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ABSTRACT 

 

Processing high-resolution digital elevation models (DEM) 

can be tedious due to the large size of the data. In 

uncertainty-aware drainage basin delineation, we apply a 

Monte Carlo simulation that further increases the processing 

demand by two to three orders of magnitude. Utilizing 

graphics processing units (GPU) can speed up the programs, 

but their on-chip RAM limits the size of DEMs that can be 

processed efficiently on one GPU. Here we present a 

parallel uncertainty-aware drainage basin delineation 

algorithm and a multi-node GPU CUDA implementation 

along with scalability benchmarking. All the computations 

are run on the GPUs, and the parallel processes 

communicate using Message Passing Interface (MPI) via the 

host CPUs. The implementation can utilize any number of 

nodes, with one or many GPUs per node. The performance 

and scalability of the program have been tested with a 10 m 

DEM covering 390905 km2, the entire area of Finland. 

Performing the drainage basin delineation for the DEM with 

different numbers of GPUs shows nearly linear strong 

scalability. 

 

Index Terms—Geospatial analysis, parallel computing, 

GPU, MPI 

1. INTRODUCTION 

 

In uncertainty-aware geospatial analysis, we compute not 

only the solution to a given problem, but also estimates of 

the uncertainty of the solution [1]-[4]. Determining the 

reliability of the analysis is important because in many cases 

decisions are made based on the result of an analysis that 

may have a significant economic impact or even affect 

human lives. For example, issuing storm warnings will let 

people prepare for approaching storms in time, but if the 

predictions are not reliable the false alerts render the 

warnings useless. When choosing a location for long-term 

storage for nuclear waste, one wants to make sure that a 

location the model predicts to be stable is not simply a 

random artefact that moves or disappears with the slightest 

change in the input data. Knowing the reliability of the 

borders of the drainage basins [5], [6] will help proper 

action to be taken e.g. in the case of accidents where toxic 

material spills onto the ground. In general, knowledge of the 

uncertainty of the result of an analysis indicates whether the 

result can be trusted or if more accurate data or another 

analysis method are required. 

Although the foundation for uncertainty-aware 

geospatial analysis is rather well established [1], [4], it has 

received relatively little practical usage. This is partly 

because the analysis of uncertainty is computationally very 

demanding, for the implementations use Monte Carlo 

simulations in which the underlying analysis is repeated 

typically a thousand times, if not more [1]. It is evident that 

carrying out uncertainty-aware geospatial analysis with 

large datasets covering geographically extensive areas 

pushes computation facilities to their limits.  

Large computing clusters are nowadays common, but 

programs and algorithms must be developed for parallel 

execution in order to harness the available resources 

efficiently. Unfortunately, the traditional software packages 

that users in the application field of geographic information 

systems (GIS) are used to do not benefit from powerful 

computing clusters as well as they could [7-10]. For 

example, in the GRASS GIS package only some of the 

functionality supports parallelism [11]. In this paper we 

have designed and implemented an uncertainty-aware 

drainage basin delineation program that utilizes multiple 

GPUs to speed up the calculations and to permit efficient 

processing of large digital elevation models that do not fit 

into the RAM of a regular workstation. 

Some work has been reported where GPUs have been 

utilized to speed up some common analyses [12-18]. 

However, they are typically limited to one GPU. This work 

is continuation to the work reported in [18] where 

preliminary benchmark calculations of a drainage 
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delineation program utilizing multiple GPUs were 

presented. We have identified and analysed the main 

bottlenecks of the implementation and developed the 

algorithms further. 

In the following sections, we describe the principles on 

which the program is based to achieve good performance 

and scalability. For benchmarking, we use a country-wide 

digital elevation model covering 390905 km2, the area of 

Finland, in 10 m resolution [19]. To our knowledge, this is 

the first time that uncertainty-aware geospatial analysis has 

been carried out for areas covering an entire country. In 

addition, this was done in a single run. 

