionary are used to represent the multi-focus

images. The coefficients are then combined with a choose-max rule, from which the fused

image is reconstructed with respect to the over-complete dictionary. In the experiment results,

the sparse weighted fusion achieved the highest performance among the existing weighted lin-

ear approaches. Recently, an artificial neural network model, pulse coupled neural network

(PCNN), developed by Eckhorn et al. [33] has been employed in many applications of image

fusion including weighted linear fusion [1] [34] [35] [36]. PCNN can automatically measure

focus on the source images and then adjust weights of pixels. This method exhibits good per-

formances in both visual effect and objective evaluation criteria, but a large number of its

parameters often results in computational inefficiency.

When observing micro object by microscope, the characteristic of the captured multi-focus

images is that the focus regions of adjacent frames are continuous, as shown in Fig 1. The

RMLP
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traditional fusion methods devote attention to discrete pixels on focus plane and do not fully

utilize the continuity. For instance, when using pyramid method (such as Laplacian pyramid,

contrast pyramid and gradient pyramid) to fuse a set of multi-focus images, a pixel and its

neighbors often belong to different layers of pyramid. In this case, corresponding focally

regions of different layers are not similar multiscale shapes, which suggest that a great many

pixels of clear regions in source images are lost. In the final fused image fusion, errors and dis-

tortion may be produced because of the above problems. In [37], Hariharan et al. use adap-

tively segmentation of focally connected regions to synthesize an all-in-focus image. Their

method employs overlapping focal regions to extend the depth of field, while retaining the

visual verisimilitude of the scene.

This paper proposes a simple and effective approach, Region Mosaicking on Laplacian

Pyramids (hereafter referred to as RMLP for short), to fuse multi-focus images. It is based on

the observation that the in-focus pixels in a multi-focus image form continuous regions.

RMLP uses Density-Based Region Growing (DBRG) to generate a focus region mask for all

of the multi-focus images. In DBRG, both regions growing and regions filtering are used to

identify appropriate focus regions and reduce the impact of noises. A segmented focused

region mask is decomposed into a mask pyramid, which is then applied to supervise the

region mosaicking on a Laplacian pyramid. RMLP also improves pixel level pyramid fusion

at the region level, where the imaging characteristics of multi-focus images are utilized and

the continuity of segmented focused regions is incorporated. In RMLP, decomposition val-

ues of a pixel at corresponding position of different pyramid layers are taken from the exactly

same multi-focus image, which guarantees that distortion artifacts are reduced to minimum.

In addition, RMLP can also significantly reduce the artifacts introduced by weighted linear

fusion approaches.

The remainder of this paper is organized as follows. An overview of the proposed approach

is introduced in Section 2. Then the focus region segmentation is described in Section 3. The

image fusion procedure of RMLP is given in Section 4. After providing experimental results,

the paper is concluded in Section 6.

Fig 1. An illustration of 3D object imaging with an optical camera. IA and IB are image pixels of point A and B
respectively. With the current focal length, the surface that point A lies on is focused while that of point B is not. It can
be seen1 that in-focus pixels in the image plane form a continuous region. By adjusting the object distance to the lens, a
series of defocused (part-in-focus) images could be obtained.

https://doi.org/10.1371/journal.pone.0191085.g001
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Overview of RMLP approach

The flowchart of RMLP is shown in Fig 2: the competition on Sum-Modified-Laplacian

(SML) is used firstly to detect in-focus (clear) pixels in each image. The SML measurement is

employed as the dominant cue for fusion, which guarantees that the information from multi-

focus images is preserved. Fig 2 shows only three defocused images (the total number is 12) as

the limitation of space.

DBRG is then applied to refine the extracted clear pixels, connect them into clear regions

and form a focus region mask (Section 3). The focus region mask is then decomposed into a

mask pyramid, corresponding to the Laplacian pyramids of multi-focus images. The mask pyr-

amid contains label values of multi-layers, indicating which pyramid will be selected in the

fusion procedure (Section 4).

