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Abstract: Extractive text summarization selects the most important sentences from a document,
preserves their original meaning, and produces an objective and fact-based summary. It is faster and
less computationally intensive than abstract summarization techniques. Learning cross-sentence
relationships is crucial for extractive text summarization. However, most of the language models
currently in use process text data sequentially, which makes it difficult to capture such inter-sentence
relations, especially in long documents. This paper proposes an extractive summarization model
based on the graph neural network (GNN) to address this problem. The model effectively represents
cross-sentence relationships using a graph-structured document representation. In addition to
sentence nodes, we introduce two nodes with different granularity in the graph structure, words and
topics, which bring different levels of semantic information. The node representations are updated
by the graph attention network (GAT). The final summary is obtained using the binary classification
of the sentence nodes. Our text summarization method was demonstrated to be highly effective, as
supported by the results of our experiments on the CNN/DM and NYT datasets. To be specific, our
approach outperformed baseline models of the same type in terms of ROUGE scores on both datasets,
indicating the potential of our proposed model for enhancing text summarization tasks.

Keywords: graph neural network; heterogeneous graph; attention mechanism; implicit topic

1. Introduction

The task of automatic text summarization is to generate a concise and informative
summary of a text document. The rapid growth of digital content in recent years has made
text summarization an increasingly important task. According to the way of summary
generation, text summarization can be divided into two types: extractive and abstractive.
Most abstracted text summarization models are based on the seq2seq framework [1] to
produce a summary by sequentially generating words after encoding the entire document.
In contrast, extractive models rely on identifying the most relevant information from the
source material and presenting it in a condensed form. Abstractive models are capable
of generating new content that is not present in the source material, allowing them to
capture more complex ideas and convey them in a more natural and fluid way. However,
abstractive models can also be more challenging to develop and require more advanced
techniques, and they are more prone to errors and may not always capture the intended
meaning of the original text [2]. Conversely, extractive models provide benefits in terms of
factuality and efficiency [3].

In order to extract sentences that are suitable for summarization from a document, it
is crucial to model the relationships among sentences [4]. In early stages, many models
use recurrent neural networks (RNNs) [5,6] to capture these cross-sentence relationships.
However, RNN-based models often struggle to capture long-distance dependencies at
the sentence level, particularly when dealing with lengthy documents. The transformer
model was proposed, and the attention mechanism used in it can help the model learn the
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relationships among sentences in a document, including long-range dependencies. Many
transformer-based models have achieved good results in extractive summarization tasks,
such as BERTSum [7], Pegasus [8], and T5 [9]. Despite their success, transformer-based
models tend to have a large number of parameters and a complex structure, which leads to
longer training times.

A more intuitive approach is to use a graph structure to model the relationships
among sentences. Graph neural networks (GNNs) [10] have recently gained popularity in
exploring cross-sentence relationships for text summarization tasks. GNNs are a type of
deep learning model that represent data in the form of a graph structure, with nodes and
edges capturing the features and relationships among data points. In the context of text
summarization, GNNs have the potential to analyze the relationships among sentences in a
document and identify important connections, which could help to create a more coherent
and informative summary.

Constructing a graph structure is a key issue in using graph neural networks to solve
summarization tasks. Several recent studies have attempted to create summary graphs
using text representations in linguistics, such as Approximate Discourse Graph (ADG) [11]
and Abstract Meaning Representation (AMR) graphs [12]. The aim of these studies is to
use these graphical representations to better represent and understand natural language
texts in order to improve text summarization tasks. However, the construction of these
graphs often relies on external tools, which may lead to the accumulation of errors in the
resulting graphs.

This study employs a multi-granularity heterogeneous graph to model documents,
which goes beyond traditional approaches that only create graphs using sentence-level
nodes. We include additional nodes in the graph to enhance the relationships among
sentences, adding more semantic units that act as intermediaries that connect sentences.
Each additional node represents a specific relationship among the sentences it connects. In
contrast to traditional graph construction methods that only model sentence nodes, this
paper models several other semantic nodes with different granularity, including words and
topics. At the same time, the method considers the relationship among them, including
co-occurrence relationships and topic distribution relationships, so as to construct the
edges between nodes. The two types of nodes, namely, word nodes and topic nodes,
serve as intermediaries for constructing meta-paths that contain sentence nodes, such as
Sentence–Word–Sentence (SWS) and Sentence–Topic–Sentence (STS). We use the modified
GAT [13] network to learn semantic information from two meta-paths to update the feature
representation of sentence nodes. Finally, the feature representation of the sentences is used
for binary classification to obtain the final sentences that should be included in the summary.
The heterogeneous graph we constructed has the following advantages: Word nodes and
topic nodes contain different levels of semantic information, which can be aggregated using
GAT to enhance sentence representations. Furthermore, serving as intermediate nodes,
word nodes and topic nodes can connect sentences that are distant from each other, thereby
enriching cross-sentence relations.

