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Abstract

Constraints, although ubiquitous in production and distribution planning, scheduling and control, often lead to

inconsistencies in the decision-making process. The constraint-based modeling helps circumvent many organization-

impacting issues. To address this, we developed a multi-level approach to the modeling and solving of combinatorial

optimization problems. It is versatile and effective owing to the use of multi-level presolving and multiple paradigms,

such as constraint programming, logic programming, mathematical programming and fuzzy logic, for their complementary

strengths. The capability of this framework and its advantage over mathematical programming alone or over hybrid

frameworks is shown in the illustrative example, in which combinatorial optimization is used as a benchmark to prove the

effectiveness of the proposed approach. Knowledge of the problem is stored in the form of facts.

Keywords Constraint logic programming · Mathematical programming · Constraint satisfaction problem ubiquitous

modeling and solving constraints · Presolving · Hybrid methods · Manufacturing and distribution

1 Introduction

Constraints are ubiquitous in various areas of production

and distribution. They may correspond to materials, tech-

nologies, resources, time, capacity, interoperation transport,

etc. (production) or to available storage capacity, selec-

tion of distributors, transport duration, number of transport

means, their types, etc. (distribution). Proper constraint

modeling and solving will have a considerable impact on

production-distribution planning and control and will allow

decision-makers to detect difficult situations early enough

to handle them safely. If the constraints are modeled and

solved, fully or partially, at the moment they appear in

a given area or for a given problem, but not collectively

in subsequent stages, the global decision or optimization

model will be simpler and solving it will take less time.

We can thus talk about ubiquitous modeling and solving of

constraints (UMSC) in these problems.
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The concept of UMSC can be the basis for creating deci-

sion support systems and process optimization and control

at various levels. Planning, scheduling and resource allo-

cation problems are usually modeled using OR (operation

research) approaches such as mathematical programming

(MP) methods, with linear programming (LP) used at the

strategic or tactical level (aggregated level). More detailed

planning, scheduling and resource allocation require integer

and binary decision variables and to this end, MIP (Mixed

Integer Programming), IP (Integer Programming) or MILP

(Mixed Integer Linear Programming) Schrijver [17] mod-

els have to be employed. The resulting models are very

complex. To solve them, substantial computing effort is

necessary. Real problems may become NP-hard problems.

In the 1990s, constraint programming-based environments

appeared Rossi et al. [16]; Benhamou et al. [3]; Tsang

[25]; Apt [1] and their implementations to production and

distribution problems were reported Liess and Michelon

[12]; Rocha and Ramos [15]; Bocewicz and Banaszak [4].

Enormous flexibility, easiness and the range of constraint

modeling gave them definite advantage over OR-based

environments. But only at the modeling stage – CP-based

environments turned out to be less effective at the solving

stage, in particular, in solving combinatorial optimization

problems. Their effectiveness often depends on the struc-

ture of modeled constraints and data, or on decision variable
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Fig. 1 Constraint network (CN)

in CSP

domain range. This issue does not exist in the MP-based

environments, where model-solving methods are indepen-

dent of both constraint structure and data. As for the UMSC

concept, the approach that combines multiple paradigms

such as CP- constraint programming, LP- logic program-

ming, MP-mathematical programming, FL-fuzzy logic, etc.

is the best solution.

The paper is organized as follows. Section 2 describes

the constraint-based methods. The multi-level approach to

ubiquitous constraints modeling and solving is presented

in Section 3. The illustrative example and computational

results of the proposed approach are described in Sections 4

and 5. Final remarks and possible future development and

applications are shown in Section 6.

2 Constraint-driven programming,
mathematical programming and integrated
methods – basic principles

For the ubiquitous modeling and solving of different types

of constraints, the most effective and most flexible are

constraint-driven methods and environments based mostly

on constraint satisfaction problems (CSPs) Tsang [25]; Apt

[1]. A constraint satisfaction problem (CSP) is defined by

a set of decision variables, X1, X2, ..., Xn, and a set of

constraints, C1, C2, ..., Cm. Each decision variable Xi has a

nonempty domain DXi of possible values. Each constraint

Ci involves some subset of the decision variables and

specifies the feasible combinations of values for that subset.

