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Abstract

Background: Improved usage of the repertoires of pancreatic ductal adenocarcinoma (PDAC) profiles is crucially

needed to guide the development of predictive and prognostic tools that could inform the selection of treatment

options.

Methods: Using publicly available mRNA abundance datasets, we performed a large retrospective meta-analysis on

466 PDAC patients to discover prognostic gene signatures. These signatures were trained on two clinical cohorts

(n = 70), and validated on four independent clinical cohorts (n = 246). Further validation of the identified gene

signature was performed using quantitative real-time RT-PCR.

Results: We identified 225 candidate prognostic genes. Using these, a 36-gene signature was discovered and

validated on fully independent clinical cohorts (hazard ratio (HR) = 2.06, 95% confidence interval (CI) = 1.51 to 2.81,

P = 3.62 × 10−6, n = 246). This signature serves as a good alternative prognostic stratification marker compared to

tumour grade (HR = 2.05, 95% CI = 1.45 to 2.88, P = 3.18 × 10−5) and tumour node metastasis (TNM) stage (HR = 1.13,

95% CI = 0.66 to 1.94, P = 0.67). Upon multivariate analysis with adjustment for TNM stage and tumour grade, the

36-gene signature remained an independent prognostic predictor of clinical outcome (HR = 2.21, 95% CI = 1.17 to

4.16, P = 0.01). Univariate assessment revealed higher expression of ITGA5, SEMA3A, KIF4A, IL20RB, SLC20A1, CDC45,

PXN, SSX3 and TMEM26 was correlated with shorter survival while B3GNT1, NOSTRIN and CADPS down-regulation

was associated with poor outcome.

Conclusions: Our 36-gene classifier is able to prognosticate PDAC independent of patient cohort and microarray

platforms. Further work on the functional roles, downstream events and interactions of the signature genes is likely

to reveal true molecular candidates for PDAC therapeutics.

Background

Pancreatic ductal adenocarcinoma (PDAC) is amongst the

leading causes of cancer deaths in the world, with 5-year

survival of less than 5% [1,2]. Surgical excision offers the

best chance for long-term survival [3,4] since there is limited

response to adjuvant chemotherapy [5,6]. Median survival

following surgical resection and adjuvant chemotherapy is

between 22 and 24 months [7]. Only 15% of patients present

with a resectable tumour. Of these, nearly 80% develop local

or distant recurrence within 2 years, reflecting the need for

better prognostic and predictive biomarkers to dictate adju-

vant therapy [4].

Clinical and pathological characteristics have limited

value in predicting prognosis in PDAC patients with meta-

static, locally advanced or resectable sub-groups [8,9].

There are no established diagnostic, prognostic or predict-

ive biomarkers for PDAC [10]. Compared to other cancers,

such as breast and ovarian cancers, there is no biological or

genetic classifier for PDAC tumours, despite the increased

understanding of genetic heterogeneity among PDAC tu-

mours [6,11,12]. Recent research has started to discriminate

different PDAC subtypes, which indicate patients at a rela-

tively higher risk of metastasis and those with a differential

response to therapy [3,6,13-17]. These studies present a

complex genomic and transcriptomic landscape for PDAC
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and they propose gene signatures that are able to predict

patient outcome for their respective clinical cohorts. For

example, Collisson et al. [13] identified a 62-gene expres-

sion signature representing three distinct PDAC subtypes,

which were assessed for prognostic value in a clinical co-

hort of only 27 patients. Donahue et al. [14] proposed an

integrative 171-gene signature (microRNA, DNA copy

number and mRNA expression) that was able to stratify

PDAC patients into two prognostic subgroups. Of these

171 genes, the independent validation was restricted to

three genes only: SRC (n = 148), p85α (n = 148) and CBL

(n = 42). Similar efforts by Stratford et al. [3] and Zhang

et al. [17] identified expression prognostic gene signatures,

which they validated for 67 and 27 patients, respectively.

Biankin et al. [6] demonstrated independent prognostic

power for four genes in a clinical cohort of 88 patients:

ROBO2, ROBO3, SEMA3A and PLXNA1. Whilst these

studies have produced a series of multi-modal PDAC

molecular profiles with potential prognostic ability, cross-

validation, generalisability and systematic analysis are lack-

ing, which as yet precludes clinical application.

Since signatures derived through meta-analysis offer

increased power and robustness [18-22], we conducted a

large-scale retrospective, multi-cohort analysis of PDAC

mRNA abundance profiles to identify clinically relevant

PDAC prognostic biomarkers. All patients with survival

data were included in analyses without screening using

any other clinical variable.

