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SUMMARY 

The formulaton of a multi-layer primitive equation model on the sphere is described. The horizontal 
representation is by means of spherical harmonics, truncated either in the triangular or rhomboidal manner. 
The time integration is performed using the semi-implicit method in which the linearized gravity wave 
terms are time averaged and thus the fast moving waves of this type are slowed. For a Slayer hemispheric 
model with triangular truncation at wavenumber 21, storage of 38K words is needed and with the time 
scheme allowing a time-step of 90 minutes, one day's simulation requires 11 seconds of CDC 7600 time. 
The growth of a baroclinic wave on a simple basic state of differential solid body rotation is exhibited. 
The errors involved in this case in utilizing the large time-step allowed by the semi-implicit scheme are 
thoroughly examined by comparing wave amplitudes and phases, conservation properties and gravity wave 
treatment for different time-steps. These errors are found to be negligible. The conservation properties of 
the model are in fact extremely good. The vertical finite differencing scheme of Arakawa is studied in the 
same baroclinic instability simulation. The growth is similar though the conservation of angular momentum 
is greatly improved. The transform method used in all these integrations allows some aliasing. but this is 
shown to be negligible. 

1. INTRODUCTION 

In the last few years there has been increased interest in the use of truncated series of 
spherical harmonics to represent the horizontal variation of functions on the sphere in 
numerical models. This mathematically more attractive approach has been a competitor 
with the usual h i t e  difference methods only since the introduction of the transform method 
(Orszag 1970; Eliasen et al. 1970). In this approach, products are performed by transforming 
to a suitable grid of points, performing the product and transforming back to wave space. 
Since this time, shallow water equation models have been developed, notably by Bourke 
(1972) and Machenauer and Rasmussen (1972). 

The value of this spectral approach in suggesting a mathematical analysis of the 
dynamics of Rossby wave instability was shown in Hoskins (1973). This problem also 
provided a convenient test bed for the comparison of the spectral method with the usual 
second order finite difference method (Doron et al. 1974). 

The development to a full primitive equation model on the sphere has taken two 
directions. Machenauer and Daley (1972) formulated a model with spectral representation 
in the vertical. In common with Bourke (1974) the present authors have taken the, perhaps, 
more cautious approach of using standard finite differences in the vertical. The model 
described in this paper is a natural extension to a multi-layer model of the one-layer model 
of Bourke (1972). Though developed independently, it is scarcely surprising that it is quite 
similar to his later model. To anticipate later sections, we note that the main difference is 
the use of an energy conserving scheme in the vertical. 

A simultaneous development in the atmospheric modelling scene has been that of the 
semi-implicit integration method (Robert et al. 1972). One of the major disadvantages of 
the use of the primitive equations for numerical models has been the restriction of the 
time-step by the extremely high frequencies associated with the short gravity waves. The 
time-step limitation has certainly been overcome by the introduction of this method, but 
it has not been clear what price has been paid in accuracy of simulation and'conservation. 
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The incorporation of the semi-implicit method in a spectral model involves very little 
extra work and is done in the model described here. To incorporate it in a finite difference 
model, however, necessitates a large increase in computation per time-step or the use of a 
splitting method (Burridge 1974) which has the disadvantage that it is only first order 
accurate in time. In this paper we attempt to evaluate the errors associated with a large 
semi-implicit time-step by a thorough analysis of integrations with different time-steps for 
the growth of a simple baroclinic wave. 

The basic model is described in section 2, gravity waves and the semi-implicit scheme 
in section 3 and a basic model run in section 4. This is a baroclinic instability simulation 
starting from a deliberately very simple initial state of differential solid-body rotation. The 
study of the errors introduced by the semi-implicit method is made in section 5. Section 6 
gives a brief account of the effect of using a different finite difference scheme in the vertical 
and the angular momentum conservation obtained. Finally, section 7 mentions some 
experiments which show that a possible source of error in the model is not important here. 
The reader who is not concerned with the details of the numerical model may wish to 
omit sections 2 and 3, and move directly to the simulation described in section 4. 

Apart from the introduction of the model and analysis of the semi-implicit method, 
one of the points of this paper is to introduce some of the new ways of looking at the 
information provided by numerical models when integrated using the spectral method. In 
the authors' opinion this may be one of the most important uses for the method in its 
provocation of new dynamical insights into the content of models from the simplest right 
up'to the general circulation models. It is intended that these displays will form the ba'sis of 
subsequent papers using the spectral technique. 

