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A MULTI-INDEX
BOREL-DZRBASHJAN TRANSFORM

FADHEL AL-MUSALLAM, VIRGINIA KIRYAKOVA AND VU KIM TUAN

ABSTRACT. An integral transform involving a Fox’s H-
function is introduced. This integral transform is closely re-
lated to a multi-index analogue of the classical Mittag-Leffler
function. Along with the basic operational and mapping prop-
erties of this transform, the new results presented here include
complex and real inversion formulas and a convolution theo-
rem.

1. Introduction. The role of the Laplace transform:

(1) L{f(z); s} =
∫ ∞

0

exp(−sz)f(z) dz

in the operational calculus, and its use in various problems of applied
analysis, engineering and other fields are well-known. The success
of the Laplace transform motivates the search for other more general
transforms of similar type. As an integral transform of resembling type,
one can mention the Borel-Dzrbashjan transform, studied initially by
Dzrbashjan [5], and later by Dimovski and Kiryakova [3]:

(2)
Bρ,µ{f(z); s} = ρsµρ−1

∫ ∞

0

exp(−sρzρ)zµρ−1f(z) dz,

ρ > 0, µ > 0.

Another transform of the same type that is related to the Bessel
differential operator is the well-known Meijer transform:

(3) Kν{f(z); s} =
∫ ∞

0

√
szKν(sz)f(z) dz,
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where Kν(z) is the Bessel function of the third kind.

In 1958, Obrechkoff [11] introduced a far reaching generalization of
the Laplace and Meijer transforms, namely,

(4) O{f(z); s} = β

∫ ∞

0

K[(sz)β ]zβ(νm+1)−1f(z) dz,

where m ≥ 1 is an integer, β > 0, ν1 ≤ ν2 ≤ · · · ≤ νm are real
parameters, and the kernel-function K(z) is expressed in the form

K(z) =
∫ ∞

0

· · ·
∫ ∞

0

[m−1∏
k=1

uνk−νm−1
k

]

× exp
(
− u1 − · · · − um−1 − z

u1 · · ·um−1

)
du1 . . . dum−1.

The transform (4) is called the Obrechkoff transform of order m.
In [1, 2, 4] and [8, Chapter 3], Dimovski and Kiryakova studied
this transform for the purposes of operational calculi for Bessel-type
differential operators of arbitrary integer order m > 1. In particular,
in [4, 8], they discovered that the kernel K(z) is a Meijer G-function.

These integral transforms, besides being analogues to the Laplace
transform, give examples for the so-called convolution type transforms
[7, 17], since for all of them and their numerous particular cases, espe-
cially those following from (4), convolution operations and respective
convolution properties have been found.

There is a class of integral transforms that is associated with a
generalized hypergeometric function known as the H-function, whose
definition we repeat here for the sake of completeness:

Hm,n
p,q

[
σ

∣∣∣∣ (aj , Aj)
p
1

(bk, Bk)
q
1

](5)

=
1

2πi

∫
C′

∏m
k=1 Γ(bk − sBk)

∏n
j=1 Γ(1 − aj + sAj)∏q

k=m+1 Γ(1 − bk + sBk)
∏p

j=n+1 Γ(aj − sAj)
σs ds,

where C′ is a suitable contour in C, the orders (m,n, p, q) are integers
with 0 ≤ m ≤ q, 0 ≤ n ≤ p and the parameters aj ∈ R, Aj > 0,
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j = 1, . . . , p, bk ∈ R, Bk > 0, k = 1, . . . , q, are such that Aj(bk + l) �=
Bk(aj − l′ − 1), l, l′ = 0, 1, 2, . . . . For various types of contours and
conditions for existence and analyticity of function (5), as well as
asymptotic expansions as σ → 0 and σ → ∞, one can see [8, Appendix],
[10, 12, 14].

For A1 = · · · = Ap = B1 = · · · = Bq = 1, the H-function turns into
the simpler Meijer’s G-function [6, Chapter 5], [8, 12]:

Gm,n
p,q

[
σ

∣∣∣∣ (aj)
p
1

(bk)
q
1

]
=

1
2πi

∫
C′

∏m
k=1 Γ(bk−s)

∏n
j=1 Γ(1−aj+s)∏q

k=m+1 Γ(1−bk+s)
∏p

j=n+1 Γ(aj−s)
σsds.

The G- and H-transforms are defined as

G{f(z); s} =
∫ ∞

0

Gm,n
p,q

[
sz

∣∣∣∣ (aj)
p
1

(bk)
q
1

]
f(z) dz,

and

H{f(z); s} =
∫ ∞

0

Hm,n
p,q

[
sz

∣∣∣∣ (aj , Aj)
p
1

(bk, Bk)
q
1

]
f(z) dz,(6)

respectively.

