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Abstract

Real-time information from microblogs like Twitter is
useful for different applications such as market re-
search, opinion mining, and crisis management. For
many of those messages, location information is re-
quired to derive useful insights. Today, however, only
around 1% of all tweets are explicitly geotagged. We
propose the first multi-indicator method for determin-
ing (1) the location where a tweet was created as well
as (2) the location of the user’s residence. Our method
is based on various weighted indicators, including the
names of places that appear in the text message, dedi-
cated location entries, and additional information from
the user profile. An evaluation shows that our method is
capable of locating 92% of all tweets with a median ac-
curacy of below 30km, as well as predicting the user’s
residence with a median accuracy of below 5.1km. With
that level of accuracy, our approach significantly outper-
forms existing work.

Introduction

Twitter has become a very popular microblogging platform
during the last years with more than 400 million tweets cre-
ated per day.1 Research has shown that tweets provide valu-
able real-time information, e.g., for opinion analysis preced-
ing political elections (Tumasjan et al. 2010), for regional
health monitoring (Aramaki 2011), or local emergency de-
tection (Starbird et al. 2010). However, according to recent
analyses (Hale and Gaffney 2012), only around 1% of all
tweets are explicitly geotagged. Thus, without a possibility
to predict the location of tweets, 99% of all tweets cannot be
used for the above mentioned purposes.

Simple approaches to determine the location of a tweet
are not applicable: The location cannot be estimated using
the IP address of a user’s device, as neither Twitter nor the
telecommunication provider will allow access to that infor-
mation for application programmers. Twitter’s Search API,
which provides spatial filters, relies solely on user profiles,
which are often incomplete and incorrect (Hecht et al. 2011).

Copyright c© 2013, Association for the Advancement of Artificial
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1http://www.theverge.com/2012/6/6/3069424/twitter-400-
million-total-daily-tweets

Extracting location information by other means is chal-
lenging: Place names (also called toponyms) have to be iden-
tified in the tweet message and in the tweet’s metadata.
Tweets are short (max. 140 characters) and often consist
of non-standard language. This results in people using dif-
ferent names or abbreviations for locations, e.g., LA, L. A.,
City of Los Angeles. Furthermore, for mapping toponyms to
locations, two general problems have to be solved (Lieber-
man, Samet, and Sankaranarayanan 2010): First, a toponym
can refer to multiple geographic locations (Geo/Geo disam-
biguation), e.g., Paris is referring to 23 cities in the USA.
Second, a toponym can relate to entries that can refer to a
spatial location but also a person or a thing (Geo/Non-geo
disambiguation). E.g., Vienna may refer to a city as well as
to a person; as is used as an adverb but may also refer to a
city in Belgium; or metro may reference a city in Indonesia,
a train, or a company. This disambiguation is called toponym
resolution (Leidner 2004) and is one of the major challenges
when dealing with location information in microblogs.

For resolving ambiguous toponyms, it is helpful to lever-
age different indicators. For example, for distinguishing the
European country Norway from the equally named city in
Australia, the time zone may be a helpful additional indica-
tor. Thus, we propose a multi-indicator method to solve the
disambiguation problem in microblogs. Our approach can
be used for determining (1) the location where a tweet was
created and (2) the user’s residence. Our proposed method
consists of four steps:

1. Detection of spatial indicators: Spatial indicators are
location information that allow geolocalization. Our method
spots spatial indicators in the text message and in the user
profile of a tweeter.

2. Geographical interpretation: Each spatial indicator
refers to (at least) one geographical area. We determine that
area and represent it with a polygon.

3. Weighting: As some spatial indicators are more reli-
able than others, we attribute a variable height to each poly-
gon. The height is computed based on weights determined
using an optimization algorithm and the reported uncertainty
of the spatial indicator for the currently analyzed case.

4. Stacking: By intersecting and stacking the 3D poly-
gons over each other, a height map is built. The highest area
in this height map is then used for geolocalization.

An evaluation shows that this method is capable of lo-
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cating 92% of all tweets with a median accuracy of below
30km, as well as predicting the user’s residence with a me-
dian accuracy of below 5.1km. With that level of accuracy,
our approach significantly outperforms existing work and is
the only combined approach that allows user and tweet ge-
olocalization.

The rest of this paper is structured as follows: An intro-
duction to spatial indicators in tweets is given in Section 2.
Related work is presented in Section 3. Our method is pre-
sented in Section 4. In Section 5, we evaluate our method
and compare it to state-of-the-art approaches. An example
application is shown in Section 6. We conclude with a dis-
cussion and future work in Section 7.

Spatial indicators in tweets

Spatial indicators are pieces of information that help us lo-
cating a tweet. Twitter users provide many spatial indicators
in their messages and in their profile. The message text, user
account information, website links, current time zone, a ded-
icated location field, and sometimes even accurate GPS co-
ordinates determined by the user’s mobile device may all be
part of a tweet.