A state of the problem is defined by an assignment of values to

some or all of the decision variables, {Xi = vi, Xj = vj ,

...}. An assignment that does not violate any constraints

is called a consistent or legal assignment. A complete

assignment is one in which every variable is mentioned, and

a solution to a CSP is a complete assignment that satisfies

all the constraints. Some CSPs also require a solution that

maximizes an objective function than we speak about COP

(Constraint Optimization Problem).

The CSP is typically determined on a constraint network

(Fig. 1). A constraint network (CN) comprises a set

of decision variables, each associated with a domain of

values and a set of constraints. A CN defines the feasible

combination of values of decision variables through a

constraint subset. Formally, constraints are functions that

effectively define the assignment of decision variables to

some domain (Figs. 1 and 2).

Several modifications to the classic CSP model have been

proposed: Flexible CSPs (relaxation of assumption that each

solution must satisfy all constraints, including Fuzzy CSP

and Weighted CSP), Dynamic CSPs (a sequence of static

CSPs) and Decentralized CSPs. CSPs are to solve problems

by modeling constraints, which represent all properties and

requirements of the problem, and by finding solutions that

satisfy all these constraints. CSP on finite domains are

usually solved using different forms of search such as

local search, constraint propagation and many variants of

backtracking methods Rossi et al. [16]. A general search

algorithm for solving a CSP is shown in Fig. 3. The highest

effectiveness of CSPs is reported for binary constraint

problems, where each constraint binds only two decision

variables (Fig. 2).

For constraints that bind more than two decision variables,

constraint propagation effectiveness decreases significantly and

the number of backtrackings increases rapidly Sitek

and Wikarek [20]. This feature makes the CSP-based

Amulti-level approach to ubiquitous modeling and solving constraints... 1345



Fig. 2 Constraint network in

CSP for binary constraints

environment, such as CP (Constraint Programming) and

CLP (Constraint Logic Programming) less effective in

solving complex problems, such as planning, scheduling

or resource allocation. The structure of the constraints

has no effect on the effectiveness of the MP methods, in

contrast to a large number of integer decision variables,

which, when present, reduce it substantially. Both MP and

CLP involve decision variables and constraints. However,

the types of the decision variables and constraints that

are used and the way the constraints are solved are

different in the two approaches Bockmayr and Kasper

[5]; Hooker [11]; Barth and Bockmayr [2]. MP methods

take into account only linear constraints (equations and

inequalities) which include binary, integer and continuous

decision variables. In the constraint-driven approach, the

programming language is richer in terms of the types of

constraints. In addition to linear equations and inequalities,

there are various other constraints: nonlinear, disequalities,

and symbolic (disjunctive, exclude, cumulative, alldifferent,

profile etc.) Rossi et al. [16]. Moreover, CLP is less effective

in combinatorial optimization problems Escudero et al. [9]

that often occur in planning, scheduling, and control in

manufacturing and distribution.

To sum up, in mathematical programming, the sets

of constraints (equations) describe the problem but do

not indicate how to solve it. In constraint programming,

each constraint invokes a procedure that screens out

unacceptable solutions. The most important elements that

decide the effectiveness of mathematical programming

include: relaxation, tools for filtering and duality theory

Schrijver [17]. Relaxation methods in MP tend to be

more effective when constraints and/or objective functions

contain many decision variables. In general, MP relies on

numerical calculation, which increases its effectiveness.

In contrast, constraint-based environments (CP/CLP) may

fail when constraints contain many decision variables.

This follows from the fact that these environments

(CP/CLP) are based on logic processing and the constraints

do not propagate well. Moreover, CP/CLP are often

insufficient for finding optimal solutions due to lack of

relaxation technology and numerical calculation. However,

the CP/CLP environments are a more powerful modeling

language with which any type of constraints can be easily

modeled and they use the structure within a problem

(horizontal structure), thus contrary to MP with real vertical

structure (a model is independent from data). Also, the

CP/CLP environments have built in methods for removing

infeasible values from variable domains (filtering, domain

consistency, constraint propagation, etc). It is clear that both

approaches (MP and CP/CLP) are complementary in many

aspects and areas.

With this in mind, research has been undertaken to

attempt integrating these paradigms. Several scenarios of

their integration were reported in the literature Hooker [11]:

• Double modeling - use both CLP and MP models and

exchange information while solving.

• Search-inference duality - view CLP and MP methods

as special cases of a search/inference duality.