The contributions of this work are summarized as follows:

• We designed a multi-granularity heterogeneous graph consisting of three node types:
words, sentences, and topics;

• We propose an automatic text summarization model based on GAT that captures
semantic information from nodes with different granularity. This allows us to embed
sentence representations with varying levels of semantic information;

• We conducted experiments on two English news datasets, CNN/DM and NYT, and
the experimental results outperformed the baseline models.

The paper is organized as follows: Section 2 presents the related work. In Section 3,
our method is introduced in detail. Section 4 covers information on experiments, including
the selected datasets, experimental hyperparameter settings, training objectives, and the
baseline models and evaluation metrics. Experimental results on two datasets and detailed
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analysis are provided in Section 5. Finally, Section 6 provides the conclusion of the work
presented in this paper, as well as prospects for future work.

2. Related Work
2.1. Extractive Document Summarization

Extractive document summarization is an important task in natural language pro-
cessing (NLP). Many traditional approaches are based on statistical methods, such as
TF-IDF [14,15] and graph-based ranking algorithms [16,17]. With the recent advances in
deep learning, neural network-based methods have become the dominant approach to
extractive summarization. Early neural network-based models focused on using recur-
rent neural networks (RNNs) [18–20] and convolutional neural networks (CNNs) [21,22]
to model sentence representations. More recently, attention-based models such as trans-
former [23] architectures have been applied to capture the contextual dependencies among
sentences. Additionally, some studies have explored the use of graph neural networks to
model the relationships among sentences [24,25] and the use of topic modeling to enhance
the summarization performance [26,27]. Overall, the development of more effective and
efficient methods for extractive document summarization remains an active research area.

2.2. Graph Neural Network for Document Summarization

In recent years, graph neural networks (GNNs) [10] have been widely used in many
NLP tasks, including text classification, relation extraction, question answering, and doc-
ument summarization. Recently, there has been growing interest in using GNNs for
document summarization. GNNs are a class of neural networks capable of handling struc-
tured data, such as graphs, and have been successfully applied to various tasks, such
as node classification and graph classification [28,29]. In the task of text summarization,
GNNs are able to model the relationships among sentences in a document and generate a
summary by selecting the most relevant sentences [30].

Several studies have proposed GNN-based models for document summarization. For
example, the DiscoBert model [31] combines the Rhetorical Structure Theory (RST) [32]
graph and graph convolutional network (GCN) [33] to extract important sentences and
learn the relationships among them. Another model, called GSum [34], utilizes a graph-
based attention mechanism to capture the contextual information of sentences and generate
a summary. In addition, some studies have explored the use of hierarchical GNNs to model
the relationships between paragraphs and sentences in a document [35].

Overall, GNN-based models have shown promising results in document summariza-
tion and have the potential to overcome some of the limitations of traditional extractive
approaches. To build a successful model for document summarization using GNNs, it is
crucial to address the challenge of efficiently modeling documents as graphs. To tackle this
challenge, this paper proposes a novel heterogeneous graph data structure.

3. Method

Extractive text summarization can be viewed as a sentence classification task, where
the key is to identify the sentences that best capture the essential information of the
original text. In this study, a heterogeneous graph structure was designed to represent
the relationships among sentences, words, and topics. We use the neural topic model
(NTM) [36] to obtain an initial representation of the topic nodes. The initial representation
of words and sentences is obtained from the text vectorization layer. Additionally, GAT
is used to aggregate word and implicit topic information in the graph structure data,
enabling the sentence feature representation to contain richer and more accurate semantic
information. Finally, the sentence feature representation is inputted into a sentence classifier
to extract the summary sentences.

The architecture of our model is represented in Figure 1.
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Figure 1. Overall architecture of the model. The framework consists of neural topic model, text
vectorization layer, graph attention layer, and sentence classifier.