Tweet Message

The text message of a tweet is at most 140 characters long,
is unstructured, and often written in non-standard language.
Extracting location information from the message is diffi-
cult as proper place names are seldom used while abbrevi-
ations and nicknames are more common. Furthermore, the
toponyms may or may not refer to the user’s current loca-
tion as he could write about a place he is on the way to or
where he would like to be. A tweet might even include more
than one location in the text, e.g., I’d love go to Hawaii or
Mauritius.

Links included in tweets might reference geotagged pic-
tures on Flickr or other links from location-based services.
E.g., Foursquare allows to “check-in” at a venue resulting in
the creation of a tweet with accurate location information. In
our data set we found links to many location-based services
such as Foursquare2 and Ubersocial3. As these location-
based services are commonly used to inform about the user’s
current location, the linked web pages can be used as spatial
indicators.

Profile Information

Twitter users can maintain a personal profile. Furthermore,
Twitter adds further information about the user and the
tweet. All this information is available as metadata for each
tweet, in particular:

Location field: Users can specify their home location(s)
in the location field. The entries in the location field are het-
erogeneous; the user may, e.g., provide their home coun-
try or their state (Gelernter and Mushegian 2011). Further-
more, abbreviations are commonly used, like NY for New
York or MN, which may stand for Minnesota, but also for

2http://foursquare.com
3http://www.ubersocial.com

the country Mongolia. Most of these location entries have
a relatively large geographic scope, like California or UK.
Besides real location information, the location field is also
used for sarcastic comments or fake location information
like Middleearth (which is an actual city, but mostly used
as the fantasy place).

Hecht et al. (2011), who did the first in-depth study of the
location field, showed that only 66% of the entered informa-
tion have a valid geographic information. Furthermore, they
showed the reflection of current trends like Justin Bieber
as part of the location field (e.g. Biebertown). Also, 2.6%
of the users enter multiple locations. GPS coordinates are
part of the location field too, either in decimal or DMS (de-
grees/minutes/seconds) notation. Mostly, these GPS coordi-
nates are provided by mobile devices or mobile applications.
Besides correct coordinates, there are also parts of coordi-
nates or IP addresses that could prevent easy parsing.

Websites: In their profile, twitter users may provide links
to web pages which may, e.g., contain personal information.
People provide links to Twitter, Facebook, or other social
network pages as well as personal websites. Both the web-
site’s country code and the website’s geocoded IP address
are spatial indicators.

Time Zone: The time zone entries in the user’s profile
describes a region on earth that has a uniform standard time.
The time zone is initially set by Twitter and can manually
be adjusted by the user. It is typically represented by a city,
which is often the capital city of the user’s home country,
e.g., London. On the other hand, the time zone can also de-
scribe a larger region without an explicit capital mentioned,
e.g., Eastern Time (USA&Canada).

UTC24-Offset: UTC is the time standard used for many
World Wide Web standards. 24 main time zones on earth are
computed as an offset from UTC, each time zone boundary
being 15 degrees of longitude in width, with local variations.
Therefore, the UTC offset only is a means for differentiate
a location by longitude compared to the much more precise
time zone information.

Coordinates and Place: Depending on the privacy set-
tings, tweets may also contain location information as lat-
itude/longitude coordinate pairs. The coordinates are set
when the user tweets from a device with enabled GPS. These
device locations are difficult to be changed and manipulated
and can be seen as a very good approximation of the user’s
position when sending a tweet. Furthermore, Twitter pro-
vides an approximate location specified as a bounding box.
For creating this bounding box, Twitter uses the user’s IP
address for creating the approximation.

Related Work
Identifying the geographical location of digital content is a
field of extensive research. There are methods to identify
the geographic location of digital text documents (Smith and
Crane 2001), web pages (Zong et al. 2005), blogs and news
pages (Lieberman, Samet, and Sankaranarayanan 2010), and
Flickr tags (Popescu and Grefenstette 2010). The work fo-
cused on Twitter can be differentiated in three dimensions:
The spatial indicators used, the techniques applied, and the
localization focus.
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Table 1: Overview of related approaches. Spatial indicators and techniques marked with (X) were used for creating baselines
or were part of the background analysis.