Based on the benchmarking, we demonstrate that the 

cost to compute uncertainty-aware drainage basin 

delineations for country-wide datasets has been reduced to a 

rather low level. We argue that we have reached a situation 

in which cost alone is not sufficient a reason to neglect the 

computation and presentation of uncertainty maps. These 

statements are based on and apply to the drainage basin 

delineation task. As will be discussed at the end, our 

implementation could be used as a framework for other, 

similar uncertainty-aware geospatial analysis tasks. 

In our study, the motivation for fast, scalable 

computing solutions is based on the need to produce 

uncertainty maps and on the underlying Monte Carlo 

simulation, which is a computationally intensive task. The 

need for fast and scalable programs for geospatial analysis 

is, though, much more generic: high-resolution data are 

available in such volumes, velocities, and varieties that they 

deserve to be called big geospatial data. Efficient utilization 

of these data fundamentally depends on quick, on-demand 

computations, in order to be able to produce timely inputs 

for environmental decision-making processes. At the same 

time, multi-GPU computing clusters are increasingly being 

used for scientific and technical computing. In this respect, 

the presented work can serve as a high performance 

geocomputing demonstration on utilizing computing 

resources efficiently.  

 

2. DRAINAGE BASIN DELINEATION ALGORITHM 

 

We begin by describing the process of uncertainty-aware 

basin delineation and then outline the parallelization of the 

task to multiple GPUs. 

 

2.1 Basic drainage basin delineation algorithm 

 

The drainage basin delineation algorithm is presented in 

refs. [17], [18], [20], [21]. In short, the basic algorithm that 

does not take the uncertainty of the DEM into account reads 

the DEM and the stream data as the input, and provides the 

borders of the drainage basins as the output. The principal 

idea is to determine to which stream the surficial flow leads 

from each cell. The basic algorithm consists of the following 

parts, which are executed sequentially: 

 

1. Burn the stream data into the DEM. 

2. Fill the pits in the DEM. 

3. Assign flow directions to the cells. 

4. Trace the cells to the streams. 

5. Extract the borders of the drainage basins. 

 

The stream burning is needed because otherwise some 

constructions, such as bridges, erroneously create obstacles 

for the surficial water flow in the DEM-based flow model. 

Small depressions in the DEM would stop the tracing of 

cells to the streams, therefore the pit filling is used to fill 

them, transforming them into flat areas. After this each cell 

is assigned a flow direction based on the slope of the DEM 

(the flat areas are handled separately). Finally, one can start 

from any cell and end up in a stream by following the flow 

directions. Knowing which stream each cell flows to makes 

it easy to determine the borders of the drainage basins. 

 

2.2. Uncertainty-awareness 

 

As all measured data contains some uncertainty, so does the 

DEM. The question that immediately arises is how much 

this uncertainty affects the locations of the acquired borders 

of the drainage basins. One way to take into account the 

uncertainties in the DEM height values is to run the drainage 

basin delineation program on the DEM several times, but 

each time with a different realization of the DEM error 

 
Figure 1: An example of the drainage basin borders 

determined with and without taking the uncertainty of the 

DEM data into account. (Background map: National Land 

Survey of Finland, Basic map raster, 01/2015) 
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model added [4]. The realizations can be generated e.g. 

using process convolution [6], [22]. In a nutshell, the 

uncertainty-aware drainage basin delineation algorithm 

looks like this: 

 

1. Generate an error field of random values. 

2. Convolve the error field to reach an a priori 

specified spatial autocorrelation structure. 

3. Add the error field to the original DEM. 

4. Perform the basic drainage basin delineation 

algorithm for the DEM with the error field added. 

5. Add the delineation borders to previous results. 

6. Repeat steps 1–5 the number of times specified by 

the user (often in the range of 100–1000). 

 

The results of each iteration are added cell-wise. After N 

iterations, the probability that the cell is on the drainage 

divide is the value of the cell divided by N. An example of a 

probable catchment border is shown in Figure 1. 