2. THE BASIC MODEL 

The non-dimensional equations of motion for an inviscid, adiabatic, hydrostatic, 
perfect gas surrounding a rotating, spherical planet may be written 

a h  P* a& 
at a0, -= - V . V l n p , - D - -  (4) 

C is the absolute vorticity, D the divergence, T = T(u) + T' the temperature,p, the surface 
pressure, and r# the geopotential, all non-dimensionalized using as length scale the radius 
of the planet, a; as time scale the reciprocal of its angular velocity, K'; temperature scale 
a2S'12/R (R the gas constant); and pressure scale po  = 1000mb. 0 is the vertical co-ordinate 
pressurelp,; is the longitude; and p = sin 8, where 8 is the latitude. U and V are the 
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longitudinal and latitudinal velocities multiplied by cos 8. The horizontal advection 
operator is 

u a  a v . v = - -  + v--. 
1 - p2 an ap 

A velocity potential a and streamfunction $ may be introduced giving 

1 au+av 
1 - p2 an ap D =  - = V2a. 

The use of the horizontal equations of motion in their vorticity and divergence form 
follows Bourke (1972). It is very convenient for the application of the spectral and semi- 
implicit time scheme techniques. Interpretation of results is also aided by the direct output 
of these dynamically meaningful quantities. 

In this model we use a spectral representation in the horizontal and a finite difference 
representation in the vertical. The variables C, D, T', at each layer and the variable In p ,  
are represented by truncated series of spherical harmonics : 

x = C X ~ ~ ( p ) e ' " ' .  

The series for { and D directly imply representations of U and V. The usual truncation 
since the work of Ellsaesser (1966) has been rhomboidal: Iml Q M, n - Iml Q J. In some 
senses, this can be thought of as giving the same resolution for each zonal wavenumber. 
An alternative is the triangular truncation n < M. This allows a representation independent 
of position (or direction) on the sphere. In this paper, only integrations with the triangular 
truncation will be described.* The programme is written so that only minor changes are 
necessary to convert to the alternative truncation. Many integrations have been made with 
both methods and a detailed comparison has been made in Simmons and Hoskins (1975). 

N - \ ~  ( N - ~ ) A U  u 

N (N-$)am - - - - - - - - - - - - 5, D. T. 9 
NAUzl I I , , , 1 1 , /  I ,  I 6 = 0  

Figure 1. The arrangement of model variables in the vertical for the case of N equally spaced layers. 

The programme is also flexible in the number, N, and spacing of the layers in the 
vertical, though the integrations described here will be for five equally spaced layers. The 

On the hemisphere, for programming purpoaes it was found to be convenient to use the ' jaued triangular truncation ': 
for basic variables even about the equator: n S M - 1 ,  
for basic variables odd about the equator: n S M. 
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arrangement of variables in the vertical is exhibited in Fig. 1. The finite difference analogue 
of UaX/aa at a = u, is taken as bd,X", using the usual notation. This is formally 
second order accurate if the +levels are defined as the values at equally spaced intervals of a 
differentiable function (see Smagorinsky et al. 1965). The finite difference analogues of the 
integral of Eq. (4) from a = 0 to 1 and a = 0 to a,++ give 

N a --In p*= - c A&, 
at r = l  

I N 

where A = D + V , V lnp , .  The hydrostatic equation becomes 

4 r - 4 r + i = a r ( T , +  T , + 1 ) ,  - (6) 

(7) 

where ar = 3 ln (ar+ Jar). Assuming an isothermal lowest layer, 

4~ - 4* = QNTN, 
where aN = In (l /oN),  and cf~* is the geopotential at the surface a = 1. 

Following Corby et al. (1972), the conversion term in the thermodynamic equation 

P a 

is represented by 

The finite difference equivalents of 

Iol($ - &)Ado = j:$(j>a') du, 

are all maintained by the above vertical scheme, hereinafter referred to as the T scheme. 
As indicated by Corby et al., this implies that the total energy 

is formally conserved by the T scheme. Mass is also formally conserved by this scheme. 
Thus changes in these two quantities will be caused only by time differencing and by the 
horizontal space scheme. We note that since the T scheme equivalent of 

is not maintained, angular momentum is not formally conserved. 
The equations are integrated using the transform method in a manner identical with 