In this paper we consider a special H-transform of the form (6).
This transform turns out to share many properties similar to those
of the Laplace transform. Moreover, the inverse transform and the
operational calculus, which is based on the transform, are related to
the recently introduced multi-index Mittag-Leffler function. We derive
some basic operational properties, complex and real inversion formulas,
as well as a convolution theorem.

2. Multi-index Borel-Dzrbashjan transform. We introduce
in this section a multi-index Borel-Dzrbashjan transform and discuss
some of its mapping and operational properties.

Definition 1. Let m ≥ 1 be an integer and ρi, µi ∈ R with ρi > 0,
i = 1, . . . ,m. Define the H-transform B(ρi),(µi){f(z); s} by:

(7)
B(s) = (Bf)(s) = B(ρi),(µi){f(z); s}

=
∫ ∞

0

Hm,0
0,m

[
sz

∣∣∣∣ −−
(µi − 1

ρ ,
1
ρ )m1

]
f(z) dz.
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We shall call the transform (7) a multi-index Borel-Dzrbashjan trans-
form.

If m = 1 in (7), we obtain the Borel-Dzrbashjan transform (2), which
justifies the adjective multi-index. If, additionally, µ = ρ = 1, then
the Laplace integral transform (1) follows as a special case, and for this
reason we sometimes say the transform (7) is of Laplace-type.

In [4] and [8, Chapter 3], the Obrechkoff integral transform (4) has
been represented as a G-transform of Laplace type, namely,

(8) O{f(z); s} = βs−β(γm+1)+1

∫ ∞

0

Gm,0
0,m[· · · ]f(z) dz.

Due to the relation [8, Appendix], [10, 14],

Gm,0
0,m

[
zβ

∣∣∣∣ −−
(νi + 1 − 1

β )m1

]
=

1
β
Hm,0

0,m

[
z

∣∣∣∣ −−
(νi + 1 − 1

β ,
1
β )m1

]
,

β > 0,

the Obrechkoff transform is also a multi-index Borel-Dzrbashjan trans-
form of form (7) with µi = νi + 1, ρi = (1/β), i = 1, . . . ,m; namely,
O{f(z); s} = s−βµm+1B(ρi),(µi){f(z); s}. Its properties, inversion the-
orems, and convolution discovered in [4] and [8, Chapter 3], can follow
from our present presentation.

Since Kν(z) = (1/2)G2,0
0,2

[
(z2/4)| −−

ν/2,−ν/2
]
, [6], the Meijer trans-

form (3) comes out as a special case of the Obrechkoff transform
(4), (8), when m = β = 2, νi = ±ν/2, namely: Kν{f(z); s} =
2ν−2s−ν+1/2O{f(z); s/2}. Thus, (3) can be seen also as a special case
of the multi-index Borel-Dzrbashjan transform (7).

Throughout this paper we use the notation Hm,0
0,m (sz) for

Hm,0
0,m

[
sz| −−

(µi−(1/ρi),(1/ρi))
m
1

]
and reserve the letters α, µ and ρ to mean

the following:

(9)

α = min
1≤i≤m

{µiρi} − 1, µ = µ1 + · · · + µm,

1
ρ

=
1
ρ1

+ · · · + 1
ρm

, σ =
(
ρ1

ρ

)ρ/ρ1

· · ·
(
ρm
ρ

)ρ/ρm

.
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We consider (7) for the space Ξc of functions f(z) such that f(z)zαe−cz
ρ ∈

L1(R+) for some real c. The complex variable s varies in the complex
domain

Dc =
{
s : �(sρ) >

c

σ
, | arg s| < π

2ρ

}
.

The known asymptotics [10, 14]:

Hm,0
0,m (z) = O(|z|α), as z → 0,

Hm,0
0,m (z) ∼ exp(−σzρ)zρ(µ−

1
ρ−m−1

2 ),

as z → ∞, | arg(z)| < π

2ρ
,

make it clear that the integral (7) is absolutely convergent for f ∈ Ξc

and s ∈ Dc, and its value tends to zero as s → ∞ in Dc. Moreover,
since

d

ds
Hm,0

0,m (sz) =
ρmµm−1

s
Hm,0

0,m (sz)

− ρm
s

Hm,0
0,m

[
sz

∣∣∣∣ −−
(µi− 1

ρi
, 1
ρi

)m−1
1 , (µm+1− 1

ρm
, 1
ρm

)

]
,

the integral
∫ ∞

0

f(z)
d

ds
Hm,0

0,m (sz) dz is also absolutely convergent for

s ∈ Dc. Hence, B(s) is an analytic function in the region Dc, and in
this region, B(s) → 0 as s → ∞.