Methods

Additional information about the methods is provided in

Additional file 1.

Literature search

PDAC mRNA abundance datasets were collected through

the pancreatic expression database [23]. Studies with both

mRNA and clinical data were used for prognostic signa-

ture discovery and validation. Studies without clinical data

were only used in the cluster analysis of signature genes.

Verona clinical cohort

Samples from 28 PDAC patients who underwent a sur-

gical resection of PDAC at the University of Verona

(Italy) were profiled using Affymetrix GeneChip Human

Exon 1.0 ST Array. Data are made available through

GEO [24] [GEO:GSE56560]. The samples collected

from the Verona cohort were collected in accordance

with the Declaration of Helsinki. They were residual tis-

sue samples left over after samples were collected for

diagnostic purposes. They were collected with the ap-

proval of the Verona Hospital Trust local ethics com-

mittee under a general approval to study biomarkers in

the pancreas cancer programme 1885. The samples had

either individual patient consent or a waiver from the

ethics committee (Azienda Ospedaliera Universitaria

Integrata Verona, Italy). In both circumstances, the sam-

ples were collected and accessed into the biobank. The

samples and associated information were anonymised to

ensure patient privacy and protection.

Preprocessing pancreatic ductal adenocarcinoma mRNA

abundance datasets

Raw Affymetrix GeneChip Human Exon 1.0 ST, Gene 1.0

ST, U133 Plus 2.0 and U133A Array data were robust

multi-array average (RMA) normalised independently.

Agilent and Illumina datasets were downloaded in original

preprocessed form from GEO [3,6]. Across all datasets,

whenever multiple probe sets were mapped to the same

HUGO gene nomenclature committee (HGNC) gene

symbol, the probe set with the largest variance was kept.

The Cancer Genome Atlas breast, colorectal and ovarian

cancer datasets

Preprocessed The Cancer Genome Atlas (TCGA) breast

(BRCA), colorectal (COADREAD) and ovarian (OV) can-

cer datasets (mRNA abundance and clinical data) were

downloaded from TCGA data portal (gdac), release 2014-

01-15.

Differentially expressed features

Differentially expressed genes (transcript cluster ids) be-

tween 42 matching PDAC associated normal tissues

were identified using LIMMA.

In silico dataset merging

The Verona and Zhang (training) cohorts were merged

using the distance weighted discrimination algorithm

(DWD).

Parameter selection

The choice of the optimal parameters (Padjusted < 0.01, ab-

solute log2-fold change >0, and Wald test P < 0.05) was

based on the classification performance and signature size

for the training cohort (Additional file 2: Table S3).

Univariate prognostic gene selection

The DWD-merged training cohort was used to estimate the

prognostic value of the differentially expressed genes. Patient

risk groups were ascertained by median-dichotomising

mRNA abundance intensities (continuous) into low- and

high-risk groups, and relative hazard was estimated using a

Cox proportional hazards model.

Patient classification

The classification of patients into risk groups was done

using prediction analysis of microarrays (PAM). The PAM

algorithm clusters samples into k-groups using nearest

shrunken centroids. Using the DWD-merged mRNA
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abundance data alongside patient survival data, the model

was trained in a leave-one-out cross-validation (LOOCV)

setting using R package pamr v1.54.1. The model with the

minimum cross-validation error in the training cohort

was selected. The trained model was applied to mRNA

abundance profiles in the validation cohort to predict pa-

tient risk groups, which were subsequently used in

Kaplan–Meier analysis. The survival differences between

patient risk groups were assessed using a Cox propor-

tional hazards model (hazard ratio), with a P value esti-

mated through a Wald test or log-rank test.

Classification accuracy

The classification accuracy of the validation cohort was

estimated by establishing a 2 × 2 confusion table. Patients

with survival time >20 months (average of median PDAC

survival in studies listed in Additional file 2: Table S1 ex-

cept Donahue et al.) were labelled as low-risk group, while

the patients with survival time ≤20 months were classed

as high-risk group. Sensitivity, specificity and accuracy

were estimated through a 2 × 2 contingency table.

Quantitative real-time RT-PCR

Quantitative real-time RT-PCR (qRT-PCR) was performed

for ITGA5, NOSTRIN, CDC45 and KIF4A for a mix of 12

samples from the Verona cohort and nine independent

new samples.

