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Abstract: Physical activity recognition is a field that infers human activities used in machine learning
techniques through wearable devices and embedded inertial sensors of smartphones. It has gained
much research significance and promising prospects in the fields of medical rehabilitation and fitness
management. Generally, datasets with different wearable sensors and activity labels are used to train
machine learning models, and most research has achieved satisfactory performance for these datasets.
However, most of the methods are incapable of recognizing the complex physical activity of free living.
To address the issue, we propose a cascade classifier structure for sensor-based physical activity
recognition from a multi-dimensional perspective, with two types of labels that work together to
represent an exact type of activity. This approach employed the cascade classifier structure based on a
multi-label system (Cascade Classifier on Multi-label, CCM). The labels reflecting the activity intensity
would be classified first. Then, the data flow is divided into the corresponding activity type classifier
according to the output of the pre-layer prediction. The dataset of 110 participants has been collected
for the experiment on PA recognition. Compared with the typical machine learning algorithms of
Random Forest (RF), Sequential Minimal Optimization (SMO) and K Nearest Neighbors (KNN),
the proposed method greatly improves the overall recognition accuracy of ten physical activities.
The results show that the RF-CCM classifier has achieved 93.94% higher accuracy than the 87.93%
obtained from the non-CCM system, which could obtain better generalization performance. The
comparison results reveal that the novel CCM system proposed is more effective and stable in physical
activity recognition than the conventional classification methods.

Keywords: human activity recognition; machine learning; cascade classifier; wearable devices

1. Introduction

Physical Activity (PA), which is defined as any bodily movement produced by the
skeletal muscle that results in energy expenditure [1], generally covers walking, running,
cycling, sports exercise, etc. The World Health Organization (WHO) has emphasized that
residents below 65 years should spend 75 min in vigorous activities and double minutes
in moderate ones at least every week. Indubitably, human activity has played a crucial
role in maintaining body health in daily life. Scientific and regular PA can enhance body
quality and decrease the risk of getting chronic diseases, such as diabetes, dyslipidemia,
and hypertension [2]. Human Activity Recognition (HAR) aims to classify the categories of
skeletal muscle conducting and capture the physiological data timely through pervasive
computing, which provides more precise assistance to make a remarkable contribution not
only to medical diagnosis but also to the human activity research fields [3,4].

Recently, researchers have acquired information about human behavior analysis by uti-
lizing portable mobile terminals, such as fitness trackers, smartphones, and smartwatches
which have integrated a variety of inertial sensors [5]. Due to the flourishing of the Micro
Electro Mechanical System (MEMS) sensor and low-power wireless technologies, PA can be
measured objectively by wearable devices, which presents great advantages and feasibility.
In addition to various kinds of wearable sensors, activity recognition using visual sensors
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has also been studied by many scholars. In this paper [6], the authors proposed a hybrid
model that combines Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) to recognize human activity using Microsoft’s motion Kinect sensor. CNN is used
for spatial feature extraction, and LSTM is used to learn temporal features. However, there
are some privacy problems. In the literature [7,8], the SVM, RF and Bagged DT classifiers are
used to recognize the activity data collected by wearable wrist sensors. Freedson et al. [9,10]
indicated the relationship between motion strength and different types using regression
methods and studied the measurement of human PA by using a neural network algorithm
from raw time-series signals acquired through a single accelerometer. The inertial sensors
embedded in the smartphone were applied in the deep belief network to realize activity
recognition, while a robust frame was established through further possessed by a kernel
principal component analysis and linear discriminant analysis on the feature set [11]. It
is tough to identify the PA patterns of different people who have a big range of PA be-
haviors. However, a sole sensor cannot reflect the physiological information completely.
The multi-sensor system gauges the movements of the different body nodes, and it shows
its potential to achieve promising performance in PA pattern identification. For instance,
free-walking at a certain speed may bring about an acceleration that is similar to that of the
same pace as holding a load, although the energy expenditure is much different. To address
this drawback, some works attach attention to the combination of different kinds of sensors
and then make data fused for PA recognition [12,13]. Meanwhile, ensemble learning has
been increasingly investigated in the pattern recognition field. By combing the decisions of
multiple classifiers or multiple sensors, the accuracy can be improved effectively [14]. For
example, to capture the learning process of bipedal robot locomotion [15], a deep learning-
based ensemble classifier is introduced for human lower activities recognition. Ref. [16]
indicates that the ensemble of classifiers reached an agreement for activity recognition.
Liu et al. [17] has realized the PA measurement precisely by multiple accelerometers and
an abdominal breath sensor. Moreover, selecting the most effective component classifiers
by pruning criteria was proposed to optimize the multi-sensor ensemble algorithm [18].
These distinguished studies light up and prompt many new areas of intelligent adhibition,
such as healthcare monitoring, lifelogging, and fitness tracking, that use the data obtained
to evaluate people’s living style and physical status.