3.1. Text Vectorization

To obtain initial vectors for both words and sentences, we use GloVe [37], a pre-trained
word embedding model, to obtain word vectors that capture the semantic and syntactic
relationships among words. To obtain sentence vectors, the method first uses a CNN [38]
to extract local feature vectors from word vectors. Let li denote the local feature vector
of sentence i obtained by the CNN. By utilizing the local feature vectors extracted from
the word vectors as input, a Bidirectional Long Short-Term Memory (BiLSTM) [39] layer
is employed to process the sentence backward and forward, and ultimately capture a
contextual representation gi of the sentence. Finally, the local feature vectors and contextual
representation are combined to obtain the sentence’s initial feature vector, si = [li; gi],
which represents the overall meaning of the sentence, taking into account both the local
and global contexts.

3.2. Neural Topic Model

Inspired by Cui et al. [27], we add topic nodes to the heterogeneous graph structure.
Specifically, we use the NTM to generate a feature representation of the topic nodes.
The NTM uses an encoding–decoding process to learn the latent topics in the document.
In the encoding phase, µ and σ are obtained based on word packet xbow ∈ R|V| for a
given document, where |V| is the size of the vocabulary list, and µ and σ are the average
and variance of the potential issue distribution, i.e., µ = fµ(xbow ) and log σ2 = fσ(xbow ),
respectively. Functions fµ and fσ are linear transformations with ReLU activation functions.

During the decoding phase, the NTM approximates the topic distribution with a
Gaussian distribution using the previously calculated prior parameters µ and σ. This is
achieved by generating a sample z from a normal distribution with mean µ and variance
σ2, i.e., z ∼ N

(
µ, σ2). Afterward, we apply the softmax function to z to obtain a topic

distribution θ ∈ RK, where K denotes the number of topics.
To predict the probability distribution of the words, we multiply topic distribution θ

by word distribution matrix W∅ and apply the softmax function. The resulting probability
vector, pw ∈ R|V|, represents the likelihood of the individual words in the vocabulary,
where |V| is the size of the vocabulary. Note that W∅ is equivalent to the topic–word
distribution matrix in the Latent Dirichlet Allocation model.

Finally, we extract the words from the bag of words using their respective probability,
pw, and reconstruct the original text, χbow. For more detailed information about the NTM,
readers are referred to the work by Miao et al. [36]. As intermediate parameters W∅ contain
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topical information, we utilize it to construct topic representations using the following
approach:

HT = f∅

(
WT

∅

)
, (1)

We use HT ∈ RK×dt to denote K topic representations, and each representation has
a predetermined dimension of dt. f∅ is a linear transformation activated with the ReLU
function.

3.3. Graph Attention Layer
3.3.1. Graph Building

The graph structure data can be represented by G = (V, E), where V denotes the set of
nodes and E denotes the set of edges. Node set V in the heterogeneous graph constructed
in this study consists of three parts, as shown in Figure 2: a word set {w1, w2, . . . , wm},
containing M word nodes; a sentence set {s1, s2, . . . , sn}, containing N sentence nodes; and
a topic set {t1, t2, . . . , tk}, containing K topic nodes. In other words, V = Vw ∪Vs ∪Vt.

Figure 2. Heterogeneous graph schematic, where green indicates word nodes, blue indicates sentence
nodes, and orange indicates topic nodes.

The set of edges, E, consists of two parts, of which one is Ews, the set of edges
representing word–sentence relations, and the other is Est, the set of edges representing
sentence–topic relations. The containment relationship between a sentence and a word
is expressed as the existence of an edge. For each sentence node and topic node, the
topic representation obtained using the NTM is used to calculate the edge weights, which
indicate the correlations between sentences and topics.

3.3.2. Graph Propagation

We use GAT [13] and combine it with multi-headed attention mechanisms to update
the node representation. To handle nodes with different feature dimensions, we use a
learnable linear transformation matrix for each node to project its feature vector onto a
common embedding space, where all feature vectors have the same dimension. For a
sentence node with a feature vector hs ∈ Rds , we learn a weight matrix Ws ∈ Rdh×ds to
transform it into a new feature vector, h ∈ Rdh , where dh is the desired dimension of the
embedding space. We apply the same strategy to obtain new feature vectors, hw and ht,
for word nodes and topic nodes, respectively. Then, for each node i, we compute attention
coefficients αji between node i and its neighbors using the following equation:

zij = LeakyReLU
(

aT ∗
[
Wqhi‖Wkhj

])
, (2)

αij =
exp

(
zij
)

∑k∈Ni
exp(zik)