Since the mask image contains continuous regions instead of disconnected pixels, in the

fusion procedure, one segmented region will be is selected from each Laplacian pyramid

image so that all the selected regions cover the pyramid. This procedure is referred as region

. . .. . .
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Pixel-level

focus measurement
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Fig 2. Flowchart of multi-focus images fusion based on RMLP approach.

https://doi.org/10.1371/journal.pone.0191085.g002
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mosaicking on pyramids. After region mosaicking, a reconstruction procedure is carried out

to obtain the final ‘all-in-focus’ image as the output.

Focus region segmentation

Focus measurement based on Sum-Modified-Laplacian

For multi-focus image fusion, focus measurement needs to be done before focus region seg-

mentation and image fusion. Therefore choosing an appropriate measurement method is

crucial for subsequent process. In [38], Huang et al. contrastively analyzed several typical mea-

surement methods, including Energy of image Gradient (EOG), Energy of Laplacian (EOL) of

the image, Sum-Modified-Laplacian (SML), and spatial frequency (SF). In their experimental

results, SML has the best performance in the aspect of image quality. Performance of EOL

slightly worse than SML, but it is more computational efficient. For higher quality of fused

image, SML is used to measure focus by RMLP. SML is presented by Nayar et al. in 1994 [39].

They firstly defined a modified Laplacian as

r2

MIðx; yÞ ¼
@
2I

@x2

�

�

�

�

�

�

�

�

þ
@
2I

@y2

�

�

�

�

�

�

�

�

: ð1Þ

Where I(x, y) is a source image. In order to accommodate for possible variations in the size of

texture elements, a variable spacing (step) between the pixels is used to compute the deriva-

tives. In this paper, the difference between adjacent pixels is used to replace differential coeffi-

cient, i.e., step equals to one. The discrete approximation of Eq 1 is calculated as

r2

MIðx; yÞ ¼ j2Iðx; yÞ � Iðx � 1; yÞ � iðx þ 1; yÞj

þ j2Iðx; yÞ � Iðx; y � 1Þ � iðx; y þ 1Þj
: ð2Þ

A small window of size (−w, w) is defined around a pixel (i, j), then compute the focus at the

pixel (i, j) as the sum of modified Laplacian:

SML ¼
X

iþw

x¼i�w

X

jþw

y¼j�w

r2

MIðx; yÞ; forr
2

MIðx; yÞ � T: ð3Þ

Where T is a discrimination threshold. In this paper, the size of windows is empirically set

3 × 3, i.e., w = 1.

Focus region segmentation based on region growing

Focus regions have high sharpness, whose SML is much larger than the one in defocus regions.

A mask imageM0 is defined whose pixel values vary in [1, N]. The pixel-level mask imageM0

is initially labeled with

M
0
ði; jÞ ¼ arg max

n

jSMLnði; jÞj; n 2 ½1;N�: ð4Þ

Where SMLn(i, j) is the SML of the nthmulti-focus image at pixel (i, j).

Image segmentation is applied in many scenarios as a common pretreatment method [40]

[41]. The idea of Density-Based Region Growing (DBRG) image segmentation is that the pix-

els with same label are represented as a cluster. The density distribution of clusters is then ana-

lyzed. The spatial neighborhood O(x, y) of a given pixel (i, j) is defined as a circle centered at

the pixel with radius R, where R is determined experimentally as shown in Fig 3 The density

RMLP
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distribution in O(x, y) is defined as

D
Oðx;yÞðnÞ ¼

1

pR2

X

ði;jÞ2Oðx;yÞ

d M
0
ði; jÞ ¼ nð Þ

 !

: ð5Þ

Where the Boolean function δ(�) is defined as

dðxÞ ¼

(

1; x is true

0; otherwise
ð6Þ

If the maximum densitymax
n

ðD
Oðx;yÞðnÞÞ of O(x, y) is larger than a threshold 0.5, then the pixel

(i, j) is called a seed pixel and O(x, y) forms a seed region, as shown by the gray pixels (circles)

in Fig 3. In Fig 3 the pixel (x0, y0) is density-connected with pixel (x, y) if (x0, y0) is within the

spatial neighborhood (mask) of (x, y). Since the pixel (x0 0, y0 0) does not belong to the spatial

neighborhood, it is not the density-connected with (x, y) according to the density-connectivity

defined above.