that of Bourke (1974). Spectral expansions for C, D, T', and lnp, and the implied ones 
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for U, V,  a lnp,/al and(1 - p 2 )  a lnp,/ap are used to givegrid point values of these quantities. 
The nonlinear terms in Eqs. (1H4) are then evaluated and the spectral tendencies computed 
by the inverse transformation utilizing integration by parts. It may be shown that this 
procedure is exact for the retained modes provided that the grid used is one defined by 
enough equally spaced lines of longitude and enough Gaussian angles of latitude (Eliasen 
et al. 1970). For the quadratic terms the number of longitudes, M,, and latitudes J,, must 
satisfy 

rhomboidal: M, 2 3M + 1, 3, 2 (2M + 33 + 1)/2 

triangular: M, 2 3M + 1, JB 2 (3M + 1)/2. 

There are terms for which this grid is insufficient for removing aliased interactions. These 
terms are the triple correlation involved in the energy conversion term and in the vertical 
advection terms. These require in theory, M, 2 4M + 1 and J, 2 (4M + 4J + 1)/2 for 
rhomboidal and J, 2 (4M + 1)/2 for triangular truncation. In most of this paper aliasing 
will be allowed in these terms. This point will be returned to briefly in section 7. 

3. GRAVITY WAVES AND THE SEMI-IMPLICIT SCHEME IN A MULTI-LAYER MODEL 

Quite generally, any vertical difference scheme for the model shown in Fig. 1 gives 
finite difference analogues of Eqs. (2)-(5) of the form 

aD/at = 93 - V2(4 + 'T In p*) ,  

aT/dt  = Y - zD, 

a In p , /d t  = B - AD, 

(8) 

(9) 

(10) 

4 - +*=gT. . (1 1) 
Here the variables D, T', T, T, 4 -4, with values at each layer are represented by column 
vectors, as are also Y and 93 . g and z are constant matrices, B and lnp, are scalars and A 

is a row vector. The separation in Eq. (9) is such that the matrix z contains all the references 
to the basic temperatures T which multiply the divergence to produce the temperature 
tendency. In Eq. (10) z is a constant vector and this term contains all the direct effect of 
divergence on the surface pressure tendency. In appendix I we give the matrices and vectors 
for the T scheme. 

With continuous time representation, elimination of T, 4 and lnp, from Eqs. (8x1 1) 
gives an equation for D: 

Here the matrix B = g t  + Tn. With the right-hand side set to zero, this is the gravity 
wave equation for a multi-layer model. The eigenvalues of B are the squares of the eigen- 
velocities associated with the vertical structure which is the corresponding eigenmode of B. 
(The gravity wave eigenmodes for a standard case are exhibited in Fig. 4.) The right-hand 
side may be thought of as the generation of gravity waves. 

We now consider a representation at discrete times and use the standard notation 
S,X = (,+A' - x'- A' )/2At, X' = +(X'+A' + X'"' ). In a manner similar to that of 
Robert et al. (1972) we use an averaging in time for the gravity wave terms separated 
above. This semi-implicit scheme gives 
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Using the relation 

F = Xt-& + Atd,X, 

elimination of T', 6' and &: may be carried out as before. This gives the semi-implicit 
time scheme analogue of Eq. (12): 

(I - BAt'V')D' = D'-& + At[9 - V'(#-& + Tln  pi-"')] - 
- A t 2 V 2 ( g S  + TB), . (16) 

I being the unit matrix. With the spectral representation used here, this becomes the 
algebraic equation 

+ At'(gS; + T E ) ,  . (17) 

for each component D:. Here c, = n(n + 1). 
If gravity waves are not amplified by the vertical scheme, then the matrix B has positive 

eigenvalues and so the matrix A, = I/c, + BAt' may be inverted. Since A, is a constant 
this inversion need be computed once only. The values of divergence, temperature and 
surface pressure at the new time step may then be obtained directly. The vorticity equation 
is approximated by the usual centred difference in time and direct solution is possible. 

For a simple gravity wave mode composed of one spherical harmonic with no forcing, 
the continuous Eq. (12) gives the frequency relation u2 = c,,ur2, where I+' is an eigenvalue 
of the matrix B. It is easily shown from Eqs. (13) to (15) that the semi-implicit scheme gives 
a frequency u, = (tan-' uAt)/At. For an explicit integration method, the time averages in 
Eqs. (13) to (15) are dropped and the equivalent frequency is u, = (sin-' aAt)/At. These 
approximations are shown in Fig. 2. For uAt < 1, the explicit method overestimates and 

Figure 2. Approximations (aa) to the comct gravity wave frequency (a) when using the explicit and semi- 
implicit time schemes with time-step At. 
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the semi-implicit method underestimates the frequency. For aAt > 1, the explicit method 
gives computational instability. The semi-implicit method always gives stability but as the 
correct frequency tends to infinity, that computed tends to n/2At. 