Spatial Indicators Techniques Localization Focus

Text
Location

Field

Social

Network
Other NLP Gazetteer

User’s

Resi-

dence

Tweet

Location

Message

Focus

(Eisenstein et al. 2010) X X X

(Hecht et al. 2011) X (X) X X X

(Cheng, Caverlee, and Lee 2010) X (X) X X X

(Chandra, Khan, and Muhaya 2011) X X X X

(Gelernter and Mushegian 2011) X X X

(Sultanik and Fink 2012) X (X) X X

(Ikawa, Enoki, and Tatsubori 2012) X X X

(Kinsella and Murdock 2011) X (X) X (X) X X

(Hong et al. 2012) X X X

(Paradesi 2011) X X X

(Hale and Gaffney 2012) X X (X) X X

(Abrol and Khan 2010) (X) (X) X X (X) X

(Takhteyev, Gruzd, and Wellman 2012) (X) X X (X) X

(Clodoveu et al. 2011) X (X) X

(Mcgee, Caverlee, and Cheng 2011) (X) X (X) X

(Gonzalez et al. 2011) X (X) X

(Sadilek, Kautz, and Bigham 2012) X (X) X X

(Krishnamurthy and Arlitt 2006) X - - X

(Bouillot, Poncelet, and Roche 2012) X X X X X

(MacEachren et al. 2011) X X X X X

Our Approach X X X X X X

Spatial Indicators

Different information sources are used for geolocalization
purposes. The message text is used most of the times, for
instance, the approaches proposed in (Cheng, Caverlee, and
Lee 2010), (Eisenstein et al. 2010), (Hecht et al. 2011), or
(Kinsella and Murdock 2011) use language models based
on the terms in the tweet message. Chandra, Khan, and
Muhaya (2011) extend these approaches by taking the rela-
tionships of the users into account. Gelernter and Mushegian
(2011), Sultanik and Fink (2012), and Paradesi (2011) ap-
ply named entity recognition to annotate tweet messages and
preprocessing to handle the disambiguation problem. Ikawa,
Enoki, and Tatsubori (2012) also use a language model, but
in this case, they analyze only keywords from messages cre-
ated by location-based services like Foursquare. The algo-
rithm of Hong et al. (2012) is based on the words a user uses
in his tweets. They show the advantage of identifying topi-
cal patterns for geographical regions. Furthermore, Hale et
al. (2012) analyze if the language of the message text can be
used for geolocalization. They conclude that the language is
not an appropriate indicator.

Besides the message the location field is used for location
estimation. Hecht et al. (2011) provide an in-depth analysis
of the location field. As a result, they conclude that the lo-
cation field alone does not provide enough information for
geolocalization. Hale and Gaffney (2012) analyze different
geocoders for identifying the location where a user is tweet-
ing from based on the location field.

Instead of the directly usable information of the message
or the location field, the relationships of the users are also
useful for geolocalization. Abrol and Khan (2010) try to
identify the location of a user based on his/her social activ-
ities. Takhteyev, Gruzd, and Wellman (2012), Clodoveu et
al. (2011), and Mcgee, Caverlee, and Cheng (2011) analyze
the relationship between a pair of users and the distance be-
tween the pair. Gonzalez et al. (2011) focus on the follower
relationship and report that in countries like Brazil there is

a high intra-country locality among users, while in English-
speaking countries the external locality effect is higher. The
approach of Sadilek, Kautz, and Bigham (2012) is also based
on the relationship between users, but in this case, the GPS
tags are also used for location inferencing.

Krishnamurthy and Arlitt (2006) use the UTC offset in-
formation to get a user’s local time and thereby an approx-
imate longitude. They compare their results to the top-level
domains of the URL of a user. Users with URL in the .com
domain are distributed around the world, while the rest of
the UTC data is lined up with the domain information.

Several approaches propose the combination of different
information sources. Bouillot, Poncelet, and Roche (2012)
propose an approach based on different aspects of user in-
formation, like the message, the location field as well as the
language for homonym differentiation. MacEachren et al.
(2011) developed an application that leverages the geocoded
location field, the timezone, hashtags and named entities
from the tweet for geolocalization and geovisual analytics
of tweets in crisis management. None of these approaches
provide quantitative evaluation results for geolocalization.

Techniques

The approaches can be divided into methods mainly based
on natural language processing (NLP) that do not use ex-
ternal information, and approaches based on geographical
dictionaries (gazetteers). NLP-based approaches are espe-
cially used to estimate the location using language models
and context information about the user. On the other side, the
gazetteer approaches use geocoders to determine the place
that is being referred to. This approach cannot find informa-
tion easily that is not present in the gazetteer, but needs no
training data and is much simpler. Gazetteers have also been
used several times by the NLP-based approaches on the lo-
cation field for creating a baseline or training the models.
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Localization Focus

All analyzed approaches pursue different goals: As some try
to predict the home location of the user, other approaches
predict the location where the tweet was sent or the location
of what the user is tweeting about. This differentiation is
clearly necessary depending on the use case: in emergency
management, it is relevant what place a message is related
to, for location-based services, the location where a Tweet is
created is relevant, and for market research, we rather focus
on the user’s home location.

Discussion

Table 1 provides an overview on the related approaches.
Language models are used for localization of the user as well
as for localization of the tweet. On the other side, the social
network is only used for predicting the user’s residence. Ex-
cept the language model of Kinsella and Murdock (2011),
there is no approach for detecting both the user’s residence
and the location where the tweet was sent. The advantage of
using different information sources at once, e.g., language
information as well as place names from the location field
and the message, has been shown several times by (Bouil-
lot, Poncelet, and Roche 2012; MacEachren et al. 2011;
Hecht et al. 2011).