As a preprocessing of multi-focus image fusion algorithm, DBRG is to find clear focus

regions with high sharpness, so segmented region must be close to the seed point and the

smaller the segmented region the better. Therefore we employ simple “checker-board” dis-

tance as the distance metric. The “checker-board” distance is the most widely used metric in

image segmentation. Euclidean distance is often used to express similarity measure between

feature vectors of image. The topological distance can be used to segment maximum con-

nected region of image [42]. However, considering too much noise will be introduced into the

focus regions. DBRG segmentation algorithm takes a set of mask pixels as input and output a

set of mask regions. The algorithm is presented in Algorithm 1.

Algorithm 1: Mask Segmentation
Input: Pixel-level mask image M0
Output: Region-level mask image R

1 Set all of the pixels of M0 to unlabeled;
2 Search the unlabeled pixels in M0 to find seed pixels and seed

regions;
3 for each seed pixel (x, y) and seed region Ω(x, y) do
4 Create a new cluster with cluster label Rðx; yÞ ¼ arg max

n
ðD

Oðx;yÞðnÞÞ

Fig 3. An illustration of density-connectivity with same mask label.

https://doi.org/10.1371/journal.pone.0191085.g003
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5 for each unlabeled pixel (x0, y0) density-connected with (x, y) do
6 Add (x0, y0) to the same cluster and mark (x0, y0) with label

R(x, y);
7 end
8 end
9 for each unlabeled pixel (x@, y@) do
10 //noise pixels or pixels from smooth region.
11 Choose the labeled pixel most adjacent to (x@, y@); //let the

pixel be (x, y).
12 Add (x@, y@) to the cluster of (x, y) and mark it with the

corresponding label;
13 end
14 Create a region-level mask image R based on clusters;
The density-connectivity among pixels is transitive due to density reachability, which is

consistent with the imaging characteristics of multi-focus images. In defocus regions, focus

measurements are not stable since the SML is small. Noisy pixels can have larger SML than the

true focused pixels. The density based thresholding and growing can reduce the label errors on

smooth regions or noisy pixels.

Image fusion

After segmenting the focus region, the mask is generated with focused regions of source

images. The mask is used to build the mask pyramid and supervise the fusion process of multi-

focus images. This procedure is called region mosaicking on pyramid.

Pyramid based fusion

The initial layer of Gaussian pyramid, G0, is the source image I(x, y). In [16], the kth layer of

Gaussian pyramid can be expressed as:

Gkði; jÞ ¼
X

2

m¼�2

X

2

n¼�2

wðm;nÞGk�1
ð2iþm; 2jþ nÞ; :

k 2 ½1;KÞ; i 2 ½0;RkÞ; j 2 ½0;CkÞ

ð7Þ

Where w(m, n) is a window function with Gaussian low-pass filter, K is the number of layers,

Rk and Ck are the number of columns and rows in the kth layer pyramid respectively. The

bottom pyramid G0 constitute the Gaussian pyramid with other pyramids G1, . . ., GK-1.

Laplacian pyramid can be obtained through calculating difference between two adjacent

layers of Gaussian pyramid. It is defined as

LPk ¼ Gk � G�
kþ1

; k 2 ½0;KÞ

LPk ¼ Gk; k ¼ K

(

ð8Þ

G�
kþ1

is expanded Gk+ 1, whose size is same with Gk.

The classical Laplacian pyramid (LP) algorithm exploits a pixel level competition and fusion

on pyramids as

Fkðx; yÞ ¼ LPn̂
k ðx; yÞ; k 2 ½0;KÞ

n̂ ¼ arg max
n

jLPn
kðx; yÞj; n 2 ½1;N�

(

ð9Þ

Where Fk denotes the k
th layer of the fused LP, LPn

kðx; yÞ denotes LP value of pixel (x, y) at kth

layer of the nthmulti-focus image and N denotes the total number of multi-focus images.

RMLP
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Region mosaicking on Laplacian pyramid

According to Eq 9, the pixel-level fusion pyramid values are selected according to the differ-

ence-of-Gaussian magnitudes of their source images. It is found that regions selected for

fusion in different pyramid layers are not similar figures, and the pixels which need to be

reconstructed often come from more than one multi-focus images. As a result, the original

clear information is lost and distortion is introduced. Therefore, the region based Laplacian

pyramid fusion scheme, i.e., RMLP is proposed as following.