The semi-implicit method described above was developed and tested independently but 
is almost identical with that described by Bourke (1974). However, here, the standard layer 
temperatures T are considered constant in time so that the matrix B and the matrix 
inversion are calculated once only. The time taken for one semi-implicit time step is of the 
order of 1 % more than that for an explicit time step. The storage required is increased 
only by the amount needed for t€ie inverse of A,,. 

4. THE GROWTH OF A BAROCLINIC WAVE 

(a) The numerical model 

For almost all the integrations described in this paper we use a primitive equation 
model with five equally spaced levels in the vertical and with a spectral representation in 
the horizontal. The truncation is triangular at total wavenumber 21 (hereinafter referred 
to as triangular 21). For a hemispheric integration, the number of degrees of freedom for 
each variable at each layer is 231. The total storage required for the programme and arrays 
is 38K words, and the time taken for one time step, including the calculation of energy, 
total mass, and angular momentum diagnostics, on a CDC 7600 is 0.67 seconds. If the 
model is.run with the maximum possible tjme-step of 90 minutes, the time taken for a 
one day integration on the hemisphere is under 1 1  seconds. The integrations described 
here were performed using only zonal wavenumbers 0, 8 and 16. The number of degrees 
of freedom is then 31, the time-step time without diagnostics 0.084 seconds. In this section 
the time-step used is $h. 

(6) Initial state (numerical values are given in appendix ZI) 
The average temperature, T, chosen for each layer is shown in Fig. 3. There is some 

crude representation of a stratosphere by the increased static stability between the top 

0 20 40 240 2ba 280 
220 Temperature I K I  vtlocily lrn5-'l 

Figure 3. The initial average temperature in each layer and solid body rotation velocity at the equator. 

layers. In Fig. 4 are exhibited the corresponding eigenmodes of the matrix B. They show 
the distribution of divergence with height in the gravity wave modes. The 'external'mode 
has no change of sign with height. The ' first internal ' mode has one zero and has smaller 
phase speed. Each succeeding mode has one more zero and moves less quickly. 

The basic velocity is chosen to be a very simple differential solid body rotation, with 
equatorial velocities shown in Fig. 3. This was chosen for a first experiment for reasons 
of simplicity and possible comparison with concurrent analytic baroclinic instability studies 
(Hollingsworth 1975). It emerged that the unstable modes are realistic despite the unreal- 
istic nature of the velocity distribution. 
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Figure 4. The gravity wave mode divergence structures and the associated velocities for the five-layer 
model described in the text. The modes range from the fast ' external ' one with the same sign in divergence 

at all heights to the very slow ' fourth internal mode * with four zeros. 

A very small initial perturbation of non-dimensional amplitude 0.01 was added to the 
(8,9)* vorticity coefficient with the same amplitude and phase at all heights. This corresponds 
to a maximum wind perturbation of lm s-'. 

The temperature variation at each layer and the surface pressure distribution are 
obtained by demanding that the initial divergence and divergence tendency be zero, and 
applying a smoothness condition. The art of initialization is not a major emphasis in this 
paper, but details of the method are given in appendix 11. The balanced temperature field 
has an equator to pole temperature difference of - 5K, 37K, 50K, 50K, 55K at the respective 
layers. The surface pressure difference is 2 mb. The wave velocity perturbation produces 
an extremely small temperature perturbation and a pressure perturbation of less than 1 mb. 

(c) Initfal time steps 

We perform n initial time steps: a forward one of At/2"-' and centred ones of At/2n-2, 
. . ., At each from time zero before starting the basic time scheme (see Fig. 5). This method 
is based on a suggestion of Miyakoda (1960) and has been found an effective way of 
reducing the initial shock, especially when using the large time steps permitted by use of 
the semi-implicit method. Here we use n = 3 initial time steps. . 

-5 

J 

Figure 5. The scheme for n = 3 initial time-steps. Step 1 is forward from t = 0 to t = Ar/4. Steps 2, 3 
and 4 are centred from t = 0 to A@, & and 2Ar respectively. The integration continues with standard 

centred steps. 