With the rapid development of deep learning technology and its powerful ability,
more and more deep learning models have been applied to the field of human motion
recognition and achieved performance results. An integrated learning algorithm (ELA)
based on Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) model
is proposed to recognize the activity data of smartphone sensors [19]. The literature [20]
shows that personalization is more effective than deep learning in the application of
traditional machine learning technology. The main objective of this paper [21] is to use a 1D
convolutional neural network (1D CNN) to create a system to recognize simple everyday
actions. A deep learning human activity recognition model based on residual block and
Bi-directional Long Short-Term Memory (BiLSTM) is proposed [22].

In reality, an instance possessing more than one label with a high probability is
ubiquitous (e.g., a movie can be regarded as both an action movie and a romance one).
Hence, a strategy for multi-label has attracted a large amount of attention. The methods
attached to the multi-label are grouped into some branches, such as binary relevance,
label power set, classifier chain, and pruned problem transformation. Binary relevance
transforms the multi-label into a series of separate binary classifications with neglecting the
relevancy among the label set, which presents intuition and efficiency in the low-density
label dataset [23]. In addition, the classifier chain that connects basic classifiers to guarantee
the pre-label as an input of the next one is proposed to solve the independence among
multiple labels [24]. While the label power set treats different sets of labels that are in a
multi-label training set as a new single-label class with multi-value [25]. In contrast, with
the number of new labels increasing, there would be a label-set explosion that undoubtedly
enlarges the amount of computation. Ref. [26] have established a framework that combines
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hand gesture labels and postural activities into a multi-label activity representation to
predict postural activities. The literature [27] has designed four experiments with different
multi-label algorithms on activity recognition databases and points that significantly better
performance is achieved by random forest with binary relevance. Physical activity can
be described as not only an exact activity type but some kind according to the degree
of activity intensity, that is to say, playing basketball or tennis, which are two different
activities, both belong to the vigorous one as well.

In this paper, we proposed and evaluated a cascade system that adopted the cascade
classifiers to establish the recognition framework with multi-label oriented (CCM). Con-
struct a cascaded classifier to process the activity intensity and activity type label of the data
instance. Firstly, the first-level base classifier mainly focuses on the characteristics of the
respiratory sensor in the human activity instance and performs a predictive classification
of activity intensity. Further, according to the predicted activity intensity, the second-level
classifier of the corresponding intensity is selected to realize the activity class model identi-
fication. Finally, output the final prediction results and evaluate the performance of the
cascade model. Expert guidance and suggestions can be provided to users to enhance their
health status and fitness according to the assessment results.

To sum up, the following are the novelty and contribution.
1. We propose a cascade classifier structure for sensor-based physical activity recogni-

tion from a multi-dimensional perspective, with two types of labels that work together to
represent an exact type of activity.

2. The Multi-sensor Inertial Measurement Union (IMU) has been designed and estab-
lished to collect physical data and put them into storage. For the integrity and validity of
the collected data, IMU has relatively arranged three sensor units on the abdomen, upper
and lower limbs.

3. The aim is to use the evaluation results of the cascading model to provide expert
guidance and suggestions for users to improve their health status and physique.

The remainder of the review is arranged as follows: Section 2 presents the materials
and methods; the proposed method is described in detail. In Section 3, the paper is
validated, and the results are discussed. Discusses the paper in Section 4. Finally, Section 5
is the conclusion of the paper.

2. Materials and Methods
2.1. Framework

Although numerous studies have focused on PA recognition, none of the works have
considered the progressive relationship existing among the multiple labels. Generally, an
object would be judged and divided into an extensive category by its shape, color, or other
attributes, and then confirmed what it was based on the specific information. For instance,
some attributes were listed, such as four wheels and running on the ground; vehicles can
be derived easily. However, more details were needed to attach to determine the definite
one, e.g., cars, trucks, buses, or SUVs. In this study, such a structure was proposed to apply
to the area of PA recognition. Forasmuch, differing from rather utilizing a single classifier
that might make the model over complex or assembling multiple classifiers with weighted
majority voting. The cascade classifiers, with the help of multi-label, were designed for
activity pattern recognition, which would decrease the time consumption of computation
and simplify the model complexity.