In Fig 4, the focus label mask is also decomposed into the pyramid of three layers,Ml, l = 0,

1, 2. InMl blue and yellow regions indicate respectively focused regions of the defocused

image 1 and 2. LPl, 1 and LPl, 2, (l = 0, 1) are the Laplacian pyramid of two defocused images,

GL, 1 and GL, 2 are the base images of two Gaussian pyramids. F0 and F1 denote the fused Lapla-

cian pyramids. The operator ‘+’ denotes the fusion operation of RMLP.

In RMLP, the segmentation maskM(i, j) is firstly decomposed into a mask pyramid,

Mk(i, j), k 2 [0, K), which is then used to supervise a region level fusion of LP. The correspond-

ing formulation is as follows,

Fkði; jÞ ¼ LPk;Mkði;jÞ
ði; jÞ; k 2 ½0;KÞ: ð10Þ

Where Fk(i, j) denotes the fusion result of pixel (i, j) at the kth layer,Mk(i, j) denotes the mask

label of the kth layer LP, i.e., which multi-focus image should be selected for fusion at pixel

(i, j).

According to Eqs 8–10 the image fusion of the top pyramid is performed as

FK�1
ði; jÞ ¼ GK�1;MK�1ði;jÞ

ði; jÞ: ð11Þ

Defocused image 1 Defocused image 2

Laplacian pyramid

Mask segmentation &

Pyramid decomposition

F0

F1

GL

LP1,1 LP1,2

LP0,1 LP0,2

GL,1 GL,2

M0

M1

ML Region mosacking

Region mosacking

Region

mosacking

Reconstruction

+

+

Fig 4. Illustration of RMLP with two multi-focus images and three pyramid layers.

https://doi.org/10.1371/journal.pone.0191085.g004
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Where K − 1=L=2 is the number of layers of LP, FK−1(i, j) denotes the fusion result of pixel

(i, j) in the top layer image (Kth layer). GK−1, MK−1(i, j)
(i, j) denotes the value of (i, j) of the base

image.MK�1
ði; jÞ ¼ arg max

n
jSMLK�1

n ði; jÞj; n 2 ½1;N� denotes the label of pixel (i, j) of Kth

layer mask image, calculated by the DBRG segmentation algorithm in Section 3.

In the region based fusion procedure,Mk+ 1 is the down-sampling copy ofMk, so corre-

sponding regions inMk andMk+ 1 are same figures. Consequently, most of the pixels (except

for the pixels that lie on region transitive zones) in the fused image are reconstructed with

pixel values from the same multi-focus images. As a result, much of the original clear informa-

tion is kept and distortion is reduced.

When reconstructing the boundary areas, information from more than one multi-focus

image is used. This may induce slight focus information loss in the transitive zones around

the boundary areas. However, the usage of more than one multi-focus image information

guarantees the gradual transformation of a transitive zone so that the block artifacts of the

fused images is eliminated.

With the fusion results in the fused LPs(Fk, k 2 [0, K)), the low-pass-filtered each layer of

Gaussian pyramid (Gk), and the fused top layer image of LP (FK−1(i, j)), a reconstruction proce-

dure is then carried out with

(

GK�1
ði; jÞ ¼ LPK�1

Gkði; jÞ ¼ LPk þ G�
kþ1

; k 2 ½0;K � 1Þ
: ð12Þ

Where Gk and G
� are derived from Eqs 7 and 8. The reconstruction starts from the bottom layer

Gaussian pyramid, G0; then it iteratively calculates the GK−1. According to the Eq 12, a Gaussian

pyramid can be iteratively calculated from the top layer of the Laplacian pyramid. Finally, the

bottom image of the Gaussian pyramid, G0, is precise reconstructed all-in-focus image.

Experiment results

A great number of the fusion approaches are carried in grayscale image. For preserving more

information, however, the proposed RMLP is developed for color image fusion. RMLP is uti-

lized to fuse the multi-focus images on R, G and B channels of RGB color image, respectively.