, (3)

where ‖ denotes concatenation; Ni is the set of neighbors of node i; and a, Wq, and Wk are
learnable weights.
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Next, we compute the attention output for each node i by aggregating the features of
its neighbors using the attention coefficients, as follows:

ui = ∑
j∈Ni

aijWvhj, (4)

where Wv are learnable weights. Then, we concatenate the outputs of multiple attention
heads and apply a final linear projection to obtain the final representation of node i,
as follows:

h′i = σ

(
1
M

M

∑
M=1

Wm ∗ um
i

)
, (5)

where M is the number of attention heads, um
i is the output of the m-th attention head for

node i, and Wm is the learnable weight matrix for the m-th head. The model is trained
using a cross-entropy loss function, and a back-propagation algorithm is used to update
the model parameters. Finally, the node representation can be used for classification tasks.

3.4. Sentence Selector

We use a fully connected layer followed by a sigmoid activation function. The fully
connected layer [40] projects the node representations onto a lower dimensional space, and
the sigmoid function squashes the output to the range [0, 1], representing the probability of
the node belonging to one of the two classes.

Formally, given the final node representations, h, the output of the binary classification
task can be computed as

y = σ
(

W f h + b f

)
(6)

where W f and b f are the weight matrix and the bias term of the fully connected layer,
respectively, and σ is the sigmoid activation function. Output y is a scalar value between 0
and 1, representing the probability of the node belonging to the positive class. The binary
label of the node can then be determined based on a threshold value.

4. Experimental Setup
4.1. Datasets

CNN/DM: The CNN/DailyMail dataset [41] is a widely used document summariza-
tion benchmark dataset that includes news articles collected from the CNN and DailyMail
websites, as well as human-written summaries. The training set contains approximately
287,000 articles and their corresponding summaries, while the validation and test sets each
contain approximately 13,000 articles and summaries. These articles are relatively long,
with an average length of about 800 words. We preprocessed the data following the method
by Liu and Lapata et al. [42].

NYT50: NYT50 is a dataset [43] for document summarization and consists of
50,000 news articles from the New York Times. Each article has a headline and a one-
sentence summary that serves as a base-truth summary. The dataset covers a diverse range
of topics and is a challenging benchmark for document summarization. We followed the
approach proposed by Durrett et al. [43], who used the last 4000 examples from the training
set for validation and selected 3452 examples as the test set by filtering out those that did
not meet certain criteria.

4.2. Training Objective

Extractive text summarization can be performed as a binary classification task on
sentence nodes, and the loss function can be expressed as

LSC =
n

∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)), (7)
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where n is the number of samples, yi is the true label of the i-th sample, and ŷi is the
label predicted by the model. The loss function of the NTM model in this paper can be
described as

LNTM = DKL(p(z)‖q(z | x))−Eq(ε|x)[p(x | z)], (8)

where DKL(p(z)‖q(z | x)) is the Kullback–Leibler divergence loss between p(z) and q(z | x),
which measures the loss of information from prior distribution p(z) to posterior distribution
q(z | x), and Eq(ε|x)[p(x | z)] is the reconstruction error term, which represents the error
of sampling a topic z from posterior distribution q(z | x) and then reconstructing input x
using generative model p(x | x).

We weight the loss function of the NTM and the cross-entropy loss function together
to obtain a total loss function.

L = LSC + αLNTM, (9)

where α is the preset hyperparameter.

4.3. Settings and Hyperparameters

In our approach, we first filtered out stop words and punctuation while creating the
word nodes, as these words typically do not contribute much to the meaning of a sentence.
In addition, we wanted to eliminate noisy common words, so we further removed 20%
of the vocabulary with low TF − IDF values across the entire dataset. By doing so, we
were able to focus on the most important words and phrases that captured the essence of
the text.

To encode the documents, we generated 300-dimensional word vectors using GloVe
embedding and initialized sentence nodes with a size of ds = 128.

For the NTM model, we set the number of topics to K = 50 and the dimension size of
the topic representation to 512.

For the GAT model, we implemented it using Pytorch Geometric [44], a popular library
for building graph neural networks. We set the number of GAT layers to two, the number
of attention heads to six, and the size of the hidden layers to 128.

During the training phase, we used Adam Optimizer [45] at a learning rate of 5× 10−4

and a batch size of 16. Since the convergence rate of the NTM model is slower than that
of the GAT model, we pre-trained the NTM model for 250 epochs at a learning rate of
1× 10−3, allowing it to learn a good initial set of parameters before fine-tuning on the task
of summarization. Moreover, as a criterion during the sentence selection process for the
CNN/DailyMail and NYT50 datasets, we based our selection of the top-three sentences on
the average length of the corresponding human-written summaries.