One can easily use definition (7) to evaluate the images of some
functions. For example, using the formula for integrals of products
of two different H-functions [8, 10, 14],

∫ ∞

0

zβ−1Hs,t
u,v

[
ηz

∣∣∣∣ (ci, Ci)u1
(dl, Dl)v1

]
H l,n
p,q

[
ωzr

∣∣∣∣ (aj , Aj)
p
1

(bk, Bk)
q
1

]
dz

= η−βH l+t,n+s
p+v,q+u

[
ω

ηr

∣∣∣∣ (aj , Aj)n1 , (1 − dl − βDl, rDl)v1, (aj , Aj)
p
n+1

(bk, Bk)l1, (1 − ci − βCi, rCi)u1 , (bk, Bk)
q
l+1

]
,

we get

B(ρi),(µi)

{
H l,n
p,q

[
ωzr

∣∣∣∣ (aj , Aj)
p
1

(bk, Bk)
q
1

]
, s

}

= s−βH l,m+n
p+m,q

[
ω

sr

∣∣∣∣ (aj , Aj)n1 , (1 − µi + 1
ρi

− β
ρi
, r
ρi

)m1 , (aj , Aj)
p
n+1

(bk, Bk)
q
1

]
.
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Also, from [10, 12], we find

(10) B(ρi),(µi){zk} = s−(k+1)
m∏
i=1

Γ
(
µi +

k

ρi

)
, Re k > −α− 1.

Let f(z) =
∑∞

k=0 akz
k be an entire function of order ρ and type σ, that

is,
|f(z)| ≤ C exp[(σ + ε)|z|ρ], for any ε > 0.

Suppose further that µi > 0, i = 1, 2, . . . ,m. Then α > −1, and
formula (10) holds for any nonnegative integer k and we arrive at

(11) f(z) =
∞∑
k=0

akz
k

B(ρi),(µi)�−→ (Bf)(s) =
∞∑
k=0

ak
∏m

i=1 Γ(µi + k/ρi)
sk+1

.

We now show that the transform (7) is an isomorphism on some
subspaces of L2(R+). To this end, let (c, γ) be a pair of real numbers
such that: either c > 0 and γ is arbitrary or c = 0 and γ > 0. These two
conditions can be combined by means of the sign-symbol, as follows:

2sign c + sign γ ≥ 0.

Let M−1
c,γ(L2) denote the subset of L2(R+) consisting of all functions

f such that

f(z) = lim
N→∞

1
2πi

∫ 1/2+iN

1/2−iN
f∗(s)z−s ds, z > 0,

where f∗(s)sγ exp(πc|s|) ∈ L2(1/2−i∞, 1/2+i∞), and the convergence
is understood in the L2(R+) norm. Thus, f∗(s) is the Mellin transform
[15] of f :

(12) f∗(s) =
∫ ∞

0

zs−1f(z) dz.

The set M−1
c,γ(L2), equipped with the norm

‖f(z)‖M−1
c,γ(L2)

= ‖f∗(s)‖L2((1/2−i∞,1/2+i∞);|s|2γ exp(2πc|s|)),
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is a Banach space. The space M−1
c,γ(L2) was introduced in [16] and it

was shown in [17] that f ∈ M−1
c,γ(L2) if and only if

‖zγDγf(z)‖L2(R+) < ∞, if c = 0,
∞∑
k=0

(2πc)2k

(2k)!

∥∥∥∥
(
z
d

dz

)k

zγDγf(z)
∥∥∥∥

2

L2(R+)

< ∞, if c > 0,

where Dρ is the Riemann-Liouville operator of fractional integration
if ρ < 0, and the Riemann-Liouville fractional differentiation if ρ ≥ 0,
[13]:

(13)
Dρy(z) = Dρ

zy(z) =
dn

dzn

∫ z

0

(z − ξ)n−ρ−1

Γ(n− ρ)
y(ξ) dξ,

with integer n : n− 1 ≤ ρ < n.

The chain of the subspaces M−1
c,γ(L2) is well-ordered, that is,

M−1
c,γ(L2) ⊂ M−1

c′,γ′(L2) ⊂ M−1
0,0(L2) = L2(R+),

if 2sign (c− c′) + sign (γ − γ′) ≥ 0.