Then an all-in-focus image is synthesized from the fused results of three channels. In this sec-

tion, our proposed approach is evaluated and compared with the others in captured two data-

sets by a microscope.

Datasets

Two datasets (S1 and S2 Datasets) are collected including fifteen defocused images of the top

of a bullet and twelve defocused images of a bee’s body, respectively. The S1 Dataset is com-

posed of image sequence that is captured at various depths by the microscope. The S2 Dataset

is a sequence of synthetic images. Both S1 and S2 Datasets are used for subjective evaluation

and objective evaluation respectively. As photographing equipment, the maximummagnifica-

tion of the microscope of magnification 200 is used, which is made from the objective of the

magnification 10 and the eyepiece of the magnification 20. The two datasets belong in the typi-

cal applications of forensic and biological fields.

Subject evaluation

Fig 5(a)–5(f) shows six samples of the first dataset, which are the image sequence under different

focus parameters of the bullet. For the depth variation of the ‘top of bullet’ object, each image

has only a stripe region in focus as indicated by a color stripe in the mask image (Fig 5(h)).

RMLP
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When the pixel level focus measurement is used to calculate focus pixels, it can be seen in Fig

5(g) that the mask image is noisy and have many errors.

When the DBRG algorithm of a proper R (see Eq 5) parameter is employed, clear focus

regions are segmented, as shown in Fig 5(h). In Fig 5(i) and 5(j) the fusion results of the

Fig 5. Illustration of the S1 Dataset and its fusion results. (a)-(f) are six random sampled examples from fifty multi-focus images, (g) is the
mask image with only EOF measurement, (h) is the mask image with the proposed DBRG segmentation algorithm. (i) is the fusion result of
the Laplacian pyramid (LP) method [11] and (j)is the fusion result of the proposed RMLP.

https://doi.org/10.1371/journal.pone.0191085.g005
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Laplacian Pyramid (LP) method [11] and the proposed RMLP approach are compared. It can

be seen that in the highlighted regions with two circles in Fig 5(i) and 5(j), the fusion result of

LP method has some color distortion, while the result of RMLP approach only has minimal

distortion which validates the effectiveness of the proposed region mosaicing strategy in reduc-

ing distortion. Like Figs 5 and 6 shows also six samples of the second dataset with more com-

plex texture feature and 3D shape. The results and comparison in Fig 6(i) and 6(j) demonstrate

the performance of the RMLP approach over pixel level LP approach.

Fig 6. Illustration of the S2 Dataset and its fusion results. (a)-(f) are six random sampled examples from sixty multi-focus images, (g) is the
mask image with only EOFmeasurement, (h) is the mask image with the proposed DBRG segmentation algorithm. (i) is the fusion result of
the Laplacian pyramid (LP) method and (j)is the fusion result of the proposed RMLP.

https://doi.org/10.1371/journal.pone.0191085.g006
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Objective evaluation

For objective evaluation, the images of the second dataset are fused and computed the differ-

ence between fused result and the ground-truth. The fusion precisions are evaluated by Root

Mean Squared Error (RMSE) and Structural Similarity (SSIM) [43] [44] [45]. RMSE is defined

as

RMSE ¼

X

X
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X
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y¼1
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Where X and Y are the width and height of the fused image, respectively. I(x, y) denotes the

value of the pixel (x, y) in the fused image and I0(x, y) is the ground-truth of the pixel (x, y)

as the reference value. RMSE is inversely proportional to the performance of the fusion algo-

rithm. If a perfect ‘all-in-focus’ image is achieved, the RMSE will be close to zero.

SSIM can be calculated as:

SSIM ¼
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Where μg denotes the mean intensity of all pixels in a sliding window of the ground-truth, μg
denotes the mean intensity of all pixels in corresponding window of fused image, σg and σf are

the statistical dispersions of all pixels the two windows, σgf is their covariance, C1 = (K1 × L)

and C2 = (K2 × L) are two variables to stabilize the division with weak denominator. K1 and K2

are two constants, L is the dynamic range of the pixel values. In the experiments, K1, K2 and L

are set to 0.01, 0.03 and 255 [44]. As a similarity measure, SSIM compares fused image and the

ground-truth. A lager value of SSIM indicates that the result is more consist with the ground-

truth.