4.4. Baseline Models and Evaluation Metrics

We selected several extractive summarization models that have been proposed in
recent years as the baseline models for comparison.

LEAD-3 is a simple text summarization algorithm that uses the first few sentences of
the text to generate a summary.

Oracle is a theoretical upper bound model to measure the performance of our model.
NeuSum [19] is based on the seq2seq framework, which uses an attention mechanism

to focus on the most relevant parts of the input text when generating summaries.
JECS [46] is a deep learning-based summarization model that can both extract and

compress the key information in the original text.
BERTSUM [42] is a text summarization method based on the pre-trained language

model BERT.
PNBERT [47] is also an effective neural extractive summarization algorithm based on

the pre-trained model BERT.
HSG [4] is a heterogeneous graph-based text summarization model that uses a hetero-

geneous graph containing word and sentence nodes.



Electronics 2023, 12, 2184 8 of 12

HiBERT [48] is a pre-trained language model specifically designed for document-level
language understanding tasks.

To evaluate the quality of the generated summaries, we used three commonly used
evaluation metrics in the field of summarization: ROUGE-1 (R-1), ROUGE-2 (R-2), and
ROUGE-L (R-L). ROUGE [49] stands for Recall-Oriented Understudy for Gisting Evaluation,
and it measures the overlap between the generated summary and the reference summary
in terms of n-gram recall.

5. Results and Analysis
5.1. Main Results

Table 1 presents the experimental results, which are divided into four sections. The
first section displays the ROUGE scores of the LEAD-3 and Oracle models. The second
section contains several extractive models that do not use the pre-trained language model
BERT. The third section contains several extractive models that use the pre-trained language
model BERT. The final section reports the results of our model.

Table 1. Comparison of model performance. A dash (-) indicates that the corresponding result was
not reported. The bolded values indicate the highest value in the current column.

Model
CNN/DM NYT

R-1 R-2 R-L R-1 R-2 R-L

LEAD-3 40.42 17.62 36.67 41.80 22.60 35.00
Oracle 55.61 32.84 51.88 64.22 44.57 57.27

NeuSum [19] 41.59 19.01 37.98 - - -
JECS [46] 41.70 18.50 37.90 45.50 25.30 39.20
HSG [4] 42.31 19.51 38.74 46.89 26.26 42.58

BERTSUM [42] 43.25 20.24 39.63 - - -
PNBERT [47] 42.69 19.60 38.85 - - -
HiBERT [48] 42.37 19.95 38.83 49.06 29.70 41.23

MGH-
Sum (our model)

42.96 19.81 39.12 47.88 28.68 42.65

Observing the experimental results, we draw the following conclusions: In terms of
Rouge-1, Rouge-2, and Rouge-L scores, our model outperformed all models that do not use
a pre-trained language model and performed competitively compared with models that use
a pre-trained language model. Specifically, our model achieved higher ROUGE-1, ROUGE-
2, and ROUGE-L scores, 42.96, 19.81, and 39.12, respectively, on the CNN/DM dataset
than the best-performing model that does not use a pre-trained language model, HSG.
Furthermore, our model also outperformed the PNBERT and HiBERT models in terms of
ROUGE-1 and ROUGE-L scores, while on the NYT dataset, our model achieved ROUGE-1,
ROUGE-2, and ROUGE-L scores of 47.88, 28.68, and 42.65, respectively, outperforming all
models that do not use a pre-trained language model.

These results indicate that our proposed model is effective in capturing important
information and relationships among sentences, words, and topics and in generating
summaries that contain key information from the original texts. The performance of our
model suggests that heterogeneous graph neural networks are a promising approach to
extractive text summarization, particularly in domains where pre-training data may be
limited or where pre-trained language models may not be optimal.

5.2. Ablation Study

In our study, we conducted an ablation study to analyze the effectiveness of each
component in our proposed model. By selectively removing or modifying specific parts
of the model, we are able to evaluate the impact of each component on the model’s
performance on a specific task and identify which parts were most critical to achieving high
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performance. This enabled us to gain a deeper understanding of our model’s functionality
and behavior while also offering valuable insights for future improvements.