The procedure is a straightforward Monte Carlo (MC) 

simulation, and the iterations are called MC iterations. The 

downside is that none of the calculations inside the MC 

iterations are reusable and the algorithm run time is 

proportional to the number of MC iterations. 

 

2.3. GPU implementation 

 

In our program, all the algorithms described in sections 2.1 

and 2.2 are implemented as CUDA kernels [23]. Some of 

them (e.g. the random field generation) are easily 

implemented to benefit greatly from the fine-grained 

parallelism of the GPUs. If a thread, operating on one cell, 

requires the output from other threads, they need to be 

synchronized in order to avoid data races. This imposes 

limitations on the design of the algorithms due to the fact 

that separate thread blocks cannot be synchronized within 

the CUDA framework. The basic features of the CUDA 

implementations of the algorithms are explained in [17] 

where a drainage basin delineation program using a single 

GPU is reported. We used the implementation in [17] as our 

starting point and modified the algorithms for multi-GPU 

environments. 

 

2.4. Parallelization using many GPUs 

 

Incorporating multiple GPUs and using them in parallel is 

achieved by dividing the DEM into rectangular partitions 

(Figure 2). Each partition is extended by a region called halo 

zone that is used to hold copies of the values from the 

neighbouring partitions. In this way, large sections of the 

partitions can be processed independently of other 

partitions, and only the values at the boundary zones must 

be communicated to the halo zones of the neighbouring 

partitions. The most straightforward division method is to 

divide the DEM into partitions of the same size and assign 

one partition to each GPU, as shown in Figure 2. 

The drawback of this method is that as the data is split 

into smaller and smaller partitions, the ratio of the 

circumference of the partitions to their area grows. At some 

point, the overhead due to synchronization and MPI 

communication will become comparable to the actual 

execution time on the GPUs and thus will degrade the 

scalability of the program. When this happens exactly is 

highly dependent on the underlying hardware. 

Another parallelization method would be to calculate 

several MC iterations concurrently. This would be trivial to 

implement because the individual MC iterations are 

independent of each other. However, this work concentrates 

on processing datasets that are so large that the memory of a 

single GPU is insufficient, thus requiring multi-GPU 

solutions. 

 

3. MULTI-GPU PROGRAM FOR UNCERTAINTY-

AWARE DRAINAGE BASIN DELINEATION 

 

When the drainage basin delineation program is executed, 

the MPI processes allocate arrays of memory for the 

partitions of the DEM and the stream data and for the 

corresponding drainage areas. These arrays are kept in the 

GPU memory throughout the program execution. We note 

that they could be stored on the host RAM as well. In that 

case more GPU RAM would be available for the temporary 

data and the size of the partitions could be increased. The 

downside is that the relatively slow transfer of data between 

the host and the GPU RAM would be required for each MC 

iteration. 

Referring to the computation steps described in 

sections 2.1 and 2.2, in each MC iteration, the random 

number generation, the convolution of the random field, the 

stream burning and the extraction of the borders of the 

 
 

Figure 2: An example of dividing and assigning data in a 

multi-node, multi-GPU environment. The boundary zone is 

part of the local data and the partitions are extended with the 

halo zones. The striped areas in Partition 1 show how the 

boundary zone is distributed to the halo zones of Partitions 

2, 3 and 4. 
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drainage basins all work in a similar manner: first the width 

of the halo zones are chosen, then the local data is 

processed, and finally the halo zones are updated with the 

boundary values from the neighbours. For example, in the 

case of the random field generation, the width of the halo 

zones is the radius of the convolution filter reflecting the 

range of the DEM error model’s spatial autocorrelation 
range. Each cell needs to be processed only once and they 

can be processed in any order. The common factor for these 

algorithms is that when they are operating on a cell, they 

only need values from the neighbouring cells inside a 

predefined radius, which can be zero. In general, these kinds 

of algorithms can be implemented efficiently for parallel 

architectures. If the whole analysis consisted only of such 

operations, it would be possible to divide the DEM into 

small enough partitions and analyse them sequentially on a 

single GPU; however, due to the highly non-local nature of 

the pit filling, the flow routing of the flat areas and the flow 

tracing algorithms we are required to process the entire 

DEM simultaneously. 