The cascade classifier structure has mainly been employed in image pattern recog-
nition, especially in the fields of remote-sensing images, pedestrian detection, and face
detection. The temporal correlation among different images obtained at the continuous mo-
ment is illustrated under the architecture of the cascade classifier for land-cover maps [28].
Tian et al. [29] has embedded weighted linear regression into a cascade structure with
Haar-like features and Shapelet features to obtain outstanding pedestrian detection in the
relatively complex background situation. Apart from applying in image processing, a
cascade classifier structure is implemented to recognize based on the feature set from a one-
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dimensional data stream. A hybrid cascade model [30] has been imported to address fault
detection and prediction for Android smartphones. Furthermore, the cascade system [31]
also exhibits a brilliant result for each finer classification of radar signals. Based on the
quoted literature, the cascade classifier structure is applied to PA recognition. The overall
architecture of the PA recognition system is described in Figure 1.
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Figure 1. Data flow chart of the multi-label cascade classifier.

By attaching multiple sensors to three nodes separately, PA signals corresponding to
different joints of the human body can be obtained. The feature extraction and selection
would then be performed. Given the reliable machine learning algorithm under the
framework of cascade classifier, the physical activity patterns are identified, and the body
performance of the individual is appraised.

2.2. Subjects and Materials
2.2.1. Subjects

The dataset of 110 participants (including 59 females and 51 males) has been collected
for the experiment on PA recognition, and all the individual characteristics are shown in
Table 1. Ten PAs would be monitored for each subject, and the sensor data during the differ-
ent PA patterns would be collected by the wearable measurement system correspondingly
as well. Moreover, each PA pattern was performed for 5-min lasting, and then a 5-min
rest period was given to adjust breathing. Before the beginning of the test, participants
are allowed to lie down for reposing for about 10 min to keep the resting metabolic rate
in a relatively slow and stable range. To make sure the rigorousness of the experiment,
all the tests were executed during the daytime, and the participants were asked to ingest
nothing except water before the data was acquired. Moreover, the whole duration of the
experiment session lasts about 2 h for each individual.

For this exploratory study, a cascade classifier has proposed to attach a solution to
the PA recognition based on multi-label. Note that every PA instance has included two
distinct kinds of labels, one for activity intensity category and one for activity type. All ten
PA patterns are divided into four categories due to the intensity or energy expenditure, as
listed in Table 2.
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Table 1. Statistic distribution and characteristics of the participants.

Categories Statistic Information Mean STD

Age (years)

20–30 30 27.3%

38.71 11.83
30–40 28 25.5%
40–50 25 22.7%
50–60 27 24.5%

Mass (kg)

<50 2 1.8%

71.25 14.86

50–60 26 23.7%
60–70 34 30.9%
70–80 13 11.8%
80–90 21 19.1%
>90 14 12.7%

Height (cm)

150–160 16 14.5%

169.5 9.24
160–170 43 39.1%
170–180 33 30.0%

>180 18 16.4%

BMI (kg/m2)

<18.5 1 0.9%

25.02 4.21
18.5–25 65 59.1%
25–30 30 27.3%
>30 14 12.7%

Table 2. Physical Activity types obtained for the experiment.

Activities Type Intensity Category Abbr.

Computer work
Filing paper Sedentary activity CW

FP

Moving boxes
Vacuuming Household and other MB

VA

Cycling with 1-kp resistance
Treadmill at 3.0 mph
Treadmill at 4.0 mph

Moderate activity
C1
T3
T4

Treadmill at 6.0 mph
Tennis

Basketball
Vigorous activity

T6
TE
BA

2.2.2. System Design and Realization

To reduce the disturbance of daily life due to the wearable measurement device,
the inertial measurement system has equipped with some feasible functions, such as low
burden and wireless connection [32]. Due to the research on the convenience of the wearable
sensors, sensor positions of this system were selected; that is, the two accelerometers were
placed on the wrist and hip, respectively, while the ventilation one was tied around the
abdomen [33]. Hence, the Multi-sensor Inertial Measurement Union (IMU) has been
designed and established to collect physical data and put them into storage. For the
integrity and validity of the collected data, IMU has relatively arranged three sensor units
on the abdomen, upper and lower limbs. More specifically, three sensor-node units below
were involved in IMU:

1. Hip Unit: a tri-axial accelerometer ADXL345 was placed at the hip joint, which
represented the degree of the lower part of the body.