It is proved in [16] that the H-transform, defined as in (6), is well-
defined in L2(R+) if

(14) 2sign c∗ + sign
(
γ∗ − 1

2

)
> 0,

and, in this case, is an isomorphism from M−1
c,γ(L2) onto M−1

c+c∗,γ+γ∗(L2)
where

c∗ =
1
2

( n∑
i=1

Ai −
p∑

i=n+1

Ai +
m∑
i=1

Bi −
q∑

i=m+1

Bi

)
,

γ∗ =
1
2

( p∑
i=1

Ai −
q∑
i=1

Bi

)
+

q − p

2
+ �

( p∑
i=1

ai −
q∑
i=1

bi

)
.

For the Laplace-type H-transform (7), we have

c∗ =
1
2ρ

, γ∗ =
1
2ρ

+
m

2
− µ,
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and thus (14) is satisfied. Here µ stands for
∑m

1 µi but, if one considers
arbitrary complex parameters µi, then µ :=

∑m
1 �µi. Thus we obtain

the following mapping property:

Theorem 1. The transform B(ρi),(µi), defined by (7), is an isomor-
phism from M−1

c,γ(L2) onto M−1
c+(1/2ρ),γ+(1/2ρ)+(m/2)−µ(L2).

Next we discuss some operational properties of the multi-index Borel-
Dzrbashjan transform (7) that are analogues to the well-known Laplace
transform’s rules:

L
{∫ z

0

f(ς) dς; s
}

=
1
s
L{f(z); s}, the “integral law,”

L
{

d

dz
f(z); s

}
= sL{f(z); s} − f(0), the “differential law.”

It turns out that transform (7) is similarly related to a pair of “inte-
gration” and “differentiation” operators introduced in [9]:

Definition 2. Let µi ≥ 0, i = 1, . . . ,m, and f(z) =
∑∞

k=0 akz
k be

an analytic function in a disc Dr = {z : |z| < r}. Define the operators
D(ρi),(µi) and L(ρi),(µi) by:

D(ρi),(µi)f(z) =
∞∑
k=1

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

Γ(µ1 + k−1
ρ1

) · · ·Γ(µm + k−1
ρm

)
zk−1,

L(ρi),(µi)f(z) =
∞∑
k=0

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

Γ(µ1 + k+1
ρ1

) · · ·Γ(µm + k+1
ρm

)
zk+1.

If m = 1, we get the so-called Dzrbashjan-Gelfond-Leontiev oper-
ators of differentiation and integration studied in [3] and [8, Chap-
ter 2]. Thus we call the operators D(ρi),(µi) and L(ρi),(µi) the multi-
index Dzrbashjan-Gelfond-Leontiev differentiation and integration, re-
spectively.

The operator D(ρi),(µi) can be considered as a fractional analogue of
the hyper-Bessel differential operator. In fact, we have

(15) D(ρi),(µi)f(z) = z−1
m∏
i=1

(
z1+(1−µi)ρiD

1/ρi

zρi z(µi−1)ρi

)
f(z).
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To see (15), apply the formula

Dβ
ww

µ =
Γ(1 + µ)

Γ(1 + µ− β)
wµ−β

with w = zρi and obtain(
z1+(1−µi)ρiD

1/ρi

zρi z(µi−1)ρi

)
zk = w1−µi+(1/ρi)D1/ρi

w wµi−1+(k/ρi)

= w1−µi+(1/ρi)
Γ(µi + (k/ρi))

Γ(µi + (k − 1)/ρi)

× wµi−1+(k−1)/ρi

=
Γ(µi + (k/ρi))

Γ(µi + (k − 1)/ρi)
zk.

Therefore, if f(z) =
∑∞

k=0 akz
k, we have

z−1
m∏
i=1

(
z1+(1−µi)ρiD

1/ρi

zρi z(µi−1)ρi

)
f(z)

= z−1
∞∑
k=0

ak

m∏
i=1

(
z1+(1−µi)ρiD

1/ρi

zρi z(µi−1)ρi

)
zk

= z−1
∞∑
k=0

ak

m∏
i=1

Γ(µi + (k/ρi))
Γ(µi + (k − 1/ρi))

zk

= D(ρi),(µi)f(z).

Operator (15) encompasses many operators appearing in the litera-
ture. For example, the so-called hyper-Bessel differential oeprator in
the form

B = zα0
d

dz
zα1

d

dz
zα2 · · · d

dz
zαm = z−β

m∏
i=1

(
z−βνi+1 d

dz
zβνi

)

= z−ββm
m∏
i=1

(
z

β

d

dz
+ νi

)

is easily seen to be a special case of (15). Also, the operators

Bν,n = Dz−ν+1/n(z−ν+1/nD)n−1zν+1+2/n, n > 1,
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and
Bm = DzD . . . zD,

considered by Krätzel (1963 1967) and by Ditkin, Prudnikov (1963)
and Botashev (1965), respectively, are special cases of (15).