(d)  Results 

The initial vorticity, divergence and temperature at level 5 (0 = 0.9) and the surface 
pressure are shown in Fig. 6. Since the perturbation is not a normal mode, it takes a few 
days for the developing baroclinic wave to become organized. At days 5,  6 and 7 (also 
shown in Fig. 6)  the surface pressure minimum is 994mb, 988mb, 980mb respectively. At 
day 8 it is 963mb. Evidence will be given below that this integration contains significant 
error due to the horizontal truncation after day 6. The usual phase relations and development 
of the temperature and pressure waves are clear, and the model attempts to form some cold 
and warm frontal structure. The low level divergence gives an indication of the low level 
vertical velocity. Strong upward motion occurs in the warm air running from the incipient 

This standard notation means that the vorticity coefiicient of the modem = 8. n = 9 is equal to 0.01. Since the vonicity is a 
real function, it is implied that the Eoefficisllt of rn = -8. n = 9 ia also 0.01. 
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Figure 6. The development of a baroclinic wave. The top three rows show the relative vorticity, divergence 
and temperature fields respectively at level 5 (u = 09) .  The bottom row shows the surface pressure. The 
columns are for days 0. 5. 6 and 7 respectively. The map are polar stereographic projections with the 
pole at the lower left-hand corner. A background grid of 20" latitude by 20" longitude is indicated. Contours 

are drawn every O.li2,0.02Q 5K, 4 mb in the respective rows. 

warm front region along the incipient cold front, and is a maximum ahead of the surface 
low. The vorticity and divergence, especially, show the strong SW-NE tilt of the mode, 
particularly in equatorial regions. The consequent feed of angular momentum is such as 
to form a strong jet in mid-latitudes despite there being no jet structure in the basic state. 
This is in agreement with the detailed analysis of Hollingsworth (1975). More detailed 
description of the limitations of this model due to its truncation and of the baroclinic wave 
structure is given in Simmons and Hoskins (1975). 

Fig. 7 gives an indication of the vorticity spectrum at level 5 at days 6 and 7. Since the 
smallest scales retained, particularly in wavenumber 16, have significant amplitude, the 
probability of truncation error is apparent. The (8, 1 I )  mode in the vorticity is dominant 
at all layers from days 4 to 6 apart from days 4 and 6 at level 1. Thus this mode as exhibited 
in Fig. 8 gives a good indication of the growth, movement and structure of the baroclinic 
wave. The usual westward tilt with height becoming somewhat smaller with time is apparent, 
as is also the slight reduction in amplitude with a marked decrease in the 'stratosphere' 
layer. This decrease in amplitude is much more dramatic in the temperature field. The mode 
accelerates from a movement of 5' longitude between days I +  to 2+, to 8" longitude between 
days 53 to 63. 
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Figure 7. The vorticity spectrum at level 5 at day 6 (dashed) and day 7 (continuous). The waves have zonal 
wavenumber. rn, 0,8 and 16 and total wavenumber, n, from rn up to 21. Only modes with n odd are nonzero 
for an integration on the hemisphere and only these are indicated. The value plotted is the square root 
of the contribution to the mean square vorticity. If surface pressure variation is small. then for equal energy 

in all modes ILI = c 2  = [n(n + l)]'. These points nearly lie on straight lines through n = -4. 

5. TIME SCHEME EXPERIMENTS 

In this section our aim is to investigate thoroughly the errors introduced by using the 
long time steps made possible by the semi-implicit method. To put the question in context, 
we note that the longest possible time step for the model described here when an explicit 
time scheme is used is I5 minutes. For the semi-implicit scheme, it is 90 minutes. As stated 
above, there is a negligible increase in computation and storage required. A comparison 
of a semi-implicit and explicit time integrations, both using 5 minute time steps, has shown 
that the differences are negligible compared with those referred to below. Therefore we 
compare only semi-implicit integrations for the case described in section 4 using 5 minute, 
30 minute and 90 minute time steps. These runs will be referred to as S5, S30, S90 respectively. 
They are started using 3, 3 and 5 initial time steps (see section 4(c)). The investigation 
concentrates on three aspects : vorticity wave amplitudes and phases ; conservation properties ; 
and treatment of gravity waves. 