 

3.1. Parallel pit filling 

 

A pit filling algorithm is needed because the input DEM 

with the random field added contains small depressions that 

will stop the tracing of the cells to the streams. The 

algorithm transforms these depressions into flat areas so that 

starting from any cell it is possible to reach a stream without 

going uphill. 

Compared to the algorithms mentioned above, the pit 

filling algorithm is considerably more complex. Our 

implementation is based on the single GPU implementation 

introduced in [17], which starts by creating an auxiliary 

elevation data array where the cells in the streams are 

marked with zero elevation and others with infinity. The 

cells in the streams are marked as active. Then the pit filling 

CUDA kernels are launched to process the data. Each thread 

that has an active cell assigned to it marks it as inactive, 

then iterates over its neighboring cells and, when certain 

conditions are met, lowers their auxiliary elevation values 

and marks them as active. These kernels cannot finish the 

algorithm in one run, so they need to be launched again and 

again until none of the cells are marked as active [17]. Here, 

in the multi-GPU context, we refer to this process as 

performing local iterations until the algorithm has 

converged locally. 

With multiple GPUs, the difference to the single GPU 

case is that after every local iteration the data in the 

boundary zones may have been updated and the halo zones 

need to be updated. The principal design of our multi-GPU 

algorithm is shown in Figure 3. It consists of global 

iterations in which the local iterations are first repeated at 

maximum N
limit

 times before updating the halo zones. 

After receiving the data from the neighbours, the MPI 

processes need to evaluate whether they have active cells to 

process and report this information to all the other MPI 

processes. The global iterations are performed until all the 

MPI processes converge locally at the same time, i.e. until 

the algorithm converges globally. 

Note that an MPI process is not allowed to exit from 

the algorithm after reaching local convergence. This is 

because it may remain in a locally converged state for 

several global iterations but then receive data from 

neighbouring partitions that forces it to do processing again. 

Forcing the updating of the halo zones after a fixed 

number of local iterations, regardless of whether the 

 
Figure 3: The design of the iterative pit filling and the flow 

routing of the flat areas algorithms. The value of N
limit

 is 

chosen based on the hardware used. 
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algorithm has converged locally or not, helps to avoid 

situations where a partition has crucial updated boundary 

data that its neighbour requires to advance in its processing 

but has to wait for the partition to reach a local convergence 

before starting the communication. The optimal value of 

N
limit

 depends on the speed of the connection between the 

nodes compared to the processing power of the GPUs. In 

our simulations we used N
limit

= 5. 

The pit filling algorithm works with multiple partitions 

because the new (initially infinite) elevation values are 

always lowered from the previous values and because of the 

design of the algorithm it is impossible to lower them too far 

down. Therefore, if some cells have been processed and 

then lower values are received from the neighbouring 

partitions, the cells will simply be reprocessed without the 

need to keep track of and undo the previous work. 

 

3.2. Parallel flow routing 

 

The flow routing for non-flat and flat areas is performed 

separately. For the non-flat areas, the flow direction is set to 

the direction of the steepest descent using the D8 method 

[24]. Then the halo zones are updated. 

The nontrivial part is to assign flow directions to the 

cells that are located in the filled pits. As these pit areas are 

flat, the method mentioned above does not work. However, 

the pit filling algorithm we use guarantees that for every flat 

area, there is at least one cell that has its flow direction 

outward from the area: a spill point. We have chosen to 

assign the flow directions for the cells in the flat areas in 

such a way that each cell flows to a spill point along the 

shortest path within the flat area. 

The flat-area flow direction algorithm starts by 

creating an integer array. The cells in flat areas next to the 

spill points are marked with one, then their neighbours with 

two and so on. As in the pit filling, if lower values are 

received from the neighbouring partitions, some cells need 

to be reprocessed. Once each flat cell has been assigned its 

final value the flow directions are set such that each cell 

flows to the closest neighbour with a lower value. 