Results

Prognostic assessment of differentially expressed genes

in pancreatic ductal adenocarcinoma

To capture PDAC heterogeneity sufficiently well, we con-

ducted a meta-analysis involving 466 PDAC samples from

ten mRNA abundance datasets (nine studies) generated

on different platforms [3,6,13-17,25,26] (Additional file 2:

Table S1). Of these, 316 samples had patient survival data

available. To investigate the existence of potential clinical

subtypes amongst these PDAC samples, a multi-step su-

pervised feature selection was performed, which identified

candidate prognostic genes (Additional file 3: Figure S1

and Additional file 4: Figure S2). Forty-two PDAC samples

were initially compared against their matched normal tis-

sues [17]. Having identified 7,374 out of 33,297 differen-

tially expressed transcript clusters (Padjusted < 0.01), we

sought to establish an association with patient outcome.

For increased power and inter-tumour heterogeneity

coverage, a merged training cohort (Verona + Zhang co-

horts, n = 70) was created using the DWD algorithm [27].

The microarray platform similarity between the two

cohorts reduced the potential biases arising from in silico

merging. The training cohort was used to identify statisti-

cally significant prognostic genes (Cox proportional

hazards model, Wald test P < 0.05). Univariate survival

analysis revealed 225 highly prognostic genes, which

stratified patients into appropriate risk groups (P < 0.05)

(Additional file 2: Table S2). We comprehensively evaluated

the choice of our gene expression and survival analysis

cut-offs, and chose the optimal parameters that maximised

training cohort performance (Additional file 2: Table S3).

The 36-gene signature predicts clinical outcome in

independent patient studies

Using the 225 candidate prognostic genes, we searched for

the most discriminating subset of genes that correlated with

clinical outcome (overall survival). PAM was used with the

mRNA abundance profiles along with the clinical data

using the training cohort. By minimising the LOOCV error

rate, a 36-gene classifier was built with a prognostic group

identification accuracy of 78% (Additional file 5: Figure S3,

Additional file 6: Figure S4 and Additional file 2: Tables S4

and S5). Subsequently, this classifier was employed to pre-

dict outcome for patients initially assigned to the validation

cohorts (Figures 1 and 2A). The 36-gene signature identi-

fied patients with a significantly shorter postoperative sur-

vival (hazard ratio (HR) = 2.06, 95% confidence interval

(CI) = 1.51 to 2.81, P = 3.62 × 10−6 log-rank test, classifica-

tion accuracy = 64.68%) (Figure 2B,G). Notably, only up to

17% patients in the high-risk group survived beyond

24 months compared to 45% in the low-risk group. Like-

wise, the rate of 36-month survival in the high-risk group

was only 11% compared to 31% in the low-risk group.

To validate our finding further, Kaplan–Meier analysis

was conducted on each of the validation cohort’s constitu-

ent datasets independently. The 36-gene signature was sig-

nificantly associated with patient outcome in the Biankin

(HR = 2.52, 95% CI = 1.39 to 4.56, P = 0.002, n = 87),

Collisson (HR = 2.77, 95% CI = 1.17 to 6.53, P = 0.016,

n = 27) and Stratford (HR = 1.96, 95% CI = 1.2 to 3.21,

P = 0.007, n = 102) datasets (Figure 2C,D,E). The combined

HR was 2.23, 95% CI was 1.58 to 3.14, P = 2.97 × 10−6 and

accuracy was 66.28%. However, our gene signature was not

confirmed in the Winter cohort (HR = 1.25, P = 0.567,

95% CI = 0.58 to 2.68, n = 30) (Figure 2F). Possible reasons

for this discrepancy could be the unbalanced nature of the

clinical cohort assembled by Winter et al., as none of the

patients received adjuvant therapy, and because this was

the only cohort in our study with a significantly higher

number of Grade 3/4 patients (Additional file 2: Table S1).

It is noteworthy that the validation cohort has data from

three different microarray platforms (Affymetrix, Agilent

and Illumina) (Additional file 2: Table S1). This emphasises

the stability and robustness of our signature across the

PDAC cohorts used in this analysis.