• Decomposition - decompose problems into a CLP

part and an MP part using a Benders scheme (Benders

decomposition integrates two solution methods: one that

solves the master problem, and one that solves the subprob-

lem).

Fig. 3 A general search

procedure (algorithm) for

solving a CSP
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Integration and hybridization of CLP and MP environments

was also a subject of research conducted by the authors of

this paper Sitek and Wikarek [20]; Sitek et al. [23]; Sitek

and Wikarek [19]; Sitek and Wikarek [22]. Elimination

and replacement of the variable distribution mechanism

but retaining the mechanism of constraint propagation has

become the key research direction. The introduction of

transformation as a critical component of hybrid approach

and backtracking from the distribution of variables in the

CLP clearly distinguishes our approach from those known

from the literature Bockmayr and Kasper [5]; Hooker [11];

Caricato and Grieco [7], Milano and Wallace [14].

In all our previous papers dealing with hybridization

Sitek and Wikarek [20–22], the problem was modeled

as a whole at one level, the model was transformed

and on the basis of the post-transformation model, the

ultimate problem in the form of MILP was generated.

Even though the hybrid approach made it possible to solve

larger problems and to reduce optimization time relative

to mathematical programming methods, its effectiveness in

these two areas was insufficient for SSCM (Sustainable

Supply Chain Management) problems. This is how the

idea of developing a multi-level approach implementing

the UMSC concept appeared. The proposed solution

was especially effective in solving discrete optimization

problems for SSCM, as shown in the form of comparative

analysis with the hybrid and MP methods in Fig. 13a, b

and c. The contribution of this study is in the modification

of the original hybrid approach and its extension to

the multi-level form represented by a modified model

transformed for the SSCM problem. This approach is able

to use the ubiquitous modeling and solving constrains for

combinatorial optimization problems in manufacturing and

distribution problems. The proposed approach integrates

CP, CLP, MP and Fuzzy Logic (FL). It is an extension of

the hybrid approach but differs from it in two aspects. The

problem has to be modeled in the form of a set of CSPs

and new methodology of constraint solving (e.g. multiple

presolving) has to be employed. In addition, the models in

this paper, in the form of CSPs and CSPsT before and after

transformation, were presented for SSCM problem for the

first time. The corresponding constraints have a new, mostly

binary, structure.

3 Amulti-level approach to ubiquitous
modeling and solving constraints
for combinatorial optimization

The need for a convenient, efficient and effective way

of modeling and solving various types of constraints

was conducive to the development of the multi-level

approach based on the results of the previous studies on

hybridization Sitek and Wikarek [20–22] and different,

often complementary properties of individual paradigms

(Section 2). The multi-level architecture results from the

prevalence of constraints at various levels of the modeled

problems. Figure 4 shows the conceptual diagram of the

proposed approach.

The problem is modeled as a set of sub-problems in the

form of CSPs for particular areas of production, distribution,

storage, etc. (Level 1).

All CSPs are modeled using the set of CLP predicates.

This set includes the predicates dedicated to a given CSP,

e.g., predicates implementing individual constraints, general

predicates used in each modeled problem, such as those cre-

ating lists of data from the sets of facts, and incorporated

predicates (disjunctive(), exclude(), cumulative(), alldiffer-

ent() etc. ). The modeling process uses the set of facts as an

information layer for the problem.

The CSP, standard or variant (DCSP, FCSP etc.) is

then presolved (Level 2), using the methods which reduce

the decision variable domains and can transform the

variables and constraints. Constraint propagation, problem

transformation or both methods combined into one are

used as presolving methods (Section 3.1). In the next

step, the constraints (financial, environmental or transport

constraints) that bind the subproblems are modeled (Level

3). They are also presolved (Level 4). Now the additional

and auxiliary constraints are modeled. These do not result

directly from the structure of the problem but from the

data instances, the user’s specific requirements or possibility

of increasing the effectiveness of the solution (Level

5). The next step involves presolving the model and

generating the ultimate MP model. Finally, the MP model

is optimized using the MP-based environment (Level 6).

For illustrative example (Section 4) the MP model takes

the form of MILP (Mixed Integer Linear Programming)

model.

The multi-level architecture allows modeling complex

problems through the parallel modeling of sub-problems at a

given level and related constraints at subsequent levels. This

will result in the multiple use of presolving thus increasing

its effectiveness.