(a) Vorticity amplitudes and phases 

In Fig. 9 are exhibited the amplitude and phase of the (8, 11) component of vorticity 
at the lowest layer. This component is the dominant one from day 2 to day 6. Only the 
S5 and S90 curves are drawn, the S30 waves nearly everywhere lying between the two. For 
comparison we include the curves obtained from an integration using a triangular 42 
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Figure 9. Comparisons of the (8, 11) vorticity mode amplitudes and phases in the SS (continuous) and 
S90 (dotted) runs and in a run with double the resolution (dashed): 

(a) amplitude: (b) phase plus 58" per day. Angles should be divided by 8 to obtain changes in longitude 
on the sphere. 

truncation and a 30 minute time step. The amplitudes in the triangular 21 experiments are 
much closer to each other than any of them are to that of the triangular 42 experiment. 
The amplitudes are significantly different after day 6. In order to exhibit the very small 
phase differences a phase speed of 58" per day has been added to all the phases. Again 
the triangular 21 experiments are more similar to one another than to the triangular 42 
experiments and again this is particularly true after day 6. 

This behaviour is not limited to the dominant component. As a further example we 
quote the comparisons for the (8, 15) vorticity coefficient. At day 4, the triangular 21 
experiments all give the amplitude to within 2 % and the phase to within 0.31". The triangular 
42 gives an amplitude 5 % different and a phase 0.78" different from the S30 case. At day 6, 
the figures are 1 %, 0.06" and 19% and 10.83". 

We conclude that errors in vorticity amplitudes and phases due to time truncation are 
very small and that they are negligible compared with the errors due to space truncation. 

(b) Conservation properties 

The total energy and mass of the atmosphere are formally conserved by the continuous 
equations and by the vertical finite difference scheme but not by the horizontal spectral 
scheme or by the time differencing. Fig. 10 shows the spurious change in total energy 
normalized by the change in kinetic energy from day 0 to day 6. At day 6 the total energy 
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Figure 10. The spurious change in total energy normalized by the change in kinetic energy at day 6. 
The value plotted at a time is the maximum up to that time. From the top, the curves are for S90, S30, SS. 

The ordinate is logarithmic. 

has changed by lo-', of the kinetic energy change for S90, S30, S5 
respectively. The increase in error after this time is rather more rapid. This is probably 
related to the increase in energy in the high wavenumbers. 

In Fig. 11 is exhibited the change in total mass of the atmosphere normalized by the 
mass itself. At day 6 the proportional change of mass is approximately 5 x lo-', lo-', 
2 x lo-'' for S90, S30, S5 respectively. The rate of loss of mass in the S90 experiment, 
if considered as representative for a general circulation experiment, corresponds to 1 mb 

2.5 x 

The conservation properties improve by approximately an order of magnitude between 
S90 and S30, and between S30 and S5. However, even for ,590 they are extremely good. 

(c) Gravity wave treatment 

The most sensitive indicators of the presence and structure of gravity wave modes 
are the divergence coefficients. As discussed in section 3, a gravity wave has 0; oc eia' 
corresponding to D oc cos (mA + nt) P: Q. The frequency, 6, and the vertical structure 
are ktermined by the matrix B. For a particular total wavenumber n = 10, the effect of 
using a semi-implicit scheme with various time-steps is exhibited in the table. 
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Figure 11. The spurious change of total mass normalized by the mass itself - otherwise as Fig. 10. 

TABLE 1. TREATMENT OF ORAVITY WAVES WITH TOTAL, WAVENUMBER n = 10 

External mode First internal mode Second internal mode 
Velocity 302m s-' Velocity lOlm s-l Velocity 323m s-'  

Period 351h Period 105h Period 326h 
At(min) ahr uo/u Period(h) uAt a& Periodm) uAt a,/u Period@) 

5 0149 0994 3.53 0.050 0999 10.5 0016 14MM 32.6 
30 0895 0816 430 0.300 0972 108 0096 0997 327 
90 2.68 0452 7.76 0.900 0.814 12.9 0.289 0.973 33.5 

The value of aAt fixes the position on the graph in Fig. 2. The reduction in the computed a 
and the lengthened period, 2n/a, are also given. 