Since clinical stage for tumour node metastasis (TNM)

and tumour grade may also possess prognostic value, we

compared the predictive ability of our molecular signature

to that of clinical stage and histological grade. Stage IA, IB

and IIA patients were compared to stage IIB, III and IV
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patients, while grade 1 and 2 patients were compared to

grade 3 and 4 patients. Kaplan–Meier survival analysis of

these datasets revealed TNM stage as a poor prognostic fac-

tor (HR = 1.13, 95% CI = 0.66 to 1.94, P= 0.667) (Additional

file 7: Figure S5), whereas tumour grade was a strong pre-

dictor of patient outcome (HR= 2.05, 95% CI = 1.45 to 2.88,

P= 3.18 × 10−5) (Additional file 8: Figure S6). These findings

are in line with previously published pancreatic cancer stud-

ies suggesting the strong prognostic value of tumour grade

and highly variable patient survival within TNM stage

groups [28,29]. Following the univariate analysis of stage

and grade, the 36-gene signature classifier was adjusted for

the effect of stage, grade and combined effect of both stage

and grade. The multivariate modelling results further sup-

ported the contention that the 36-gene signature is an inde-

pendent predictor of patient outcome (stage-adjusted

model: HR= 1.94, 95% CI = 1.32 to 2.85, P = 7.9 × 10−4;

grade-adjusted model: HR= 2.03, 95% CI = 1.33 to 3.09, P=

9.77 × 10−4; stage-and-grade-adjusted model: HR = 2.21, 95%

CI = 1.17 to 4.16, P = 0.014; Wald test P values). The prog-

nostic capability of the 36-gene signature was further com-

pared to a panel of 15 clinicopathological covariates [6]. Our

signature outperformed all 15 covariates, including the

resection margins, and was the best prognostic indicator

(PMargins= 0.0094, n = 131; P36-sig= 0.002, n = 87).

Subtype-specific patterns of gene expression and

outcome association

To understand the PDAC subtype-specific transcrip-

tional activity, we asked whether these 36 genes are dif-

ferentially expressed between the two PDAC subtypes.

To avoid training-specific bias, we limited our analysis

to the validation datasets only (n = 393). Of the 36 genes,

31 were differentially expressed (Padjusted < 0.05) (Figure 1,

Additional file 2: Table S6). However, the reproducibility

of the training-set-derived centroids in the validation co-

hort suggests their stability across a number of patients

studies conducted on different array platforms. To assess

prognostic power of the signature genes, we conducted a

univariate survival analysis restricted to the validation

cohort (n = 246). The results indicated there were 12

significantly prognostic genes (P < 0.05; Wald test)

(Figure 2H, Additional file 2: Table S7). Of these, the

higher expression of ITGA5, SEMA3A, KIF4A, IL20RB,

SLC20A1, CDC45, PXN, SSX3 and TMEM26 was corre-

lated with poor survival, suggesting oncogenic potential

Figure 1 mRNA abundance patterns of 36-gene signature. Three genes (RFX8, RPSAP58 and GTF2IRD2B) were removed as over 50% of the

validation cohort samples did not have corresponding expression profiles available given the annotation libraries used at the time of this study,

and were therefore deemed unsuitable for clustering. The annotations on the right represent HGNC gene symbols along with asterisks indicating

the significance of the mRNA-based differential expression between the predicted risk groups (***Padjusted < 0.001, **Padjusted < 0.01 and *Padjusted
< 0.05). The covariates along the horizontal axis show a patient’s predicted risk group (black is low risk and red is high risk) and underlying dataset

(red = Badea, green = Biankin, blue = Collisson, cyan = Donahue, magenta = Grutzmann, yellow = Pei, grey = Stratford and white = Winter). These

results show two clusters of differential gene expression between the patient groups that demonstrate significantly different overall survival.

HGNC, HUGO Gene Nomenclature Committee.
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Figure 2 Performance assessment of PDAC classifier. (A) Kaplan–Meier survival analysis of patient risk groups identified with the training

cohort using the 36-gene signature. (B) Kaplan–Meier survival analysis of the predicted risk group of patients in the merged validation cohort

using the 36-gene signature. The hazard ratio (HR) was estimated using a Cox proportional hazards model, and curves were compared using a

log-rank test. (C-F) Independent validation across all the individual datasets that make up the validation cohort. (G) Assessment of classification

accuracy using sensitivity and specificity estimates. Patients in the validation cohort were dichotomised by a median survival of 20 months (grey

line), and classed into low- and high-risk groups, dashed black and red curves respectively. The solid curves represent a patient’s predicted risk

group. Comparison between the two sets of groups indicates an overall 64.68% classification accuracy. (H) Forest plots of the genes in the

prognostic signature. A Cox proportional hazards model was fitted to the signature genes in a univariate context. The horizontal axis represents

HR (black squares) and 95% CIs (solid line). The asterisks represent the significance of the difference in patient outcome between the low- and

high-expression groups (***P < 0.001, **P < 0.01 and *P < 0.05; Wald test). CI, confidence interval; HR, hazard ratio; PDAC, pancreatic

ductal adenocarcinoma.
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(Figures 1 and 2H). Conversely, B3GNT1, NOSTRIN and

CADPS followed a reverse trend with down-regulation

associated with poor outcome (Figures 1 and 2H), thus

suggesting a tumour suppressor role.