2. Wrist Unit: a tri-axial accelerometer ADXL345 was placed at the wrist joint using a
wristwatch-style strap which measured the physical activity signal of the upper of
the body.

3. Abdomen Unit: a ventilation sensor made of piezoelectric crystals tied around the
abdomen using an elastic belt was used to measure the expansion and contraction
resulting from the respiration (breath rate and strength).
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Figure 2 shows the architecture of the IMU system measuring the body motion pa-
rameters and respiration intensity of a human subject. The obtained data from different
locations have been subsequently fused and processed to predict what the PA pattern was
and quantify the energy consumption. All the data stream from these three sensor units is
stored in a micro secure digital (SD) card embedded in the Hip unit.
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Figure 2. The overall architecture of the IMU system.

The acquired data stream from the IMU has been plotted in Figure 3. Among these
wave charts of different PAs, there existed significant divergence according to the three
measurement nodes. For example, the waveform from the hip node stayed at a more stable
level than that from the wrist when the sedentary activities were performed. Because the
torso of subjects maintained sitting, standing, or a stable status, upper limbs dominated the
high frequency of use. As a result, the data stream from the wrist unit reflected the more
detailed vibration information, which illustrated the feasibility of multi-sensor fusion to
realize PA recognition to some degree. Meanwhile, owing to the more energy expenditure,
playing basketball showed a higher frequency waveform than the TM 6.0’s from Figure 3b,c.
Note that the differences between different PA wave charts can be the basic evidence and
support to distinguish the PA pattern.
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2.3. Signal Preprocessing

The task of data processing is divided into two main steps. The first step is time-
series segmentation. Segmentation algorithms divide continuous data streams into discrete
time intervals of the type expected by the information processing step [34–36]. The main
purpose of data segmentation here is to separate the preprocessed data stream into the data
segments that contain the information of complete behavior, and then the separated data
segment is mainly used for the identification of feature extraction in the next step. The
basic approach to this problem is to use a sliding window with a fixed length and split each
time series into equal segments. Each data segment is identified by a start symbol and an
end symbol that turns out to be another start symbol of the following segment at the same
time. However, as the boundaries among physical activities are extremely vague, it is very
difficult to split the valid sensor data stream effectively. The question that can arise here
is how the recognition accuracy depends on the window length. Generally, the window
size ranging from 2 s to 6.7 s is picked up among the majority of works, while a longer
window length is also selected, such as 10 s and 12.8 s [4,34–38]. Each segment has a multi-
dimensional (feature) vector extracted from it, which will be used for classification [4,39].
In this paper, a simple sliding window with no overlap was chosen for signal segmentation
in Figure 4.
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The other step is feature extraction and selection. Overall, Multi-domain features,
including 64 features (50 time-domain and 14 frequency-domain features), were extracted
for training classifiers, as shown in Figure 5. Note that the attributes of the 10th, 25th,
median, 75th, and 90th percentiles represented an estimate of signal distributions in each
signal. The attributes of mean and standard deviation were extracted to provide a general
description of PA intensity degree. In addition, the correlation coefficient feature between
the hip unit and the wrist unit was selected as well, which reflected a measurement of
the coordination or variation between the upper limb and the body during an activity.
Frequency-domain features (energy and entropy) have been extracted separately for these
two accelerometers. As for the ventilation sensor on the abdomen, the breathing frequency
was decided by the dominant frequency of the respiratory signal obtained from a spectral
analysis. Meanwhile, to avoid the situation that the features in the smaller numeric ranges
could be overwhelmed by those of greater numeric values, normalization was necessarily
applied to convert the extracted features into the range from 0 to 1 [40].
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Based on the dataset of the human body, the accelerometer of the hip and wrist and
the data of the respiratory telescopic sensor of the abdomen were selected in this paper for
time domain characteristics and frequency domain characteristics.