The next theorem shows that transform (7) “algebraizes” the oper-
ators D(ρi),(µi) and L(ρi),(µi), i.e., reduces them to multiplications by
fixed rational functions, a property similar to that of the Laplace trans-
form with respect to the ordinary integration and differentiation.

Theorem 2. Let µi > 0, i = 1, . . . ,m. If f(z) is an entire function
of order ρ and type σ, then:

(16) B(ρi),(µi)

{
L(ρi),(µi)f(z); s

}
=

1
s
B(ρi),(µi){f(z); s},

and

(17) B(ρi),(µi){D(ρi),(µi)f(z); s} = sB(ρi),(µi){f(z); s}−f(0)
m∏
i=1

Γ(µi).

Proof. Let f(z) =
∑∞

k=0 akz
k. Definition 2 and formula (11) yield

B(ρi),(µi){L(ρi),(µi)f(z); s}

= B(ρi),(µi)

{ ∞∑
k=0

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

Γ(µ1 + k+1
ρ1

) · · ·Γ(µm + k+1
ρm

)
zk+1; s

}

=
∞∑
k=0

ak
sk+2

Γ(µ1 + k
ρ1

) · · ·Γ(µm + k
ρm

)

Γ(µ1 + k+1
ρ1

) · · ·Γ(µm + k+1
ρm

)

m∏
i=1

Γ
(
µi +

k + 1
ρi

)

=
1
s

∞∑
k=0

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

sk+1

=
1
s

∞∑
k=0

akB(ρi),(µi){zk; s} =
1
s
B(ρi),(µi)

{ ∞∑
k=0

akz
k; s

}

=
1
s
B(ρi),(µi){f(z); s},



A BOREL-DZRBASHJAN TRANSFORM 419

which is (16).

To prove formula (17), notice that f(0) = a0. Thus,

B(ρi),(µi){D(ρi),(µi)f(z); s}

= B(ρi),(µi)

{ ∞∑
k=1

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

Γ(µ1 + k−1
ρ1

· · ·Γ(µm + k−1
ρm

)
zk−1; s

}

=
∞∑
k=1

ak
sk

Γ(µ1 + k
ρ1

) · · ·Γ(µm + k
ρm

)

Γ(µ1 + k−1
ρ1

) · · ·Γ(µm + k − 1ρm)

m∏
i=1

Γ
(
µi +

k − 1
ρi

)

=
∞∑
k=0

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

sk
− a0

m∏
i=1

Γ(µi)

= s
∞∑
k=1

ak
Γ(µ1 + k

ρ1
) · · ·Γ(µm + k

ρm
)

sk+1
− f(0)

m∏
i=1

Γ(µi)

= s
∞∑
k=0

akB(ρi),(µi){zk; s} − f(0)
m∏
i=1

Γ(µi)

= sB(ρi),(µi)

{ ∞∑
k=0

akz
k; s

}
− f(0)

m∏
i=1

Γ(µi)

= sB(ρi),(µi){f(z); s} − f(0)
m∏
i=1

Γ(µi),

which is (17).

3. Inversion formulas. The formula for the inverse trans-
form of the Borel-Dzrbashjan transform (2) involves the Mittag-Leffler
function [5],

(18) E(1/ρ),µ(z) =
∞∑
k=0

zk

Γ(µ + (k/ρ))
, ρ > 0, µ > 0.

To obtain a formula for the inverse transform of the multi-index
Borel-Dzrbashjan transform (7), we need the multi-index Mittag-Leffler
function introduced by the second author in [9]:
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Definition 3. Let ρi and µi, i = 1, . . . ,m, be as in Definition 1. The
multi-index Mittag-Leffler function is

(19) E(1/ρi),(µi)(z) =
∞∑
k=0

zk

Γ(µ1 + k/ρ1) · · ·Γ(µm + k/ρm)
.

The reader is referred to [9] for the basic properties of the multi-index
Mittag-Leffler function, its expression as a Wright’s generalized hyper-
geometric function as well as Fox’s H-function, and its representation
by a Mellin-Barnes type contour integral. It is also proved there that
the multi-index Mittag-Leffler function is an entire function of order ρ
and type σ where ρ and σ are as in (9).

It turns out that the multi-index Mittag-Leffler function is closely re-
lated to the multi-index Borel-Dzrbashjan transform (7). Our starting
point is an asymptotic formula that we state in the following lemma.

Lemma 1. The following asymptotic formula for multi-index Mittag-
Leffler functions (19) holds:

(20) |E(1/ρi),(µi)(z)| ≤ C|z|ρ((1/2)+µ−(m/2)) exp(σ|z|ρ), |z| → ∞,

with ρ, µ and σ as in (9).