The design shown in Figure 3 is also used to 

implement the flow routing of the flat areas. If a flat area is 

split by the partition division, the number of required global 

iterations to reach global convergence increases. 

 

3.3. Parallel flow tracing 

 

With the help of the flow directions, the cells can be traced 

to the streams or to global edges. When a cell is traced to a 

stream, the cell is marked with the ID value of that stream. 

The output is a grid with a stream ID at each cell point 

indicating to which drainage basin the cell belongs. 

The flow tracing algorithm presented in [17] is 

designed for a single partition and does not work optimally 

if the tracing of a cell leads to another partition. An example 

case is shown in Figure 4a where the tracing of the cell 

marked with red leads to another partition twice before 

reaching a stream cell. In the first iteration only the upper 

part of the left partition can be traced, in the second iteration 

only the right partition can be traced, and in the third 

iteration the rest of the left partition can be traced. The 

demerit of the approach is that unless the destinations of the 

tracings that do not reach a stream cell are recorded, e.g. the 

chain starting from the red cell must be traced to the halo 

zone three times. As the partition size grows both the 

number of the tracings and their chain lengths grow, leading 

to unnecessary work and a slower program. 

In our approach we treat the flow directions as directed 

links between the cells. First we divide the local area into 

 
Figure 4: An example case where the flow tracing crosses the partition edges. The shaded columns mark the halo zones and the 

red arrows indicate a change from the previous configuration. In a) the real flow route is shown for a single cell. In b) the flow 

directions are reduced to directed links in 2×2 sub-areas, and subsequently in 4×4 areas in c). Subfigures d) and e) show the 

iterative part of the algorithm where the links are traced for each cell in the local area (d) and the suitable values in the halo 

zones are updated (e). In this example the algorithm finishes after one iteration and f) shows the final link configuration. 
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non-overlapping N × N sub-areas and reduce the flow 

directions into links inside the sub-areas as shown in Figure 

4b. Then the sub-areas are quadrupled and the links are 

further reduced inside the larger sub-areas. This is continued 

until the whole local area has been reduced (Figure 4c). A 

natural choice for the initial sub-area size in the CUDA 

implementation is the size of the thread block. 

Only after the reduction step we consider the halo 

zones and the neighbouring partitions. For each cell in the 

local area we trace the links until either 

 we reach a stream cell, in which case the starting cell 

is linked to the found stream cell, or 

 the tracing leads out of the partition, in which case 

the starting cell is linked to the last cell in the chain 

that is inside the partition. 

This is depicted in Figure 4d. After this step the links in the 

boundary zone are communicated to the neighbouring 

partitions. Only the received links that point back to the 

partition and that are different from the existing links in the 

halo zone are updated (Figure 4e). This reduction and 

communication cycle is repeated until the merged links are 

the same as the links in the local data (Figure 4f).  

After the reduction phase has converged the actual 

tracing is performed. The cells that flow to a stream cell in 

the same partition can be traced via a single link and are 

marked with the ID of the stream. Then the halo zones are 

updated and the cells without a stream ID are traced again. 

This is repeated until every cell has been traced to a stream 

or to a global edge. 

 

3.4. Extracting the borders of the drainage basins 

 

The borders of the drainage basins are extracted from the 

output of the flow tracing algorithm simply by marking all 

the cells that have a neighbour with a lower stream ID. The 

extracted borders are then added to the border array 

allocated at the beginning of program execution. 

 

4. HIGH PERFORMANCE COMPUTING 

ENVIRONMENT FOR TESTING AND EVALUATION 

 

The program is written in C++ with NVIDIA CUDA 

extensions [23]. MPI [25] is used for communication 

between the processes running on the CPUs on the separate 

nodes. 