Mean is the average level of signal values in the index frame, which can be calculated
by the formula:

Mean =
1
N

N

∑
n=1

Xn (1)

where Xn indicates the sensor sequence and N indicates the sequence length.
Variance (VR) describes the degree of data dispersion of a signal around the arithmetic

mean. The formula:

VR = σ2 =
1
N

N

∑
n=1

(
Xn − X

)
(2)

where σ is the data of standard deviation, X is the average sensors data.
The Correlation Coefficient (CC) considers the degree of correlation between data at

different locations. For two signal sequences X and Y, the correlation coefficient between
them can be expressed as:

CC(X,Y) =
cov(X, Y)
σX × σY

(3)

where cov(X, Y) represents the covariance of the two, σX and σY represent their standard
deviations, respectively.

Energy is the average power of the signal Xn over the time interval (−N/2, N/2). The
signal spectrum is obtained by the fast Fourier transform, and the power signal of the
spectrum is the sum of the squares of the spectrum modes, so the energy can be calculated
by the following formula:

E(X) =
1
N

N

∑
n=1

∣∣∣F(ejw
)∣∣∣2 (4)
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where F
(
ejw) is the amplitude of the Xn fast Fourier transform.

Spectral Entropy (SE) is the subframe entropy of normalized spectral energy. To
calculate the spectral entropy of the frame i, each signal frame is first divided into K
subframes of fixed size. Then, the spectral energy of each subframe is calculated and
divided by the total spectral energy of the signal frame. The spectrum entropy formula is:

Hi = −
K

∑
k−1

nk log2(nk) (5)

where nk =
Ek

∑K
j=1 Ej

Ek is the spectral energy of the subframe.

To map the original activity data to different category Spaces, it is necessary to analyze
its statistical characteristics, such as mathematical distribution and extract the recognition
feature vectors that can represent different human activities from different dimensions.
However, too many feature vectors will bring some irrelevant or redundant information,
which will affect the accuracy of tag prediction. In this paper, 49 time-domain features, 1
correlation feature and 14 frequency-domain features have been extracted for the following
pattern recognition. To realize the diversity of the training of each base classifier, 70% of
the overall features were picked up randomly for the training of the classifier.

2.4. Machine Learning Model

Machine Learning uses algorithms to analyze existing data to acquire knowledge and
then apply it to new data. In this paper, three machine learning algorithms are used to train
the model. Including Random Forest (RF), Sequential Minimal Optimization (SMO) and K
Nearest Neighbors (KNN).

Random Forest (RF) was proposed by Breiman in 2001. As a general classification
and regression method, it combines several random decision trees and shows excellent
performance in an environment where the number of variables is much larger than the
number of observations through the average fusion mechanism. Based on the simple and
feasible voting mechanism of random Forest and its high and stable accuracy, random
Forest has been widely used in medicine, text classification and facial recognition.

A Support Vector Machine (SVM) classifier is a supervised learning algorithm based
on statistical theory. It is mainly used in the fields of regression analysis and pattern
recognition. It can minimize the empirical errors of data while maximizing geometric
edges, providing excellent generalization performance. Based on the SVM algorithm,
Shevade et al. proposed an iterative algorithm of Sequential Minimal Optimization (SMO),
which can effectively replace vacancy values in data and can effectively solve multi-class
classification problems by using kernel functions of Gaussian kernel.

k-Nearest Neighbor (kNN), unlike Eager Learning algorithms such as random forest,
needs to learn a model on the training sample set according to certain rules or algorithms
and then classify test samples. The Negative Learning algorithm (Lazy Learning) repre-
sented by kNN is to jointly model test samples and training samples.

2.5. Recognition Module

As an open-source data mining platform, Waikato Environment for Knowledge Anal-
ysis (WEKA) brings together a large number of machine learning algorithms that can
undertake data mining tasks through visualization on a new interactive interface. The
whole PA recognition frame is architected by Java, relying on the WEKA toolkit.

A two-layer cascade classifier structure is adopted to build the classification system
(Algorithm 1). To avoid similar data from the same participant appearing in the testing
set, make sure the irrelevance between the testing set and training set when every iteration.
Note that the pre-layer aims to classify the intensity category label by selecting some
features and then assigning the corresponding classifier according to the outcome from
the pre-one in the second layer. Ultimately, the final prediction will be given through the
cascade architecture.
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Algorithm 1: The pseudo-code of cascade classifier based on multi-label (CCM) algorithm.

Inputs:
Instances, a sequence of n instances {(x1,y1,y1

′), . . . , (xn,yn,yn
′)} with two

kind of labels, yi, yi
′ ε Y = {1, . . . , k}.