Proof. The Stirling formula for the gamma function yields

m∏
j=1

Γ
(
µj +

k

ρj

)
∼

m∏
j=1

(
k

ρj

)(k/ρj)+µj−(1/2)

exp
(
− k

ρj

)

∼
(
k

ρ

)(k/ρ)+µ−(m/2)

exp
(
− k

ρ

) m∏
j=1

(
ρ

ρj

)k/ρj

∼ Γ
(

1
2

+ µ− m

2
+

k

ρ

) m∏
j=1

(
ρ

ρj

)k/ρj

.
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By definition (19), we find

|E(1/ρi),(µi)(z)| ≤
∞∑
k=0

|z|k∏m
j=1 Γ(µj + (k/ρj))

≤ C
∞∑
k=0

1
Γ((1/2) + µ− (m/2) + (k/ρ))

×
[
|z|

m∏
j=1

(ρ/ρj)1/ρj

]k

= E(1/ρ),(1/2)+µ−(m/2)

(
|z|

m∏
j=1

(ρj/ρ)1/ρj

)
,

where E(1/ρ),µ(z) is the Mittag-Leffler function (18). Then using the
asymptotic formula

E1/ρ,µ(z) ∼ ρzρ(1−µ) exp(zρ), z > 0, z → ∞,

derived by Dzrbashjan [5], we obtain

E(1/ρ),(1/2)+µ−(m/2)

(
|z|

m∏
j=1

(ρj/ρ)1/ρj

)

≤ C|z|ρ((1/2)−µ+(m/2)) exp
(
|z|ρ

m∏
j=1

(ρj/ρ)ρ/ρj

)

= C|z|ρ((1/2)−µ+(m/2)) exp(σ|z|ρ).
Thus

|E(1/ρi),(µi)(z)| ≤ C|z|ρ((1/2)−µ+(m/2)) exp(σ|z|ρ),
which is (20).

The asymptotic estimate (20) ensures that the multi-index Mittag-
Leffler function belongs to Ξc, provided that µi > 0, i = 1, 2, . . . ,m,
and c > σ. Using (11) for the power series (19), we obtain

(21) B(ρi),(µi)

{
E(1/ρi),(µi)(λz); s

}
=

1
s− λ

,

|s| > |λ|, λ �= 0, µi > 0, i = 1, . . . ,m.
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To obtain an inversion formula B−1
(ρi),(µi)

for the multi-index Borel-
Dzrbashjan transform (7) of a function f ∈ Ξc in a complex contour
integral form, we begin with the Cauchy integral formula for the image
B(s) = B(ρi),(µi){f(z); s}, an analytic function in the complex domain
Dc, namely,

B(λ) =
1

2πi

∫
∂Dc

B(s)
s− λ

ds, for λ ∈ Dc.

Here ∂Dc is the boundary of the domain Dc, starting at e−iπ/2ρ∞ and
ending at eiπ/2ρ∞. Applying the operator B−1

(ρi),(µi)
to both sides, we

get

f(z) =
1

2πi

∫
∂Dc

B(s)B−1
(ρi),(µi)

{
1

s− λ

}
ds.

Formula (21) implies that

B−1
(ρi),(µi)

{
1

s− λ
; z

}
= E(1/ρi),(µi)(sz),

and therefore,

(22) f(z) =
1

2πi

∫
∂Dc

E(1/ρi),(µi)(sz)B(s) ds.

A rigorous proof of formula (22) is lengthy and would be a subject of
another paper.

Another complex inversion formula that effectively uses the Mellin
transform techniques is the content of the following theorem.

Theorem 3 (Complex inversion formula). Let f(z) ∈ L1(R+; zc−1)
with c < α+1 be of bounded variation at z. Then the following inversion
formula holds:

(23)
1
2
(f(z + 0) + f(z − 0)) =

1
2πi

∫ c+i∞

c−i∞

B∗(1 − q)z−q∏m
i=1 Γ(µi − q/ρi)

dq.

Here the integral is understood as a Cauchy principal value, and
B∗(1 − q) is the Mellin transform (12) of B(s).
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Proof. From the asymptotics of Hm,0
0,m [sz| −−

(µi− 1
ρi
, 1

ρi
)m
1

] and the condi-
tion on f , it is clear that

∫ ∞

0

∫ ∞

0

∣∣∣∣s−qHm,0
0,m

[
sz

∣∣∣∣ −−
(µi − 1

ρi
, 1
ρi

)m1

]
f(z)

∣∣∣∣ dz ds < ∞.