Comparison with pancreatic ductal adenocarcinoma

prognostic gene signatures

A number of PDAC prognostic gene signatures have

been proposed and most of the underlying datasets were

included in our analyses [3,13,14,16]. With regards to

existing classifiers, the performance of the 36-gene sig-

nature was comparable to the 62-gene PDAssigner [13]

(P = 0.038, n = 27), 171-composite gene signature [14]

(P = 0.009, n = 25) and six-gene signature [3] (P = 0.001,

n = 67). In terms of underlying genes, the overlap be-

tween the 36-gene signature and known PDAC gene sets

was non-existent, and so was the trend amongst these

gene sets (Figure 3A) [3,6,13-17,25,26]. There was only

one gene (PHLDA1) in common between the 36-gene

signature and the Quasimesenchymal subtype (QM-

PDA) of Collisson et al. Upon expanding the 36-gene

signature to its candidate prognostic gene list (225

genes, hereafter referred to as PDAC-225) (Additional

file 2: Table S2), only three genes were shared between

PDAC-225 and Donahue et al. (Figure 3B). Extending

the analysis to single gene predictors (DPEP1 and TPX2

for Zhang et al., and ROBO2, ROBO3, PLXNA1 and

SEMA3A for Biankin et al.), again, there was no overlap

between either of these gene sets and the rest of the pre-

viously published results. Apart from SEMA3A, none of

the Zhang et al. and Biankin et al. genes were in com-

mon with the 36-gene and PDAC-225 signatures.

Random gene signatures of pancreatic ductal

adenocarcinoma

Previous studies have exposed a large number of verifiable

random gene signatures in breast and non-small-cell lung

cancer, which explains the lack of overlap between prog-

nostic gene signatures [20,30]. However, it is unknown

whether PDAC expression datasets contain any valid ran-

dom prognostic signatures. To determine the presence of

such signatures, and further investigate these for potential

enrichment of the 36 prognostic genes, we generated over

5 million random gene signatures. Since the 36-gene sig-

nature was created using an initial pool of 225 prognostic

genes, we randomly selected 225 genes and processed

these using the same protocol as used for the identifica-

tion of the 36-gene signature. The performance of these

signatures was assessed with the validation datasets alone

as well as with the merged validation cohort using a χ
2

statistic. In total, 1,138 signatures were significantly

associated with patient outcome in each of the Biankin,

Collisson and Stratford cohorts (Padjusted < 0.05) (Additional

file 9: Figure S7). None of the signatures were reproducible

in the Winter cohort following adjustment for multiple

comparisons. As shown in the kernel density plots

(Figure 4) for individual validation set studies, the 36-gene

signature demonstrated superior performance compared to

most random gene signatures. In conclusion, the 36-gene

signature represents an optimal combination of highly re-

producible and robust prognostic genes.

Functional interpretation and validation

Functional analysis of the 225 candidate genes revealed a

number of highly enriched mitosis and cell division check-

point sub-networks (Padjusted= 8.88 × 10−3) (Additional file 2:

Table S8). Focussing on the biological pathways represented

by the 36-gene signature, we found 13 significantly enriched

pathways (P= 0.004 to 0.047), primarily encompassing cell

cycle, cell-cell signalling and cell survival and death pro-

cesses (Additional file 2: Table S9). Since cell cycle is central

to tumour development and progression, we tested the

prognostic value of the 36-gene signature in three other dis-

ease types: breast, colorectal and ovarian cancers [31-33]. In

Figure 3 Overlap among PDAC gene signatures. (A) Venn diagram detailing overlaps between the 36-gene signature and existing PDAC gene

signatures. (B) Same as (A) except all the candidate prognostic genes used to derive the 36-gene signature were assessed for overlap with the

existing PDAC gene signatures. PDAC, pancreatic ductal adenocarcinoma.
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breast cancer, 11 genes were associated with overall survival

(P < 0.05) (Additional file 2: Table S10). However, both colo-

rectal and ovarian cancers presented an entirely different

clinical association of these genes with only one gene in each

cancer type (colorectal: B3GNT1, ovarian: PXN) associated

with poor prognosis (Additional file 2: Tables S11 and S12).