SubjectSet, a collection of key values of all the participants.
1: foreach sub.Id in SubjectSet:
2: iterate instance in Instances:
3: if instance.subId = sub.Id then:
4: put instance into the testing set
5: else if
6: put instance into the training set
7: end iterate
8: build the activity intensity model_Layer1 (training set)
9: build the activity type models_Layer2 (training set)
10: validate the Model_Layer1 (testing set)
11: get the label of layer1 then:
12: validate the models_Layer2 (testing set)
13: activity label← get the label of the layer2
14: return activity label
15: end for
16: output: activity label

3. Experiments and Results
3.1. Performance Metrics

To better evaluate the performance of the classifier, some performance metrics are
adopted, such as accuracy, sensitivity, specificity, precision, and F1-score. The performance
measures used are described below.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

where TP denotes the true positive of the elements, TN denotes true negative, FP indicates
the false positive, and FN indicates the false negative.

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

Precision =
TP

TP + FP
(9)

F1-score =
2·Sensitivity·Precision
Precision + Sensitivity

(10)

3.2. Experiments

To validate the feasibility of this proposal, the leave one individual out cross-validation
has been adopted to split the training set and the testing set, differing from the ordinary
cross-validation. That is to say, the data of every participant need to be the testing set, and
the rest are put into the model to configure the model’s set parameters. This validation
can effectively avoid the repeatability of instances sampled from the same participant
to guarantee the irrelevance between the training set and testing set, which decreases
the over-fitting and makes prediction more acceptable. However, if all the participants
have been iterated to be the testing set, it would take on much time expenditure. As
a result, the time consumption would be taken into consideration as well. To balance
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the experiment’s feasibility and time expenditure, 60 of the 110 participants are selected
randomly to constitute the testing set.

Based on that, the selected testing sets have been marked with the intensity label
through three machine learning algorithms. The pre-layer performance-validated experi-
ments have been conducted with 60 loops, and the result of PA classification is presented in
Figure 6 below. Tables 3–5 show the Confusion matrix of the three algorithms for the four
activity intensity labels. Performance metrics result aiming at the four activity intensity
labels among these three machine learning algorithms in Table 6.
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learning algorithms.

Table 3. The Confusion matrix of the four activity intensity labels among the KNN algorithm.
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Table 4. The Confusion matrix of the four activity intensity labels among SMO algorithm.

Predictive Labels
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Table 5. The Confusion matrix of the four activity intensity labels among RF algorithm.

Predictive Labels

Sedentary Household Moderate Vigorous

R
ea

lL
ab

el
s Sedentary 220 3 4 0

Household 2 190 11 0
Moderate 1 3 447 1
Vigorous 3 2 19 265

Table 6. Performance metrics result aiming at the four activity intensity labels among these three
machine learning algorithms.

Algorithms Accuracy Sensitivity Specificity Precision F1-Score

KNN 0.8613 0.8602 0.9506 0.8523 0.8520
SMO 0.9222 0.9032 0.9698 0.9406 0.9181

RF 0.9582 0.9528 0.9842 0.9646 0.9580
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The bar chart shows that all the methods have been equipped with strong classification
capabilities aiming at the four target classes (sedentary, household, moderate and vigorous.
Especially the RF has achieved the best performance, and the mean classification accuracy
reaches up to 95.82%. Meanwhile, the standard deviation low at 2.42%. SMO and KNN
have yielded the mean classification accuracy of 92.22% and 86.13% separately, with a
standard deviation of 5.58% and 11.51% as well, which reveals the balanced and outstanding
classification effects for the four intensity labels. In addition, the box diagram of the first
layer classification results is also shown in Figure 7. As for these four intensity categories,
all three classifiers have different classification accuracies. Note that the RF has reflected
the balanced performance at a higher level.
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After the computing of the first classification layer, each instance has been divided
into the type of PA intensity which belongs to. According to the first layer prediction
result, the corresponding classifier in the second cascade layer would be assigned to finish
the more detailed PA recognition task. Through the structure of the cascade classifier,
every base classifier just needs to attach attention to the minority PA patterns within the
specific activity intensity label, which can simplify the complexity of the model and reduce
the amount of calculation. As mentioned before, the testing set and the training set are
separated in the second layer with the same method in the pre-layer, and leaving one
individual out cross-validation is taken to verify the performance of the whole recognition
cascade structure as well. When an individual comes to be the testing set, the training
set of the classifiers in the second layer would not involve the data from that individual
either. Based on that, the whole system performance-validated experiments have been
carried out. To illustrate the improvement of the cascade classifier based on the multi-label
that this study proposes, some experiments which directly use the three machine learning
algorithms to realize the PA pattern recognition have been conducted for comparison, and
the results of the PA classification are presented in Figure 8 below. The performance metrics
used to evaluate the proposed method are in Table 7.
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Table 7. The performance metrics comparison between the CCM and non-CCM classifiers.