Therefore, one can apply the Fubini theorem to obtain

B∗(1 − q) =
∫ ∞

0

s−1B(s) ds

=
∫ ∞

0

s−q ds
∫ ∞

0

Hm,0
0,m

[
sz

∣∣∣∣ −−
(µi − 1

ρi
, 1
ρi

)m1

]
f(z) dz

=
∫ ∞

0

f(z) dz
∫ ∞

0

s−qHm,0
0,m

[
sz

∣∣∣∣ −−
(µi − 1

ρi
, 1
ρi

)m1

]
ds.

The inner integral is the multi-index Borel-Dzrbashjan transform of
s−q, and by (10), has the value zq−1

∏m
i=1 Γ(µi− (q/ρi)), and therefore

(24)

B∗(1 − q) =
m∏
i=1

Γ
(
µi − q

ρi

)∫ ∞

0

zq−1f(z) dz

=
m∏
i=1

Γ
(
µi − q

ρi

)
f∗(q).

The inversion theorem for the Mellin transform [15] now yields

(f(z + 0) + f(z − 0))/2 =
1

2πi

∫ c+i∞

c−i∞
f∗(q)z−q dq

=
1

2πi

∫ c+i∞

c−i∞

B∗(1 − q)z−q∏m
i=1(µi − (q/ρi))

dq,

where the integral is understood as a Cauchy principal value.

One can also find a real inversion formula, analogous to the Post-
Widder real inversion formula for the Laplace transform, and to other
existing real inversion formulas for the Meijer and Obrechkoff trans-
forms [4]. The technique from Hirshman and Widder [7] is applied:
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Theorem 4 (Real inversion formula). Let f be of bounded variation
at z and f(z), zf ′(z) ∈ L2(R+). Then
(25)

f(z) = lim
n→∞

n((1/ρ)−µ)

(n!)m

m∏
i=1

n∏
j=0

(
j + µi +

z

ρi

d

dz

){
1
z
(Bf)

(
n1/ρ

z

)}
.

Proof. Use the formula

1
Γ(s)

= lim
n→∞ s(1 + s)

(
1 +

s

2

)
· · ·

(
1 +

s

n

)
n−s,

and the property that

|Γ(s)s(1 + s)
(

1 +
s

2

)
· · ·

(
1 +

s

n

)
n−s| =

∣∣∣∣Γ(n + s + 1)
Γ(n + 1)

n−s
∣∣∣∣

is uniformly bounded with respect to n and s = (1/2) + it [6]. From
(24) we have

B∗(s) =
m∏
i=1

Γ
(
µi − 1 − s

ρi

)
f∗(1 − s),

and, therefore,

f∗(s) =
B∗(1 − s)∏m

i=1 Γ(µi − (s/ρi))

= B∗(1 − s) lim
n→∞

m∏
i=1

n∏
j=0

{(
j + µi − s

ρi

)
n−µi+(s/ρi)

}
(n!)−m.

Since f(z), zf ′(z) ∈ L2(R+), then f∗(s),

sf∗(s) ∈ L2((1/2) − i∞, (1/2) + i∞),

and therefore f∗(s) ∈ L1((1/2) − i∞, (1/2) + i∞). Then the Lebesgue
dominance convergent theorem and the inversion theorem for the Mellin
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transform [15] can be applied to get

f(z) =
1

2πi

∫ 1
2−i∞

1
2−i∞

f∗(s)z−s ds

= lim
n→∞

1

n
∑m

i
µi(n!)m

1
2πi

×
m∏
i=1

n∏
j=0

[ ∫ 1
2−i∞

1
2−i∞

(
j + µi − s

ρi

)
B∗(1 − s)

(
z

n1/ρ

)−s
dz

]

= lim
n→∞

1
(n!)mnµ

n∏
j=0

m∏
i=1

(
j + µi +

z

ρi

d

dz

)

× 1
2πi

∫ 1
2−i∞

1
2−i∞

B∗(1 − s)
(

z

n1/ρ

)−s
ds.

Hence we arrive at

f(z) = lim
n→∞

n(1/ρ)−µ

(n!)m

n∏
j=0

m∏
i=1

(
j + µi +

z

ρi

d

dz

)(
1
z
B

(
n1/ρ

z

))
,

which is (25).

If m = 1 in Theorem 4, the resulting real inversion formula for the
Borel-Dzrbashjan transform (2) seems to be new.

4. Convolution property. In this section we find a suitable oper-
ation that serves as a convolution of our multi-index Borel-Dzrbashjan
transform.