Our method is innovative in several aspects compared to
related work. To our knowledge, it is the first multi-indicator
approach using a vast variety of spatial indicators to solve
geolocalization problems on tweets. We are able to deter-
mine the location of the tweet as well as the location of the
user’s residence by taking the message, the location field and
further metadata into account.

Multi-Indicator Approach

In order to estimate the location of a tweet, we use a variety
of spatial indicators. This section presents how spatial indi-
cators are combined to form a single geolocation estimate
and discusses how the spatial indicators are extracted from
tweets.

Combining Spatial Indicators

Properties of spatial indicators: Usually one or a multitude
of spatial indicators can be extracted from a single tweet.
In order to successfully combine the spatial indicators, it is
necessary to understand their basic properties:

• Contradiction: The spatial indicators extracted from a
tweet can coincide (e.g., location field: Paris, message:
Nice weather in Paris) or they can be contradictory (e.g.,
location field: Paris, message: Nice weather in Athens).

• Scale: The spatial indicators can relate to areas of dif-
ferent scale. Consider for instance the spatial indicators
France and Eiffel Tower that may occur together in a twit-
ter message and which represent geographical areas of
vastly different size.

• Ambiguity: As discussed above, spatial indicators are
ambiguous, such as the different cities called Paris. Fur-
ther ambiguity may come because of spelling errors, the
use of abbreviations, incomplete information, and slang.

Gazetteers usually provide a list of different geographi-
cal interpretations of a geographical name with ratings of
their uncertainty, e.g., based on the edit distance of a mis-
spelled city name.

Polygon mapping: Simple solutions to combine the spatial
indicators into a single location estimate, such as comput-
ing the average of the coordinates given by each spatial in-
dicator, are bound to fail due to problems with contradic-
tion, scale, and ambiguity. In order to get a good combined
estimate we adopted the approach of Woodruff and Plaunt
(1994) for localizing bibliographical text documents, which
is based on intersecting the geographical outlines of the geo-
graphical areas that the spatial indicators refer to. These ge-
ographical outlines are represented by polygons. The map-
ping from spatial indicators to polygons is either done di-
rectly by the resolution method itself or indirectly using co-
ordinate pairs that are provided by the resolution method
and mapping to an appropriate surrounding area in a spatial
database (see below).

Polygon height: To arrive at a uniform prediction, a
height is attributed to each polygon, making it a three-
dimensional shape. The height allows for modeling the un-
certainty that may come with a spatial indicator. This un-
certainty can be an outcome from the method itself, which
may sometimes make wrong prediction, or from inherent in-
accuracy of a spatial indicator, e.g., the time zone indicator.
Therefore, the final polygon height is determined based on
two factors: First, it is based on the quality of the resolution
method that was used. Based on our evaluation results, we
assign a quality factor Qext to each method based on how
well it contributes to predict the tweets location. The value
Qext is determined using the simplex method of Nelder and
Mead (see below). In addition to this “external” quality mea-
sure, many methods also provide an internal assessment of
the quality when more than one alternative is suggested.

The internal quality measure Qint(x) provides an estima-
tion for the quality of the x-th alternative. Since different
resolution methods have vastly different scales when report-
ing this internal quality measure, they are normalized to a
[0, 1] interval. Resolution methods returning only one re-
sult are rated with Qint = 1. The height h of the poly-
gon representing the x-th alternative is then computed as
h(x) = Qext ·Qint(x).

Polygon stacking: Once all three-dimensional polygon
shapes are determined, they are stacked one over the other
and form a height profile (see Figure 1). The highest area in
that height profile is then found and its polygon outline is
determined as the intersection of the contributing polygons.
The geolocation is estimated as the geometric center of that
area as a coordinate pair.

Extracting Spatial Indicators

The different spatial indicators described in Section are ex-
tracted from tweets as follows:

Tweet Message: From the text, we extract entities us-
ing DBpedia Spotlight (Mendes et al. 2011), a named en-
tity recognition service which identifies entities in texts and
maps them to DBpedia (Bizer et al. 2009) entities (SP). For
example, in the tweet yeah, watching muse at fedex field!!!,
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Figure 1: The height profile is determined by stacking the
three-dimensional polygon shapes over each other.

the text muse is recognized as a named entity and mapped
to http://dbpedia.org/resource/Muse (Band), as well as fedex
field is mapped to http://dbpedia.org/resource/FedEx Field.
As most geographic entities (such as FedEx Field) have co-
ordinates in DBPedia, we use those coordinates for poly-
gon mapping. Entities without coordinates (such as Muse)
are discarded. For calculating Qint(x) we use the confidence
values provided by Spotlight.

For processing information from location-based services
(LBS), we analyzed our dataset for the occurrences of the
most common services. In this case, we extract coordi-
nates from UeberSocial, TrendsMap, Flickr, Roketatchi and
Foursquare based on the information provided on the web
page. For every location-based service we identify the coor-
dinates based on predefined patterns, e.g. for Foursquare, we
use the meta tags referencing the venues and corresponding
location information.