We are currently using the Bull supercomputer of CSC 

– IT Center for Science Ltd., a non-profit computing centre 

for universities and research institutes in Finland 

(www.csc.fi). The Bull is a cluster with 38 nodes that are 

connected by InfiniBand, each node furnished with two 

NVIDIA K40 cards [26]. A single K40 card has 12 GB of 

RAM, resulting in a total of 912 GB of GPU memory.  

 

4.1. Single and multi-threaded CPU implementation 

 

For comparison we have also implemented CPU versions of 

the presented algorithms. The main difference to the GPU 

versions is that the pit filling and the flow routing of the flat 

areas are priority queue based rather than using a separate 

raster to keep track of the cells that are to be processed next. 

The algorithms are implemented only for a single thread 

execution so in order to parallelize the computation for N 

threads the area must be divided into N partitions. The 

partitions are processed in parallel using OpenMP and the 

communication between the nodes is handled via MPI. 

The CPU program was benchmarked in Taito [27], 

another cluster available at CSC. The Taito cluster includes 

also “fat” computing nodes with large memory capacity. 
This allows us to make such reference computations that the 

whole test data resides on a singe node used e.g. for the fully 

serial CPU implementation. All the computations were 

performed on nodes with two Intel Haswell 12-core E5-

2690v3 processors, running at 2.6GHz. 

 

5. TIMINGS 

 

For benchmarking, we used the country-wide DEM of the 

entire area of Finland, which is available in 10 m resolution 

[19]. For our purposes, a bounding box of 55,000 × 114,000 

grid cells was needed to cover the whole of Finland (shown 

in Figure 5). With the current implementation, we need at 

least ten NVIDIA K40 GPUs to process the data efficiently, 

the GPU memory being the limiting factor. We used the 

drainage basin delineation with 50 MC iterations as the 

benchmark calculation. As the calculation environment 

consisted of nodes with two GPUs on each node, we 

 
 

Figure 5: Examples of data partitioning to a different 

number of equivalent rectangular blocks. The outer box 

shows the area for which the analysis was performed and the 

grey the area for which elevation data exists. The subfigures 

b) and c) show two possibilities for dividing the data into 18 

partitions. 
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benchmarked our program using up to 20 nodes (40 GPUs). 

This may be considered as a strong scaling test [28], [18]. 

A regular block of data can be divided into p partitions 

simply in row-wise or column-wise order, i.e. into p × 1 or 1 

× p partitions. There are more possibilities if p is not a prime 

number. The optimal division depends on several factors. If 

the communication between the partitions is slow, 

minimizing the circumference of the partitions may result in 

the fastest execution of the program. However, one partition 

scheme may leave some partitions virtually empty and 

others full of data (Figure 5b), while another scheme can 

provide a more balanced solution (Figure 5c). A significant 

imbalance in workload leads to longer execution times as 

the GPUs assigned to the empty partitions are not actually 

calculating anything. The partition schemes used and the 

benchmark execution times are reported in Table 1. 

To measure the scalability of the program, we need to 

compare some characteristic values. Comparing the total 

execution times is not ideal because they contain all the 

activities that are needed only once at the beginning and at 

the end of the analysis, including disk I/O, whose bandwidth 

may vary noticeably. Also, comparing the individual MC 

iterations is not meaningful because the random fields 

generated are different in each benchmark calculation. 

Therefore, we define the ideal execution time that we derive 

from the average MC iteration time to be used as the metric 

for the scalability of the program. We denote the average 

MC iteration time using p GPUs with Tp  and the 

standard deviation with d Tp . These are obtained from 

the log files of the benchmark calculations. With these 

quantities, we can define the ideal execution time of the 

analysis with N MC iterations using p GPUs as 

 

 TNp = N Tp , (1) 

 

where N is the number of MC iterations used to calculate the 

average MC iteration time. Standard deviation of the ideal 

execution time is 

 

 dTNp = Nd Tp . (2) 

 

Since the MC iterations do not depend on each other, we can 

join the standard deviations of the individual MC iterations 

quadratically [26] above in the formula (2). 