We validated the expression of four prognostic genes

(ITGA5, KIF4A, CDC45 and NOSTRIN) using qRT-PCR

in a mix of profiled and independent samples. The

results confirmed the prognostic trend from the array

data. Higher expression of ITGA5, KIF4A and CDC45

was correlated with poor prognosis while low expression

of NOSTRIN was correlated with poor prognosis

(Additional file 10: Figure S8).

Discussion
Our systematic analysis yields a clinically valuable and

biologically plausible 36-gene signature, which predicts

outcome after current surgical treatment irrespective of

the expression platform used. This prognostic gene-

expression signature was derived from two patient

cohorts, and validated on four fully independent patient

cohorts treated in North America, Europe and

Australia, and profiled using different microarray plat-

forms, thus demonstrating its robustness across clinical

spectrum and assay platforms. Our meta-analysis ap-

proach offered greater statistical power in addressing

PDAC biological heterogeneity as well as treatment

variation. The treatment variation and sample size may

influence the prognostic subtype identification process,

as shown recently in a breast cancer study of 2,000 sam-

ples indicating ten subgroups, which were potentially

suitable for different approaches to treatment [34].

However, given that there are only limited treatment op-

tions for PDAC and our limited understanding of the

predisposing risk factors at the molecular level [35],

Figure 4 Random prognostic gene signatures for PDAC. (A–E) Randomisation results of 5 million gene signatures with the initial feature set

of 225 genes. All signatures were trained and validated on the same datasets as used for the derivation of the 36-gene signature. A χ
2 statistic

was used a performance metric for comparing random signatures with the 36-gene signature. The dashed lines are the χ
2 values for the 36-gene

signature. Overall, only 0.19% of the random signatures outperformed the 36-gene signature across all datasets. (F) Percentage inclusion of genes

in the 36-gene signature for the randomly selected gene signatures. Thirty-one out of 36 genes were amongst the top 5% genes with highest

inclusion frequency, with SEMA3A ranked highest (overall ranked 11th). PDAC, pancreatic ductal adenocarcinoma.
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low- and high-risk grouping is, perhaps, most tractable

from a clinical point of view.

We also demonstrate a lack of overlap between existing

PDAC gene signatures that show prognostic and/or pre-

dictive potential [3,6,13-17,25,26]. This could be due to the

small discovery cohort size, the inherent noise in different

microarray experiments leading to confounded results [36],

and/or, the impact of the clinicopathological characteristics

of samples selected for a particular study on candidate gene

selection. We addressed these issues with systematic pre-

processing of disparate microarray datasets and subsequent

integration of results while keeping noise aggregation to a

minimum. The integration of clinical cohorts with different

treatment regimens or histological subtypes remains an in-

fluential factor when isolating disease-specific genes. Most

patients included in this meta-analysis had localised PDAC,

with a similar spread of clinical covariates, and were treated

with surgical resection along with adjuvant chemotherapy,

thus, ensuring that our integration of disparate patient co-

horts was adequately addressed. Taking these factors to-

gether with the results of the permutation analysis showing

the existence of 1,138 signatures, the lack of overlap be-

tween existing PDAC signatures can be explained as previ-

ously shown for breast and lung cancers [20,30].

The relatively sparse clinical annotation made com-

parison with currently used clinicopathological predic-

tors difficult. TNM stage and tumour grade, the most

commonly used clinical predictors, were available for a

limited number of patients and our 36-gene signature

predictor was superior to stage-based and highly com-

petitive with grade-based classifiers. Further validation

of our marker in an adequately powered study is needed.

Upon assessing the prognostic ability of the 36 genes in-

dependently, and examining the pathways they modulate,

we demonstrated significant enrichment of ITGA5 and

SEMA3A in a number of signalling pathways, including

the recurrently mutated axonal guidance-signalling path-

way [6]. The correlation of increased SEMA3A expression

with poor survival of patients with PDAC is supported by

two previous studies [6,37], possibly due to the ability of

SEMA3A to promote PDAC cell invasion [37]. Our inde-

pendent validation of ITGA5, KIF4A, CDC45 and NOS-

TRIN was based on the biological plausibility and their

relatively greater contribution to this predictive gene sig-

nature. Our top hit, ITGA5, encodes for integrin alpha-5,

which in turn associates with integrin beta-1 to form the

fibronectin receptor (α5β1), and higher expression levels

correlate with metastatic potential and poor prognosis in

patients with PDAC [38]. Kinesin family member 4A

(KIF4A), a microtubule-binding motor protein, is a candi-

date oncogene identified in lung cancer [39]. CDC45 plays

a critical role in DNA replication; thus, its expression is

associated with rapidly proliferating cell populations [40].