Location Field: For toponym resolution in the location
field we use Geonames4 (GN). Geonames is a gazeteer that
contains more than 10 million entries about geographic enti-
ties in different languages. This includes countries, cities as
well as building and street names. Using the full text search,
Geonames returns a list of possible results with a confidence
score, which we use for calculating Qint(x). As Geonames
is not able to resolve all location field entries directly, we
preprocess the entries in different steps if no results are re-
turned:

• Geonames has problems processing unaligned text seg-
ments like Paris, France. We solve this by text prepro-
cessing (GN-1).

• We extract several toponyms from the location entry (GN-
2). First, as lot of the location field entries contain separa-
tors like ’—’, e.g., Salvador — Bahia — Brasil, we split
this entry into a list of entities. Furthermore, more general
location information is often provided in brackets, e.g.,
Berlin, Germany (Europe). In this case, we extract the
content of the bracket and try to resolve the first comma
group and the bracket itself in Geonames.

• As gazeteers often have problems with city-level entities
like local places and their nicknames, we use DBPedia
Spotlight to annotate the entry in the location field (GN-
3). In this case, commonly used nicknames like The Big
Apple can be retrieved.

• As a last means for extracting toponyms, we split the

4http://www.geonames.org/

whole location entry into a list of words (GN-4). Every
word is then sent to Geonames.

As previously mentioned, coordinates are also part of
the location field. For extracting these, we use regular ex-
pressions to identify them in decimal or the DMS notation
(COD). As location-based services do not follow a com-
mon pattern for setting coordinate entries, regular expres-
sions have been adapted to match most of the common cases.
For instance, analyzing entries of location fields in DMS no-
tation show that numbers are set before the cardinal direction
as well as behind.

Website: To handle the website entries, we follow a
twofold approach. First, we extract the top-level domain us-
ing a regular expression (WS-1). The top-level domains are
then matched against country codes using a manually cre-
ated mapping of country codes and the corresponding coun-
try names. .com, .net, .org are not processed in this case, as
they do not provide any helpful location information (Krish-
namurthy and Arlitt 2006). To provide estimations for these
cases, we also extract the IP addresses using the host names
(WS-2). Coordinates are then retrieved using IPinfoDB5.

Time Zone: Our analysis of the different time zone en-
tries has shown that these are mostly provided in a standard-
ized format stating the capital of the home country. Besides
these kinds of entries, United States and Canadian time zone
entries are also present like Central Time (USA&Canada).
The provided time zone entries can be used directly as they
are machine-generated (TZ).

Mapping to Polygons

To enable the mapping of geocoordinates to polygons we
built a spatial database with polygons suitable for every spa-
tial indicator.

Tweet Message and Location Field: For mapping the co-
ordinates retrieved from the message and the location field,
we use polygons of the world’s administrative areas. E.g. the
Bronx can be retrieved as part of the administrative districts
of New York City allowing us to narrow down our estima-
tion as good as possible. The polygons used for this were re-
trieved from the GADM database of Global Administrative
Areas.6 For mapping coordinates retrieved from location-
based services, we use a circle of 100m radius around the
position.

Website: As the website entries might relate to the home
country of the user, but not the home town, we use coun-
try polygons for mapping the website entries. In this case
the polygons are retrieved from ThematicMapping.7 The ex-
tracted country names from the top-level domains are then
matched to the polygons representing the world borders.

Time Zone: For mapping the time zones, we use poly-
gons retrieved from the IANA Time Zone Database.8 In this
case, the polygons for the time zones of the US, Canada,
Russia and China have been aggregated manually, as they

5http://ipinfodb.com/
6www.gadm.org
7http://thematicmapping.org/downloads/world borders.php
8http://efele.net/maps/tz/world/
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Figure 2: Example pipeline for our approach: Spatial indicators are identified based on the methods described. The results
are either a pair of coordinates (lat,lon) or a set of coordinates and quality measures. The coordinates are mapped to the
corresponding polygons. Then the external quality measures are applied before conducting the stacking. As a result we estimate
the location of the tweet with a confidence value.

are not present in the initial dataset. Furthermore, the poly-
gons for the time zones spanning multiple countries like
the Central Standard Time (CST) or Pacific Standard Time
(PST) were created manually based on the regions contained
in the corresponding time zone.

Determining External Quality Measures

Since not all indicators are expected to perform equally well,
we assign a quality measure to each method based on how
well it contributes to predict the tweets location. To de-
termine a good external quality measure of each approach
we use the downhill simplex method of Nelder and Mead
(1965). To apply the method, we regard the weight of each
method as a variable of our objective function. For tweet ge-
olocalization the objective function is the mean squared er-
ror of all distance estimations compared to the device loca-
tion. With the optimization method, we are able to calculate
a local optimum for minimizing the objective function.