Algorithms Accuracy Sensitivity Specificity Precision F1-Score

KNN 0.7353 0.7030 0.9689 0.6957 0.6993
KNN-CCM 0.8437 0.8130 0.9822 0.8263 0.8196

SMO 0.8455 0.8185 0.9720 0.8117 0.8151
SMO-CCM 0.9035 0.9075 0.9888 0.9153 0.9114

RF 0.8793 0.8807 0.9810 0.8851 0.8829
RF-CCM 0.9394 0.9422 0.9930 0.9381 0.9401

Figure 8 shows that the multi-label cascade classifier architecture has all performed
better in classification than the normal one for these 10 PA patterns. There is a significant
trend among all three selected algorithms; that is, the improvement of the PA pattern recog-
nition accuracy highlighted after importing the multi-label cascade structure. Compared
with normal direct classifying, the cascade classifier approach based on the RF enhances the
mean accuracy from 87.93% to 93.94% with about a 6.8% rise and decreases the standard
deviation from 10.49% to 4.20% sharply. The same for the KNN and SMO, the mean classi-
fication accuracies both achieve improvement which is from 73.53% and 84.55% to 84.37%
and 90.35%, separately and the standard deviations lower to 14.51% and 6.78%, respectively.
In addition, the statistical distributions of classification results of the validation experiment
are clustered in Figure 9. For the non-CCM classifier, all the data obtained from the multiple
sensors have been merged as one single set of features. The non-CCM classifier has to
handle all the PA patterns. Taking the RF algorithm, for example, the confusion matrices
of the classification accuracies of the 10 different PA patterns of the cascade classifier and
non-cascade classifier are listed in Table 8.
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Comparing the confusion matrices in Table 8, the classification accuracy of the CCM
system has improved significantly, especially for filing paper (from 76% to 95.4%) and
vacuuming (from 63% to 95.8%). Otherwise, the model to classify the cycling with 1-kp
resistance and the tennis pattern also shows a certain degree of improvement. Although
there are some negative impacts on some PA patterns, the whole classification accuracy
has achieved growth. More specifically, all three machine learning algorithms with CCM
have a rational statistic distribution and a higher benchmark, which illustrates that the
CCM system realizes better effectiveness for the 10 PA patterns. Note that the lower the
standard deviation, the smaller the fluctuation range of the accuracy for each PA pattern,
indicating that the proposed approach has obtained satisfactory performance for all labels
either, except for the total accuracy.
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Table 8. The classification accuracies of the 10 PA patterns comparison between the RF with CCM
and the RF with non-CCM (%).

Authentic Labels
Predicted Activity Labels

CW FP MB VA C1 T3 T4 T6 TE BA

R
F

N
on

-C
C

M

CW 97.6 17.8 0 5.2 0.5 0.5 0.4 1.3 0 0
FP 0.6 76.0 0 1.3 0 0 0 0 0 0
MB 0 0 88.3 5.2 5.3 0.3 0 0 3.2 0
VA 0 0 0 63.0 0 0.5 0.8 0 0 0
C1 0.6 1.6 1.8 0 90.7 0 0 0 0 0
T3 0.6 0.8 3.7 21.4 1.5 93.1 0.8 0 1.6 0
T4 0 0 6.2 2.6 1.5 5.3 93.7 0 1.6 0
T6 0 0 0 0 0 0 0.4 98.7 0 0
TE 0.6 3.8 0 1.3 0.5 0 0 0 83.9 5.6
BA 0 0 0 0 0 0.3 3.9 0 9.7 94.4

R
F

C
C

M

CW 95.9 1.3 0 0 0 1.8 0 0 0 0
FP 2.7 95.4 0 2.1 0 0.6 0 0 0 0
MB 0 0 89.1 0.7 0 0.6 0 0 0 0
VA 0 1.3 5.5 95.8 0 3.5 1.7 0 0 0
C1 0 0 3.6 0 94.8 0 0 0 0 0
T3 1.4 0 0 0 1.3 87.0 0.4 0 0 0
T4 0 0 1.8 0 3.9 3.5 91.9 0 3.7 0
T6 0 1.3 0 0 0 0 2.6 99.2 3.7 0
TE 0 0 0 0 0 0.6 0 0 88.9 0
BA 0 0.7 0 1.4 0 2.4 3.4 0.8 3.7 100