The speedup for an analysis with N MC iterations is 

calculated from the ideal execution times using the equation 

 

SNp =
TN
10

TNp
=
T
10

Tp
. (3) 

 

In an ideal case SNp = p /10 , since we here use ten GPUs 

as our reference case. The fluctuations in the individual MC 

iteration times will induce variations in the speedup 

achieved as well. We can estimate this variation by applying 

the general formula for error propagation [29] to the SNp . 

This gives the standard deviation 
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These formulae show that the achieved speedup can vary 

considerably with small numbers of MC iterations, but as 

the number of iterations increases, the fluctuations in the 

individual MC iterations average out.  

Another commonly used quantity is the efficiency 

Ep
N

, which in this case is defined as 

 

 

ENp = S
N

p ×
10

p
=
10 × T

10

p× Tp
. (5) 

 

Figure 6: The speedup as a function of the number of GPUs 

for the analysis of the whole Finland, calculated from the 

benchmark calculations with 50 MC iterations. The error 

bars show the standard deviation for the derived speedups for 

the analyses with 49 MC iterations. 
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A value close to one means that the scaling is efficient, 

whereas a value closer to zero means inefficient scaling. The 

standard deviation for the efficiency is given simply by 

 

 
dENp =

10

p
dSNp . (6) 

 

We excluded the first MC iteration and calculated the 

average MC iteration time from the subsequent 49 iterations 

of the benchmark calculations, as in the first MC iteration 

the algorithms need to perform some initialization. The 

average MC iteration times, their standard deviations and 

the derived speedups and efficiencies are reported in 

Table 1, and the derived speedup results are shown in 

Figure 6. The scaling of the program is very close to ideal. 

One source of variation is that the amount of imbalance in 

the workload varies slightly with the number of GPUs used. 

For comparison we performed 10 MC iterations using 

the CPU version of the program first in a fully serial mode 

and then parallelized over 2, 10, 24 and 48 threads. The 

timings results are shown in Table 2. Again, the first MC 

iteration was excluded from the calculation of the average 

values. The values are calculated using the equations (3) - 

(6) but using the case p=1 as the reference case. The CPU 

implementation has not been optimized to the same extent 

as its multi-GPU counterpart and it is possible that adjusting 

the parameters such as the N
limit

 shown in Figure 3 more 

carefully could improve the scaling.  

A direct comparison of the average MC iteration times 

indicates that the multi-GPU program using e.g. 10 GPUs is 

~100 times faster than the serial CPU version. In [17] the 

single GPU program was found to be roughly 10 times 

faster than the serial CPU program. Therefore the 

comparison of multi-GPU program using 10 GPUs is 

expected to be two orders of magnitude faster than the fully 

serial CPU version, and our measurements fit into this 

expectation well. 

The early benchmarkings of our multi-GPU program 

were reported in [18]. At that stage, the scalability for 

multiple computing nodes was not ideal. In the current work 

we have shown good, nearly linear scalability. Based on the 

benchmarking results, we can estimate that using ten GPUs, 

uncertainty-aware computation of a drainage basin 

delineation, based on 1000 MC iterations would take about 

12.6 h for the whole of Finland. With 40 GPUs, the 

computing time is less than 3.3 h.  

According to CSC’s pricing for academic and public 

sector [30], GPU cost is 0,30 €/h. The cost for the job used 

as a reference above (12.6 h on 10 GPUs) would be 38€. To 

run the same job using our single core CPU implementation 

would take 1640 h and the cost would be 36€, based on 
CSC’s 0.022 €/h price for CPU core usage. For GPU 

implementation cost is invariant with respect to the number 

of GPUs, because the efficiently is always close to 1.0 

(Table 1), whereas for CPU implementation the cost 

increases when more cores are used, due to the decreasing 

efficiency (Table 2).   