To calculate the optimal solution, we use a hold-out sam-
ple set of 10,000 randomly chosen tweets from our test
set (see below) and calculate their distances. The exter-
nal quality measures for good spatial indicators like the
coordinates and the location-based services indicators are
high (LBS=4.26, COD=2.72). The first three Geonames op-
timizations are valuable compared to the plain Geonames
approach (GN=1.51, GN-1=2.01, GN-2=1.67, GN-3=1.96).
The fourth optimization, which processes every word in the
location field is not useful for geolocalization (GN-4=-0.54).
Processing the time zone as well as the top-level domains is
also contributing to the overall result (TZ=1.12, WS-1=1.07)
as well as the message processing based on DBPedia Spot-
light (SP=0.87). Using the IP addresses does not provide
valuable estimations (WS-2=-2.32). The final weights are
shown in Table 2.

Discussion

Figure 2 illustrates how an example tweet consisting of sev-
eral spatial indicators is processed using our approach. As a
result of this process, we estimate the location of the tweet
with a confidence value.

Compared to other approaches, our way to stack 3D poly-
gon shapes over each other differs significantly. Our method
is a multi-indicator approach that allows combining vastly
different spatial indicators such as the user’s time zone and
check-ins from location-based services. Due to the variety
of indicators used, our method is less vulnerable to missing
or incomplete data, which is rather commonplace in tweets.
E.g., the location field may be blank or the text message
might not contain any information about the user’s location,
but our method can in most cases find a reasonable estimate
of the tweet’s location based on the other spatial indicators.

In contrast to other approaches, we combine a variety of
indicators using optimized weights obtained by a thorough
evaluation on a large and diverse test set. Furthermore, since
none of the techniques relies on English as an input language
(although, e.g., DBpedia Spotlight has to be specifically con-
figured and deployed to work on other languages), our ap-
proach is applicable to arbitrary languages in principle.

Evaluation

We conduct the evaluation of our method on the publicly
available Twitter feed. First, we evaluate the performance
of each single spatial indicator for geolocalization of the
tweet. Second, we measure the performance of the overall
approach for geolocalization of a tweet as well as for deter-
mining the user’s residence.

Test Data: From September 2011 to February 2012 we
crawled around 80 million tweets from the Spritzer stream
using the Twitter Streaming API9. The Spritzer stream is a

9https://dev.twitter.com/docs/streaming-api/methods
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Figure 3: Overview of the evaluation results for the location field approaches (top left), the time zone and website results (top
right), the approaches based on the message (bottom left) and the overall results with external quality measures (bottom right).
The right y-axis of each chart provides the relative percentages while the left one shows the cumulative percentages. The x-axis
shows the distance in km.

feed of 1-2% tweets of a random selection of all public mes-
sages. From these tweets, we extracted 1.03 million mes-
sages with device locations to use them for our evaluation.
No further preprocessing has been applied on the sample set
to keep it representative for a real-world scenario. For im-
plementing our approach, we used 10% randomly selected
tweets from the dataset with device locations for tuning the
identification of spatial indicators and 90% for testing.

Metrics: To evaluate our approach, we compare the co-
ordinate pair estimation of our approach with the device lo-
cation. As error metrics we provide the Average Error Dis-
tance (AED), the Median Error Distance (MED), and the
Mean Squared Error (MSE) to ensure comparability to re-
lated work. We also report the Recall, which is the number
of tweets with identified spatial indicators compared to the
amount of all tweets.

Results: Single Spatial Indicator

We investigated the performance of our approach for geolo-
calization of the tweet. In this case, we evaluated the differ-
ent approaches for every spatial indicator itself before com-
bining the approaches. The results are shown in Table 2.

Tweet Message: The method SP for tagging the mes-
sages identifies toponyms in 5.13% of the tweets. The over-
all estimation with a median error distance of 1100km is
not suitable for location estimation. DBPedia Spotlight re-
trieves good estimations on messages mentioning the cur-

rent location as toponyms in the text, which are created
by location-based services. Furthermore, @-mentions like
’@Bryant Park’ provide good estimations. On the other
side, DBpedia Spotlight has some problems with the non-
standard language in Tweets, resulting, e.g., in regular words
are identified as toponyms. In this case, identifying methods
for detecting the relevant named entities is necessary. In con-
trast, using the LBS method, we get a high precision using
the links created by location-based services with about 97%
within a 1km radius, which makes this a suitable source for
estimations. The recall of the LBS method is rather low with
18.25%.

Location Field: Using only the coordinates (COD) pro-
vided in the location field results in a low recall of 7.73%,
which is the result of only having a few coordinates in the
entry. The precision of this approach is very high, as 77%
are within a 25km radius and 31% within 10km. In this case,
some outliers result from large differences between the co-
ordinates in the location field entry and the real position.
These outliers might be a result of late updates of the device
position, e.g., during long-distance flights.