Let µi > 0, i = 1, 2, . . . ,m. Define the operation ∗ by

(f ∗ g)(z) = I
(2µi−1),(−µi)
(ρi),m

(f ◦ g)(z),

where ◦ denotes the operation

(26)

(f ◦ g)(z) =
∫ 1

0

· · ·
∫ 1

0

m∏
i=1

[ti(1 − ti)]µi−1f

(
z

m∏
i=1

t
1/ρi

i

)

× g

(
z

m∏
i=1

(1 − ti)1/ρi

)
dt1 . . . dtm,
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and the following denotation for the generalized operators of fractional
integro-differentiation is used [8]:

I
(γi),(δi)
(βi),m

f(z)

=




∫ 1

0
Hm,0
m,m

[
σ
∣∣∣ (γi+δi+1− 1

βi
, 1
βi

)m1
(γi+1− 1

βi
, 1
βi

)mi

]
f(zσ)dσ, if

∑m
i=1 δi > 0,

f(z), if δ1 =δ2 = · · ·=δm=0,[∏m
i=1

∏ηi

j=1(
1
βi
z d
dz +µi+j)

]
I
(γi+δi),(ηi−δi)
(βi),m

f(z) if
∑m

i=1 δi < 0,

with integers ηi : ηi−1 ≤ δi < ηi.

Theorem 5. The operator ∗ is a convolution of the multi-index
Borel-Dzrbashjan transform in L1(R+, zc−1), c < (α + 1)/2, namely,
(27) B(ρi),(µi){(f ∗ g)(z); s} = sB(ρi),(µi){f(z); s} · B(ρi),(µi){g(z); s}.

Proof. Let p and q be complex numbers with Re p, Re q < α + 1.
Then

(28) z−p ∗ z−q = z−p−q
m∏
i=1

Γ(µi − p/ρi)Γ(µi − q/ρi)
Γ(µi − (p + q)/ρi)

,

which follows by evaluating z−p◦z−q, as repeated beta-integrals, arising
from (26) and then I

(2µi−1),(−µi)
(ρi),m

{z−p−q}. Then, by formula (10), one
can easily verify (27) for any two power functions z−p and z−q, i.e.,

B(ρi),(µi){z−p ∗ z−q; s} = sB(ρi),(µi){z−p; s} · B(ρi),(µi){z−q; s}.
To prove (27) in the case of arbitrary functions
f(z), g(z) ∈ L1(R+, zc−1), c < (α+1)/2, we use the complex inversion
formula (23):

f(z) ∗ g(z)

=
[

1
2πi

∫ c+i∞

c−i∞

(Bf)∗(1−p)z−p∏m
i=1 Γ(µi−p/ρi)

dρ

]

∗
[

1
2πi

∫ c+i∞

c−i∞

(Bg)∗(1−q)z−q∏m
i=1 Γ(µi−q/ρi)

dq

]

=
1

(2πi)2

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞

(z−p ∗ z−q)(Bf)∗(1−p)(Bg)∗(1−q)∏m
i=1 Γ(µi−p/ρi)Γ(µi−q/ρi)

dq dp,
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where (Bf)∗(p) is the Mellin transform of B(ρi),(µi){f ; s}.
Because µi > 0, i = 1, . . . ,m, we have α + 1 > 0 and hence

Re p = Re q = c < (α + 1)/2 < α + 1. Thus formula (28) is applicable
and yields

f(z) ∗ g(z) =
1

(2πi)2

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞

z−(p+q)∏m
i=1 Γ(µi − (p + q)/ρi)

× (Bf)∗(1 − p)(Bg)∗(1 − q) dq dp.

Making the substitution p = σ− q in the p-integral so that σ runs over
the contour (2c− i∞, 2c + i∞), we obtain

(29)
(fz) ∗ g(z) =

1
(2πi)2

∫ 2c+i∞

2c−i∞

z−σ∏m
i=1 Γ(µi − σ/ρi)

×
∫ c+i∞

c−i∞
(Bf)∗(1 − σ + q)(Bg)∗(1 − q) dq dσ.

Applying the Parseval formula for the Mellin transform [15], we get

(30)
1

2πi

∫ c+i∞

c−i∞
(Bf)∗(1 − σ + q)(Bg)∗(1 − q) dq

=
∫ ∞

0

s1−σ(Bf)(s)(Bg)(s) ds
= (s(Bf)(s)(Bg)(s))∗(1 − σ).

Substituting (30) in (29), we find

(31) f(z) ∗ g(z) =
1

2πi

∫ 2c+i∞

2c−i∞

(s(Bf)(s)(Bg)(s))∗(1 − δ)z−σ∏m
i=1 Γ(µi − σ/ρi)

dσ,

with 2c < α + 1. Formula (23) tells us that the right-hand side of
(31) is the multi-index Borel-Dzrbashjan inverse of s(Bf)(s)(Bg)(s).
Applying B(ρi),(µi) to (31) yields (27).
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