A divergence coefficient may be considered as composed of a sum of components due 
to slow moving baroclinic waves and fast moving gravity waves. In this paper, the baroclinic 
wave is eastward propagating and amplifying. To obtain an idea of the ' signature ' of the 
gravity waves, we first consider the divergence coefficient associated with a slow, eastward 
propagating wave of constant amplitude, and a single gravity wave mode composed of 
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1 t t 

Figure 12. A schematic of the complex coefficient 0: shown in an Argand diagram for the case 
0: = ae-(O1 + 66-b '  + b,e" 

where CI = 0015 is the amplitude of a slow eastward propagating mode with Zn/w = 6 days, u corresponds 
to the frequency of the first internal gravity wave mode for n = 10 (2n/u - 10.5h). b, is the amplitude of the 
eastward moving component and 6 ,  the amplitude of the westward moving component. In the left column, 
the gravity mode is pure pastward (6 ,  = 0), in the centre it is stationary (bB = b,), and in the right column 
it is pure westward (b, = 0). The top row is for (b, + b,) u = 0 . 8 ~ ~  and the bottom for (b, + b,)a = 
2 4 2 ~ .  The dots represent values every 14 hr and the lines to the origin indicate the values a t  discrete days. 
3 days' values are plotted, starting from the positive real axis. The tick marks on the axes indicates values 

every 0.01, 

eastward and westward propagating components. The ' harmonic dial ' for this coefficient 
D: in various cases is exhibited in Fig. 12. When the gravity wave is in the same direction 
as the meteorological mode, there is a tendency to form cusps or loops on the inside of the 
harmonic dial. When it moves in the opposite direction they are formed on the outside. 

The actual harmonic dials for D:o in the integrations up to day 7 are shown in Fig. 13. 
There is clear evidence of small gravity wave fluctuations on the growing baroclinic wave. 

Figure 13. The harmonic dials for Dlo in the S5 (above) and S90 (below) integrations for layers 5 to 1 
reading from left to right. 7 days are shown and the notation is as in Fig. 12. 
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Noting the periods and vertical structures and comparing with the table and with Fig. 4, 
some definite identification of modes can be made. However, for the purposes of this paper, 
we comment only that the individual gravity waves are well represented by even the S90 
run. The external mode does not appear to have been generated and, consistent with the 
table, the internal modes are not significantly slowed. The reduction in speed would be 
more marked for the higher wavenumber external and first internal modes, but study of the 
results suggests that this effect is not important due to the lack of energy in these modes. 

6.  THE ARAKAWA VERTICAL DIFFERENCING SCHEME AND 
ANGULAR MOMENTUM CONSERVATION 

In an attempt to evaluate the effect of using an alternative vertical difference scheme, 
the usefulness of having angular momentum conservation, and the treatment of this 
conservation by the spectral method, we repeated the above experiment using the vertical 
scheme of Arakawa (1972). This scheme is based on the thermodynamic and hydrostatic 
equations (Eqs. (3) and ( 5 ) )  in their forms: 

a T' a 
at do 
_ -  - -V . VT' - a"6 - (Ta-") + KT 

I 
da" K 
_ -  - - a4 

Inserting finite differences, the vertical advection in the thermodynamic equation is 
represented by a"b.G,(Ta-")'. The hydrostatic equation becomes 

4 r  - 4 r +  1 = U r T ,  + 8 r +  lTr+ 1, 

The height of the lowest layer is determined by insisting that the finite difference equivalent 
of 

1; [ T -  (4 - 4 * ) W  = 0, 

remains true in the form 
N 

C [T, - (4, - 4*)lAar = 0. 
1 

This implies that 

Thus the height of the lowest layer depends on the temperatures at all heights. In particular 
for a model with equally spaced layers, it can be shown that the height of the lowest layer is 
always badly overestimated, this overestimation depending strongly on the temperature at 
the top layer. Thus the integral condition is retained at the expense of putting all the errors 
into the height of the lowest layer. It can be shown that the above scheme conserves total 
energy and angular momentum. 

The Arakawa scheme was used in an experiment otherwise identical with S30 described 
above. Up to day 8, all the vorticity coefficients were almost always within 3 % of those in 
S30 and the energy conservation was extremely similar. Fig. 14 shows the conservation of 
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Figure 14. The spurious change in total angular momentum normalized by that part of the angular momen- 
tum due to the average change in solid body rotation at day 6. This change is approximately equivalent 
to Olm s-l at the equator. The upper curve is for the S30 run and the lower one for the run using the 

Arakawa vertical scheme. 

angular momentum normalized by that part due to the average change in solid-body 
rotation at day 6. This change at the equator is only 0-lm s-'. The upper curve shows the 
S30 run. S5 and S90 were everywhere within 2%, suggesting that the error is due to the 
vertical scheme. This is confirmed by the two orders of magnitude decrease when using the 
Arakawa scheme. Again the error associated with the horizontal spectral and semi-implicit 
methods is very small. 