Adding the plain Geonames approach GN, we get a good
recall of 65.82%. Furthermore, the median error distance of
23,30km is a result of estimating 62% within a 50km radius
and even 52% within 25km. Errors are the result of location
field entries with multiple toponyms, with brackets and other
unparsable combinations. With the first optimization GN-1,
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Table 2: Results of the individual indicator approaches (in km) and external quality measures of the indicators.
COD GN GN-1 GN-2 GN-3 GN-4 SP LBS TZ WS-1 WS-2

MSQ 1670 3402 3432 3539 3631 4618 5939 403 4229 4896 7230

AED 349 1354 1320 1380 1459 2188 3689 15.41 2600 2618 5529

MED 9.25 23.3 22.65 22.63 25.46 41.40 1100 0.01 1543 494 3287

Recall 7.73% 63.55% 65.82% 69.03% 71.64% 83.29% 5.13% 18.25% 81.22% 6.46% 34.40%

Recall (all) 4.54% 68.67% 70.16% 72.51% 74.74% 82.32% 5.66% 22.19% 96.24% 17.43% 79.15%

Qext 2.72 1.51 2.01 1.67 1.96 -0.54 0.87 4.26 1.12 1.07 -2.32

we can increase the recall by 2% while further increasing
the median error distance by 0.7km. The second optimiza-
tion GN-2 further increases the recall by 3% without a sig-
nificant loss of precision. In contrast, the third optimization
GN-3 results in a loss of precision while further increasing
the recall by 2%. The fourth optimization GN-4 increases
the recall to 83%, but also reduces the accuracy consider-
ably. It is still possible to estimate 51% of the tweets in a
50km radius, but the median error distance with more than
1000km is much higher.

As an overall result, the location field handler extracts
toponyms quite well. It still needs more discriminators for
better precision, e.g., loading... is mapped to Port Bonython
Loading Terminal. In this case, further information about the
user has to be used to identify these cases. Our analysis of
the location field further has further shown that people enter
IP addresses, dates, as well as incomplete coordinates. These
types of entries are discarded.

Time Zone and Website: The estimation based on the
time zone approach TZ geolocalizes 81.22% of the tweets.
This approach results in a low precision, because we use a
polygon with the size of the whole country. The same ap-
plies for both website handling approaches. The first website
approach WS-1 has a low recall of 6.46%, because website
information is either not provided or related to a top-level
domain, which we do not extract. Using the IP addresses in
approach WS-2 is also imprecise, but the recall is 34.40%,
because all websites are used. In this case, the precision is
even lower than the top-level domain approach. Same as the
time zone approach, the two website approaches have low
precision, because we use the country wide polygons. All
of these approaches are good estimators for smaller coun-
tries such as the Netherlands, but loose precision on large
countries like the US. Nevertheless, the provided informa-
tion can be valuable to differentiate toponyms extracted from
the other approaches.

Results: Geolocalization of a tweet

For the overall evaluation, we discard the fourth Geonames
optimization GN-4 as well as the approach based on the IP
addresses WS-2, because their external quality measures are
less than zero. As an overall result, we are able to create es-
timations for 92% of the tweets in our dataset with a median
error distance of 29.66km. We are able to estimate 54% of
the tweets within a 50km radius (cf. Figure 3, bottom right).
The use of optimized quality measures (QM) drastically in-
creases our estimation (cf. Table 3), with a small reduction
in recall that results from disposing the two mentioned ap-
proaches.

Ikawa et al. (2012) report a precision of 17% in a 10km ra-

Table 3: Results of the overall geolocalization approach for
tweets with and without external quality measures.

MSE AED MED Recall

w/o QM 4159km 1931km 64.46km 95.10%

with QM 3310km 1408km 29.66km 92.26%

dius and 25% in a 30km radius. Compared to this, we exceed
their results with 37% on 10km and 48% on 25km. Kinsella
and Murdock (2011) report a precision of 13.9% on zip code
level and 29.8% on town level. If we assume a precision of
1km precision as zip code precision and 10km precision as
town level, we also exceed their results as we are able to esti-
mate 22% on a 1km radius and 37% on a 10km radius10. We
omit a comparison to Paradesi (2011) and Hale and Gaffney
(2012) as they restricted their datasets beforehand to a non-
worldwide set. Furthermore, Hong et al. (2012), Bouillot et
al. (2012), MacEachren et al. (2011) do not provide quanti-
tative results. Summarized, we significantly outperform cur-
rent state-of-the-art on tweet localization.

Since our test set consists of those tweets whose coordi-
nates we know, and this selection may be biased, we have
also tested our approach to detect spatial indicators on a
random sample of 10,000 tweets from the whole Spritzer
dataset. In this case, no quality measures or mappings to
polygons have been applied. The results show that our ap-
proach would also perform well on a dataset with and with-
out device locations (cf. Table 2, Recall (all)). Even a sus-
pected decrease of recall in the location-based services indi-
cator could not be found. Though the use of LBS indicators
might appear as skewing the results, since they are trivial to
locate, 22.19% of all tweets in a representative sample are
LBS related tweets, thus, taking that information into ac-
count is a valid approach. Also only 1% of all location-based
services indicators are correlated with coordinate entries in
the location field. Nevertheless, the differences in recall in-
dicate that our approach can be tuned to match yet unknown
cases, e.g., previously unknown top-level domains. Further-
more, spatial indicators could be detected that are currently
not mapped to polygons, which is a result of imprecise loca-
tion information in the different approaches we apply.