Specifically, we set up three ablation models to conduct our experiments:

• w/o GAT, which refers to the removal of the part that uses GAT in heterogeneous
graph neural networks, i.e., not using GAT for feature aggregation and information
propagation between nodes;

• w/o word nodes, which refers to the removal of the part that considers word nodes in
heterogeneous graph neural networks, i.e., not taking into account the influence of
word nodes and only using the features of other types of nodes for graph structure
information aggregation and propagation;

• w/o topic nodes, which, similarly to the “w/o word nodes” model, refers to the
removal of the part that uses topic nodes in heterogeneous graph neural networks.

Figure 3 shows the experimental results of different variants of our model on the
CNN/DM and NYT datasets. Based on the results of the ablation experiments, we draw
the following conclusions:

1. Our complete model achieved the best performance, which shows that the integration
of all its components is essential to achieving the best results;

2. The model’s performance was most significantly reduced when the GAT layer was
removed, possibly because without the GAT layer, the node representations cannot be
updated. In this case, the model becomes similar to the EXT-BiLSTM model [4];

3. On different datasets, the gains of word nodes and topic nodes were different. Specif-
ically, on the CNN/DM dataset, removing the word nodes led to more significant
performance degradation than removing the topic nodes. However, on the NYT
dataset, retaining topic nodes led to better performance in the ROUGE-1 and ROUGE-
2 scores. The reason for this phenomenon may be due to the different styles of articles
in the two datasets: articles in the CNN/DM dataset are usually more concise and
clear, focusing on factual statements and objective reporting, while articles in the
NYT dataset focus more on in-depth reporting and critical analysis. For these reasons,
we speculate that incorporating implicit topic information is more advantageous for
generating complex article summarization.

Figure 3. Effect of model components on evaluation metrics. The figure shows the performance
metrics of the full model and the three ablation models on the CNN/DM and NYT datasets.

5.3. Qualitative Analysis

In this subsection, we present the experiments conducted to demonstrate how the
introduction of word and topic nodes in a heterogeneous graph enhances the model’s
ability to accurately summarize documents. We employed an attention mechanism to
compute the mutual interactions among nodes in our heterogeneous graph. To conduct a
qualitative analysis of a specific node type k, we propose calculating the attention weights
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that are summed between each node v and all the nodes belonging to k. These weights can
be computed using the following formula:

wk
i = ∑

j∈Tk

αk
i,j (10)

where Tk represents the set of nodes belonging to type k, αk
i,j (Equation (3)) denotes the

attention weight between node i and all nodes j that belong to type k, and wk
i represents

the influence of nodes belonging to type k on target node i.
According to Equation (10), the sum of attention weights from word and topic nodes

can be separately calculated for each sentence in a document. We denote the attention
weights from the word nodes as word-level attention weights and the attention weights
from the topic nodes as topic-level attention weights. An example of the visualization
of attention weights from word and topic nodes for each sentence in a CNN/DM article
is depicted in Figure 4. After examining this example, we found that the ground-truth
summary sentences often obtained high scores in both word-level and topic-level attention
weights. Furthermore, the sentences selected by our model exhibited a high degree of
overlap with these ground-truth sentences. With this observation, we can develop an
intuitive understanding of how our model works: The graph attention layer establishes
connections among words, sentences, and topics, and the GAT model integrates both
word-level and topic-level attention weights while considering the local features and
contextual relationships among sentences, ultimately resulting in the accurate selection
of summary sentences. This strategic approach guides our model’s attention to focus on
specific sentences that may carry crucial information, rather than requiring it to analyze the
entire document.

Figure 4. Visualization of word-level attention weights and topic-level attention weights for each
sentence in a CNN/DM article. The left side shows word-level attention weights and the right
side shows topic-level attention weights. The degree of highlighting represents a greater impact or
influence on the sentence from either word or topic nodes.

6. Conclusions

In this paper, we investigated the impact of introducing more nodes into a hetero-
geneous graph on document summarization. We propose a new summarization graph
structure that includes not only sentence nodes but also additional word and topic nodes.
To help the model extract more accurate summary sentences containing important in-
formation, we utilize the GAT network to update the nodes in the graph, aggregating
semantic information from both word-level and topic-level nodes and utilize this infor-
mation to enrich the representation of sentences. Experimental results on the CNN/DM
and NYT datasets show that our model outperformed the baseline models that did not
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use pre-trained language models. In future work, we plan to enhance the performance
in text summarization by introducing various semantic nodes, such as entities, into the
summary graph.
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