Cdc45 is also a critical effector of Myc-dependent DNA

replication stress and thus, when over-expressed or ampli-

fied, could act as an oncogene [41]. CDC45 plays a critical

role in DNA replication and its expression is tightly asso-

ciated with proliferating cell populations [6,37]. Lastly, we

confirmed that NOSTRIN expression could be a good

prognosticator. NOSTRIN is an F-BAR-domain-contain-

ing protein, a group of adaptor proteins performing essen-

tial roles, such as membrane protrusion and migration, in

conjunction with FGFR1, Rac1 and Sos1 [42]. The control

of FGFR1 sub-cellular location is vital for invasion and

metastases in PDAC [43].

Thus far, none of the identified mutations in PDAC, ex-

emplified by K-RAS, the most frequent mutation, have

borne therapeutic targets [44]. The altered expression of

the genes identified herein, in the absence of mutations,

may be more useful for identifying drug targets [45-47]

and will need to be explored in experimental studies.

Moreover, the presence of ADM, B3GNT1, CNNM3,

ICOSLG, ITGA5, KIF4A and QDPR in the urine and/or

plasma proteome, lead us to believe that in our gene sig-

nature there are potentially interesting clinically valuable

prognostic biomarkers [48,49]. Finally, our classifier’s abil-

ity to predict accurately across different array platforms

confirms its robustness, irrespective of clinical presenta-

tion or medical delivery systems. Thus, we anticipate a

thorough examination of functional roles of these genes

and corresponding downstream events to reveal novel

PDAC diagnostic and therapeutics.

Conclusions
Here we present a large retrospective meta-analysis of 466

PDAC patients to discover prognostic gene signatures with

5-year overall survival as an end point. These signatures

were trained on two patient cohorts (n = 70), validated on

four patient cohorts (n = 246), and examined for cross-

platform reproducibility. We observe that the higher ex-

pression of ITGA5, SEMA3A, KIF4A, IL20RB, SLC20A1,

CDC45, PXN, SSX3 and TMEM26 was correlated with

shorter survival while down-regulation of B3GNT1, NOS-

TRIN and CADPS was associated with poor outcome. Our

36-gene classifier is able to prognosticate PDAC independ-

ent of patient cohort and microarray platforms. Further

work on the functional roles, downstream events and inter-

actions of the signature genes is likely to reveal true mo-

lecular candidates for PDAC therapeutics.

Additional files

Additional file 1: Supplementary Methods.

Additional file 2: Table S1. PDAC studies, along with corresponding

platform and cohort size. Rows in grey indicate the discovery and

training datasets. Table S2. Results for the 36-gene signature for the

univariate Cox proportional hazards model. Only genes that are

significantly associated with patient outcome (survival time) are listed
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(P < 0.05; Wald test). The columns contain hazard ratio (HR), 95%

confidence intervals (HR95L: lower and HR95U: upper), Wald test P values

(P) and total number of samples in the training cohort (n). Table S3.

Class-wise error rate determined by varying feature selection parameters.

Parameters tested were differential expression variables (LIMMA Padjusted
and absolute log2-fold change) and Wald test P following a univariate

Cox proportional hazards fit (training cohort only). The model with the

smallest error rate and gene-set size was selected, and subsequently

applied to independent validation cohorts. Table S4. HGNC genes (Gene)

and gene descriptions (Description) selected by the prognostic classifier.

Table S5. Centroids for the low- and high-risk groups estimated by the

nearest shrunken centroid fit on the training cohort. Table S6. Differential

mRNA abundance analysis of 36-gene signature for the validation cohort.

The columns indicate LIMMA statistics including Padjusted and log2-fold

change. The last column (ID.with.stars) shows the Padjusted derived

significance (*** Padjusted < 0.001, ** Padjusted < 0.01 and * Padjusted < 0.05).

Table S7. Results for the 36-gene signature for the univariate Cox

proportional hazards model with the validation cohort. The columns

contain hazard ratio (HR), 95% confidence intervals (HR95L and HR95U),

Wald test P values (P) and total number of samples in the validation

cohort (n). Thirty-two out of 36 genes were present in all validation

datasets. Table S8. Enrichment analysis of gene subsets found in 225

candidate prognostic genes. Genes were analysed using GeneMania. No

additional neighbouring genes were added to the network. The columns

contain functionally related gene sets (Feature), the enrichment

significance of genes found in 225 candidate genes containing known

functionally related genes (FDR), number of related genes found in 225

candidate genes (Genes in network), and the overall total number of

genes associated with a particular function in the human genome.