Results: User’s residence

To show the applicability of our approach for estimating the
user’s residence, we also applied it on a smaller sample set.
Since there is no dataset with home locations, we identified
all tweets for users with more than 20 tweets in our test set

10We compare to the evaluation based on the worldwide FIRE-
HOSE feed in this case, as the Spritzer feed was restricted to 10
towns by Kinsella and Murdock.
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Table 4: Results of the overall approach for estimating the
user’s residence.

MSE AED MED Recall

with QM 2281km 751km 5.05km 100%

and manually geocoded the residence of 500 randomly se-
lected users. In this case, the location field of the last tweet
from every user was used as ground truth, as we suppose it
describes the user’s actual home location. For estimating the
quality of our approach, we compared these geocodes with
our estimations. The estimations were created based on the
spatial indicators extracted from all tweets of a user, which
is different compared to the geolocalization of a tweet where
only spatial indicators of one tweet were used.

The most relevant work from Chandra et al. (2011) re-
port that their approach is able to estimate in 22% of the
cases the user’s residence in a 100mi radius. Furthermore,
they achieve an average error distance of 1044.28mi. Their
dataset contains data from the US with 10,584 training and
540 test users. We cannot reuse this dataset, as it only con-
tains the tweets and no user profiles. With our approach we
are able to estimate 79% of the user’s residences in a 100mi
radius on our data set. Furthermore, with 751km (466mi)
our approach has a much lower average error distance with
a median error distance of 5.05km (3.24mi) (see Table 4).
We admit that we are working on a relatively small dataset,
but our evaluation shows promising results towards good
estimations for the user’s residence even on a worldwide
dataset.

Example application

To demonstrate how our approach can be applied to practical
scenarios, we crawled 150,000 tweets related to Hurricane
Sandy in October 2012. Our approach was applied for ge-
olocalization of the tweets. Furthermore, we applied mood
analysis from uClassify11 to differentiate them into the two
classes happy and upset. Using both spatial and mood in-
dicators allows for creating maps showing how the attitude
of people towards a topic or event is distributed in different
regions.

Figure 4 shows such a map for the U.S. east coast region
affected by hurricane Sandy. In the example application, the
amount of tweets in each administrative area is represented
by the transparency level of the polygons. The mood classes
are displayed by the color of the polygon.

At first glance, the results look quite surprising, since peo-
ple in the directly affecting coast regions and Manhattan ap-
parently show positive moods towards the Hurricane. How-
ever, having a closer look at the tweets of Manhattan reveals
a lot of people being happy to be safe after the hurricane,
having got notice that no one in their family was hurt, etc.
Another portion of tweets reveals that people are happy that
they do not have to go to work or school the next day. On
the other hand, less directly affected people in the areas far
from the coast rather express their regret and compassion.

11http://uclassify.com/

Figure 4: Example application of our approach based on
tweets related to Hurricane Sandy showing the amount of
tweets for each administrative area (represented by trans-
parency level) as well as the mood classes (color of the poly-
gon).

The example application shows how geolocated tweets
may be used on a large scale, e.g., to do research on peo-
ple’s attitudes towards a topic. Furthermore, in crisis situ-
ations such the hurricane example, precisely located tweets
may be used for creating rather exact maps of affected areas,
and provide drill-down details when looking at the tweets
that were aggregated for the map view.

Conclusion

This paper contributes the first multi-indicator approach that
combines vastly different spatial indicators from the user’s
profile and the tweet’s message for estimating the location of
a tweet as well as the user’s residence. In contrast to other
works, our method uses a large variety of indicators and is
thus less vulnerable to missing or incomplete data. We are
able to create estimations for the location of a tweet for 92%
of the tweets in our dataset with a median of 29.66km. Fur-
thermore, we are able to predict the user’s residence with a
median accuracy of below 5.1km. Both predictions signifi-
cantly outperform the state of the art. To achieve this degree
of precision, we conducted an in-depth analysis of different
spatial indicators that can be retrieved from tweets and de-
termined their value for geolocalization problems based on
an optimization algorithm.

We see further optimization potential of our approach.
The indicators discussed in this paper may be refined, e.g.,
with respect to accuracy and internal quality measures, as
well as new indicators may be integrated in our model. For
instance, Sadilek, Kautz, and Bigham (2012) show promis-
ing results towards using the social network of a user for
location inferencing. Furthermore, it would be beneficial to
compute an overall confidence score for our estimations.

With an example application, we have demonstrated a
use case for tweet localization for which our method pro-
vides sufficient accuracy: An analysis of the tweets created
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shortly after the hurricane Sandy struck the east coast of
the U.S. reveals interesting and non-trivial information that
could not have been generated without precise tweet loca-
tion. This provides some initial evidence that the accuracy
of our method is sufficient for analyzing microblog entries
in various application scenarios.
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