In Fig 7 two types of mask image, stripe and circle, are used to fuse multi-focus image. In

Fig 7(a) and 7(b), the results of RMSE and SSIM are used to determine the value of parameter

R. It can be seen in Fig 7(a) that when R = 8* 16, the highest RMSE is obtained. It can

be seen in Fig 7(b) that when R = 8, the largest SSIM is obtained. According to the above obser-

vations, R 2 [8, 16] is selected as a fine turned parameter. It should be mentioned that the

parameters are selected for an image with 720 × 480 pixels. It has already been observed in

experiments that the value of R should be scaled proportional to the image size. A larger value

of R not only reduces the accuracy but also delay the fusion process.

Fig 7(c) and 7(d) show that RMSE and SSIM have the lowest and highest values respectively

if the pyramid has 6 or 7 layers. More or less layer cannot achieve optimizations for the fused

results. Therefore it is crucial that we must set the appropriate number of layers for the objec-

tive quality of the fused image.

In Fig 7(e) and 7(f), RMLP is compared with six state of the art methods that include pulse

coupled neural network (PCNN) [1], nonsubsampled contourlet transform (NSCT) [21],

interactive digital photomontage (IDP) [32], Laplacian pyramid (LP) [11], the contrast pyra-

mid (CP) [16], Discrete Wavelet Transform (DWT) [46], the Shift-invariant Discrete Wavelet

Transform (SIDWT) [25], Principal Component Analysis(PCA) [24] and sparse reconstruc-

tion method [29]. PCNN is implemented according to the descriptions in [1]. The programs

of other approaches are downloaded from the authors’ websites [47] [48].
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Fig 7. Illustration of quantitative evaluation (a) RMSE and (b) SSIM under different DBRG radius for the focus region mask segmentation. (c) RMSE
and (d) SSIM with different pyramid layers. (e) and (f) are comparisons of nine methods.

https://doi.org/10.1371/journal.pone.0191085.g007
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In Fig 7(e), the RMSE of RMLP is the lowest comparing with other methods, which indi-

cates that RMSE has highest precision for fused images. In Fig 7(f), both the fusion result of

RMLP and ground-truth have highest similarity among seven approaches, which shows that

RMLP retains the most information in the original image. To sum up, the proposed approach,

RMLP, improves the performance of the state of the arts.

Considering the computation issue, the existing PCNNmethod has significantly higher

computational complexity for iterative operations. By contrast, our RMLP approach is signifi-

cantly simpler and more efficient. The average execution time is also compared, which is

shown in Fig 8. The average execution time of PCNN approach is about 12.0 seconds to

fuse an image of 720 × 480 pixels on an Intel Core i3-2130CPU of 3.4 GHz. The proposed

approach, RMLP, however, spends just 1.35 seconds. In contrast, the IDP approach that uses a

graph-cut optimal algorithm to calculate focus region mask spends 2.6 seconds on average.

Conclusions

Pyramid based image fusion approaches, such as Wavelet or Contrast Pyramids, are classic

methods for image fusion. When these methods are applied to multi-focus image fusion, the

region continuity characteristics are not fully explored. In this paper we propose a new multi-

focus image fusion approach, called RMLP, which explores unique characteristics of multi-

focus imaging and transfers the classical pixel-based pyramid fusion to region-based. The per-

formance of RMLP is evaluated in both objective and subjective datasets. The experiment

results show that RMLP has lowest error and best robustness comparing with the existing

methods.

A well-known problem of existing popular approaches is that all multi-focus images need

to be aligned with each other. The miss-alignment of images may cause failure on the fusion

results. In order to insure alignment, the multi-focus images of our data set were captured by a

stable platform (a desktop microscope).

Supporting information

S1 Dataset. Image sequence captured at various depths by the microscope.

(ZIP)

Fig 8. Average execution time of RMLP and other methods.

https://doi.org/10.1371/journal.pone.0191085.g008
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S2 Dataset. Image sequence of synthetic images.

(ZIP)
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