Table S9. Pathway enrichment analysis of 36 genes using the Ingenuity

IPA tool. Pathways are ranked by the significance of enrichment (−log10
(P)). Table S10. Results for the 36-gene signature for the univariate Cox

proportional hazards model with the TCGA breast cancer cohort (BRCA).

The columns contain hazard ratio (HR), 95% confidence intervals (HR95L

and HR95U), Wald test P values (P) and total number of samples in the

cohort (n). Table S11. Results for the 36-gene signature for the univariate

Cox proportional hazards model with the TCGA colorectal cancer cohort

(COADREAD). The columns contain hazard ratio (HR), 95% confidence

intervals (HR95L and HR95U), Wald test P values (P) and total number of

samples in the cohort (n). Table S12. Results for the 36-gene signature

for the univariate Cox proportional hazards model results with the TCGA

ovarian cancer cohort (OV). The columns contain hazard ratio (HR), 95%

confidence intervals (HR95L and HR95U), Wald test P values (P) and total

number of samples in the cohort (n). Table S13. Primers used for

qRT-PCR.

Additional file 3: Figure S1. Signature identification process. From the

Zhang dataset, 7,374 differentially expressed transcript clusters (TCs) were

identified (Padjusted < 0.01) and 225 significantly prognostic genes were

identified by fitting a univariate Cox proportional hazards model to the

merged Verona and Zhang cohorts (training datasets). A 36-multi-gene

classifier was trained using the training datasets, and subsequently

applied to the validation datasets to predict patient risk score. Risk scores

were assessed for their prognostic power using Kaplan–Meier survival

analysis. The survival curves were compared using a log-rank test. DE,

differentially expressed; LOOCV, leave-one-out cross-validation; PAM,

prediction analysis of microarrays; PDAC, pancreatic ductal

adenocarcinoma; TC(I), transcript cluster (Identifier).

Additional file 4: Figure S2. PRISMA flow chart showing study

selection steps for this meta-analysis. PDAC, pancreatic ductal

adenocarcinoma.

Additional file 5: Figure S3. Overall and class-wise error as a function

of classifier size (number of genes). The horizontal axis (both top and

bottom panels) represents the threshold (delta) values limiting the

number of genes in the nearest shrunken centroid fit. The vertical axis

(both top and bottom panels) shows the cross-validation classification

error by varying the delta. Asterisks show the optimal performance in

the top panel. In the bottom panel, lines 1 (red) and 2 (green) show

class-wise predictive performance (training cohort) for the high- and

low-risk groups, respectively.

Additional file 6: Figure S4. Heat map of mRNA abundance intensities

of 36-gene signature applied to the training cohort. RMA preprocessed

and DWD merged data (Verona and Zhang cohorts) were transformed to

z scores (data shown as rows in the heatmap). The legend represents

relative over- (red) and under-expression (blue). The covariates at the top

represent predicted low- (black) and high-risk (red) patients. DWD,

distance weighted discrimination algorithm; RMA, robust multi-array

average.

Additional file 7: Figure S5. Kaplan–Meier survival analysis to assess

prognostic value of TNM stage. (A-D) Patients were assigned to low- (stage

IA/IB/IIA) and high-risk (IIB/III/IV) groups, and a Cox proportional hazards

model was fitted. None of the datasets showed a significant difference in

patient survival. (E) Patient outcome between all stage groups was

compared using a log-rank test. Stage-specific groups did not have

significantly different prognosis (P = 0.87, log-rank test). HR, hazard ratio;

TNM, tumour node metastasis.

Additional file 8: Figure S6. Kaplan–Meier survival analysis to assess

prognostic value of tumour grade. (A–E) Grade 1 and 2 patients were

compared to grade 3 and 4 patients using a Cox proportional hazards

model. Tumour grade had a significant association with patient survival

(P = 3.18 × 10−5, log-rank test). The prognostic value of grade was

modestly reproducible across all individual clinical cohorts. (F) Patient

outcome was compared between multiple grade groups. Although

largely dominated by grade 2 and 3 patients, the difference in patient

outcome for these groups was highly significant (P = 4.31 × 10−4, log-rank

test). HR, hazard ratio.

Additional file 9: Figure S7. Comparison of random gene signatures

significantly associated with patient prognosis for each validation cohort

(Padjusted < 0.05). None of the signatures were reproducible in the Winter

cohort following adjustment of the P values for multiple comparisons.

Additional file 10: Figure S8. RT-PCR results for genes ITGA5, KIF4A,

CDC45 and NOSTRIN. HR, hazard ratio; OS, overall survival.
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