 

6. CONCLUSIONS 
 

In this work we have introduced improved methods for 

reaching a better scalability in our uncertainty aware 

drainage basin delineation program running on multiple 

GPUs, reported in [18]. The test runs now show linear 

scalability with respect to the number of GPUs used. In this 

work we also compared the program with the reference 

implementation using CPUs only. These tests confirmed our 

expectations that use of GPUs speeds up processing at least 

ten times compared to a single core CPU implementation. 

Our comparison of the costs for running jobs either in 

Table 1: The partitioning scheme, total execution times, average Monte Carlo iteration times Tp , their standard deviations d Tp  

and derived speedup S49p  and efficiency E49p  
values with their uncertainties dS49p ,dE49p , obtained from the 49 MC iterations of 

the benchmark calculations with 50 MC iterations using p GPUs. 

p  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

Partitioning 2×5 2×6 2×7 2×8 2×9 2×10 2×11 2×12 2×13 2×14 2×15 2×16 2×17 2×18 2×19 2×20 

Total time [s] 2312 1899 1666 1415 1273 1124 1019 936 885 834 755 721 673 640 600 589 

Tp  [s] 
45.6 37.8 32.9 28.1 25.1 22.3 20.1 18.5 17.5 16.5 15.0 14.3 13.4 12.7 11.9 11.7 

d Tp  [s] 
3.2 2.2 2.3 1.7 1.3 1.7 1.2 1.3 1.4 1.2 1.1 1.1 0.8 0.8 0.9 1.0 

S49p  
- 1.21 1.39 1.63 1.82 2.05 2.27 2.46 2.61 2.76 3.04 3.19 3.41 3.60 3.85 3.90 

dS49p  
- 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.04 0.05 0.06 0.06 

E49p  
- 1.01 0.99 1.02 1.01 1.02 1.03 1.03 1.00 0.99 1.01 1.00 1.00 1.00 1.01 0.98 

dE49p  
- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 
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GPU or CPU environments show that neither of the 

environments offers any significant advantage in this sense.   

From the point of view practical analysis tasks, we consider 

the price tag of about 38 € for our reference job to be a 

reasonable cost for tasks that have to be carried out only 

occasionally. We also argue that we have reached a situation 

in which the cost alone should not be a reason for neglecting 

the computation and presentation of uncertainty maps. 

Our benchmarks on scalability with a larger number of 

GPUs indicate that our implementation would be able to 

handle much larger datasets than the current 10 m resolution 

DEM covering the whole of Finland. A larger capacity will 

be needed in the future when high-resolution DEMs will be 

available; according to plans, the NLS of Finland will have 

a new laser scanning-based DEM with 2 m resolution 

around 2020.  

Regarding our implementation, there is still room for 

improvement. As Figure 5 shows, the workload is not 

balanced between the GPUs as some partitions have very 

little data to process compared to some other partitions. 

Depending on the shape of the computing block’s outline, 
the situation can be even worse. More sophisticated methods 

for data partitioning could be developed to improve the 

situation in this respect. 

In this work, the focus has been on performing 

drainage basin delineation for large datasets efficiently 

using high performance computing environments. However, 

the ability to perform the same analysis interactively for 

small areas is also important. Current GPUs have so much 

computational resources that if the area to be processed is 

small, a big part of those resources may be left unused. For 

interactive use, performing several MC iterations in parallel 

may provide additional speedup and bring interactive 

uncertainty-aware geospatial analysis closer to reality. 

Regarding future work, our program can also serve as 

a model or framework for the implementation of programs 

for other, similar uncertainty-aware geospatial analysis 

tasks. Using Map Algebra terms, random number generation 

is a local operation, whereas convolution, stream burning, 

flow routing of the non-flat areas and border extraction are 

focal operations with different neighbourhoods [31]. Pit 

filling, flow routing of the flat areas and flow tracing 

resemble global cumulative functions [32]. Therefore, it can 

be foreseen that a computationally efficient and scalable 

uncertainty-aware Map Algebra program could be 

implemented using our algorithms as a starting point. 
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