We conclude that the Arakawa vertical scheme gives a much improved angular 
momentum conservation, but that the change in the baroclinic instability is negligible. 
This indicates that the vertical resolution in the runs described here is sufficient to well 
resolve the mode. 

7. ALIASING IN THE TRIPLE CORRELATION TERMS 

To test the effect of allowing aliasing in the triple correlation terms, three runs were 
made on a baroclinic instability problem using a 2-layer model. The runs were 

(i) with the model as above 
(ii) truncating V . V In p* spectrally before computing b and o / p  

(iii) using a grid large enough for the triple terms. 
The latter two runs did not alias the triple products. The conservation properties (whose 
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computation is themselves subject to aliasing and truncation) were almost identical in the 
runs, and individual wave coefficients identical to the fourth significant figure. Clearly the 
aliasing of the triple products is not a problem here. 

8. CONCLUSION 

We have provided some details of the formulation of a very efficient multi-layer primitive 
equation model on the sphere, using a spectral horizontal representation and a semi-implicit 
time scheme. For the resolution employed, a computer store of 38K words is required for a 
hemispheric integration, and the time taken for a one-day simulation on the CDC 7600 is 
11 seconds. A detailed analysis of the value of different types and levels of truncation is given 
in Simmons and Hoskins (1975), where comparisons are made with second order finite 
difference integrations in a baroclinic instability problem. It seems that the resolution used 
here may well be sufficient for some general circulation studies. 

The semi-implicit time-stepping technique has been analysed both theoretically and 
by comparison of integrations with different time steps. It is concluded that the errors 
involved in using the largest possible time-step are negligible compared with those due to 
space truncation. 

The conservation of energy, mass and, when conserved by the vertical scheme, angular 
momentum are exceedingly good. 

It is hoped to proceed with this model in two directions. One is the study of particular 
systems such as the baroclinic wave simulated in this paper. This will be aided by the extra 
dimension offered by the availability of wave amplitudes and phases at each instant as 
well as the usual physical space fields. The other approach must be to insert representations 
of physical processes occurring in the atmosphere so that a spectral general circulation 
model can be compared with the usual finite difference models. The inherent errors in 
each are different and often, in our experience, opposite in sign so that a clear idea may be 
obtained as to which properties are numerical in character and which a result of the physics 
included. 
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APPENDIX I 

DETAILS OF THE VERTICAL AND TIME SCHEMES 

For the T scheme, the matrices and vectors defined in section 3 are 

+ K(T,  + T,')V,. V In p * ,  
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a1 al + a2 a2 + a3 . . . 
a2 a2 + a3 . . .  

0 0 . . .  
. . .  0 a3 

APPENDIX I1 

INITIALIZATION 

The inverse balance equation method of obtaining pressure and height fields to balance 
the imposed velocities such as to give zero initial divergence tendency gives, from Eq. (17), 
for each spherical harmonic component five equations of the form 9." + Tln p: = y r  for 
the six unknowns. Therefore 

T." = g-'(Q,m - 4;) 
= -g-l4g + g-'X - In p ; g - ' T .  

In our case there is no topography. It is found that g- 'y  and g-'T have a large two grid 
wave in the vertical. Two methods for choosing In p* and thus determining Q and T are 
suggested : 

(a) extrapolate T and y to the surface (4 = 0) and let 

In P* = Y*/T* 

(b) choose In p* so as to minimize the two grid wave in T. 
In a wide variety of cases, the two methods have been shown to give almost the same 
answer and to give a satisfactorily balanced initial condition. In a few cases, however, the 
temperature still shows oscillation in the vertical. In this paper we use method (b) and define 
In p* by demanding that a binomial filter (1 , 4, 6, -4, 1) on T produce zero result. Thus 
In p* is chosen so that a cubic polynomial can be fitted through the five values of T. 

Since T and Inp, occur in 9, S a n d  8, an iterative procedure is necessary to determine 
them in the manner described above. We use five iterations starting with zero values. 

Model constants are: 

R = 287m2s-2K-1, a = 6,37lkm, R = 7.292 x lO-'s-'. 

The dimensional layer average temperatures for the run described here are 

T = (220,230,250,267,280)K. 

The superrotation is equivalent to equatorial velocities 

(45, 35, 22, 12,4)m s- '  