4. Discussion

In this paper, a novel multi-label cascade classifier system has been proposed and
adopted for daily physical activity pattern recognition and achieves a promising perfor-
mance. The wearable inertial measurement device has been designed to acquire the body
motions information and respiration rate, which consists of a ventilation sensor around
the abdomen and two tri-axial accelerometers placed on the wrist and the hip separately.
Compared with the traditional single accelerometer measurement, applying multiple iner-
tial sensors can measure and provide more detailed information about body movements.
Meanwhile, a ventilation sensor enhances the additional measurement of respiration ex-
penditure and physical activity energy expenditure. Multi-label is addressed to make a
supplement for activity pattern recognition. An object that owns more than one label is a
more common phenomenon. By adding the PA intensity labels, one extra indicator would
support making the instances divided into the correct category as much as possible.

Generally, the current PA recognition systems have acquired quite an acceptable
classification performance by using ensemble learning (integrating the multiple different
classifiers based on the classification accuracies of the different PA patterns) and reliable
decision fusion strategies, such as the instance-specific weighted majority voting. How-
ever, the higher classification accuracy has been obtained at the expense of taking more
computational resources than non-ensemble classifiers. Meanwhile, the complexity of the
ensemble model built is too redundant, and all PA patterns need to be judged in every base
classifier, which enlarges the scale of models and enhances the difficulty of classification.
As a result, unnecessary time consumption is also a factor to consider undoubtedly. Based
on that, a cascade classifier structure based on a multi-label (CCM) approach has been
designed and evaluated for the physical activity measurement and recognition system and
simplifies the classification ranges of the classifiers. In this study, the cascade classifier
structure based on the multi-label (CCM) approach has been designed and evaluated for the
physical activity measurement and recognition system. A two-cascade structure has been
established. The first layer mainly focuses on the classification of PA intensity categories
and assigns the corresponding classifier in the second layer according to the prediction of
the first layer to realize the PA recognition. Comparing the classifiers with non-CCM, the
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CCM approach has shown better performance, that is, higher mean accuracies and lower
standard deviations.

Moreover, the CCM system has demonstrated better generalization capability than
the non-CCM one. As seen in the leave one individual out cross-validation results, the
CCM approach has presented a better performance on the PA classification of new test
subjects, while in contrast, lower classification accuracies have been obtained from the
same test subjects when using the non-CCM model. The cascade classifier approach, on
the other hand, maintains the statistical distribution of each sensor dataset of its own and
makes each classifier devoted to the minority of PA patterns. It is seen that the classification
performance is reliable and robust in generalization due to the variability among the
participants being reduced significantly. In the implementation, the RF-CCM structure
classifier is selected first. In the process of training, all the training datasets are used for
training, and the optimal parameters of the first layer are obtained and fixed, and then the
optimal parameters of the second layer are obtained. Then, the final model will be used
for testing.

Despite the promising performance that has been illustrated in this study, it is notable
that some shortcomings still need to be mentioned. For instance, the cascade classifier
structure exists the phenomenon of error passed and superimposed; that is, an instance
must be divided into a wrong category no matter how precise the classifiers are in the
second layer if the first layer gives a misclassification. As a consequence, measures need to
be taken to optimize the cascade structure and reduce the error passed and superimposed.
On the other hand, more subjects will be involved in later research to enhance the robustness
of generalization. Furthermore, several issues remain discussed as follows,

1. The selection and comparison of sliding window length, features, and base classifiers.
2. Number and placement of the wearable device are arranged to acquire a better

classification performance.
3. Optimization of the CCM structure to decrease the error accumulation.

We hope that these matters will be addressed in future studies to further improve the
performance and generalization capability of the multi-label-based cascade classifier system.

5. Conclusions

In this paper, a novel solution, a cascade classifier structure, is proposed to recognize
multi-label human activities. The first-level base classifier mainly classifies the labels reflect-
ing activity intensity, and then according to the predicted output, is data instance selects
the corresponding activity type classifier to realize activity category pattern recognition.
The performance of this method is verified on the self-collection database. The promis-
ing results indicate that the proposed method could be efficiently identified multi-label
physical activity.
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