3.1 Presolving

Presolving methods used at various levels constitute an

important element of the proposed approach (Fig. 4). Pre-

solving eliminates redundant information from the problem

formulation while simultaneously trying to simplify and

strengthen the formulation. It can be very effective and is

often essential for solving instances. Especially for integer

programming problems, fast and effective presolving meth-

ods are very important. Here, presolving may have a form

of standard constraint propagation, problem transformation

Amulti-level approach to ubiquitous modeling and solving constraints... 1347



Fig. 4 The concept of

multi-level approach to

ubiquitous modeling and solving

constraints

or a combination of these two methods. Constraint prop-

agation is one of the CSP algorithm methods Rossi et al.

[16]; Apt [1] whereas the transformation is the author’s con-

cept introduced, to varying degrees and in varying forms, to

CP/MP environments hybridization Sitek and Wikarek [20,

22]; Sitek [18]; Wikarek [26].

In our approach, the transformation is the element

that makes it possible to eliminate infeasible points in

the decision variable space prior to defining the values

of the decision variables. Typically, the transformation

precedes the constraint propagation. The transformation

method uses the set of data facts for describing the struc-

ture of a problem, and variable facts (orders, plans, etc.

In this phase, the instances of facts are used in the anal-

ysis of relationships between data. The analysis allows

determining which connections or allocations are unaccept-

able/infeasible because no relevant/corresponding/adequate

fact instances are available to describe them. As a result,

adequate/corresponding decision variables will be removed

in the presolving phase. For example, some of decision

variables Xf,c,t that define the value of transport between

factory f and distribution center c by transport means t will

be removed from the model if a connection between f, c

is impossible and/or a means of transport along the f, c

route cannot be used. Therefore, let’s do a simple analysis.

Based on the illustrated example (Section 4, Appendix A),

we know that f =1..6, c =1..3, t =1..4. Thus the poten-

tial number of decision variables Xf,c,t is 6x3x4 = 72. On

the other hand, the number of instances of the fact fact f c t

() is 24 (Appendix A). In this case, the reduction involves

1348 P. Sitek and J. Wikarek



Fig. 5 The simplified network

of the supply chain

48 decision variables. So in the future it will be possible

to define values only for 24 decision variables Xf,c,t for

illustrative example (Figs. 5 and 6).

Likewise, the analysis of the remaining facts may result

in the reduction of other decision variables of the modeled

problem. In the transformed model, there will be much less

decision variables than the initial one. Due to the multi-

level hybrid approach, the reduction information will be

transferred to the next level, resulting in further reductions

in both decision variables and constraints. The application

of presolving in practice is shown in (Section 4).

3.2 Multi-level model

One of the distinguishing features of this multi-level

approach is the method of modeling the problem. The

model is represented as a set of CSPs with an architecture

related to the modeled problem (Table 6 in Appendix D).

Fig. 6 Diagram of relationships between facts for illustrative example before and after transformation (# - a key attribute for the fact)

Amulti-level approach to ubiquitous modeling and solving constraints... 1349



Figure 7 shows a schematic diagram of the model together

with possible architectures, depending on the problem

characteristic features for illustrative example. The models

can have a form of CSPs occurring in parallel at the same

level, in series at different levels or in a mixed form as in

the illustrative example (Section 4). Each CSP uses a set of

facts as data and a set of questions (objectives) defining the

way the constraints will be satisfied.

This way of modeling makes it very easy for a

given class/type of problems, where changing sets of fact

instances is all that has to be done. Modeling becomes

more complicated in the case of a new problem class/type

with new constraint types. These new constraints have to be

modeled in the form of CLP predicates (Section 4).

For the illustrative example, completely new constraint

formalization is proposed, resulting from the application of

Fig. 7 The implementation framework for illustrative example based on the multi-level approach
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the new multi-level architecture of the model. As a result, a

large part of constraints had a binary form (Fig. 2), which

is especially beneficial for the effectiveness of constraints

propagation and transformation.

3.3 Innovativeness presented approach

Introducing presolving methods (constraint propagation and

transformation) at different levels of problem modeling

(Fig. 4) and mathematical programming solving meth-

ods is an important innovation of the proposed approach.

Extremely time-consuming and generating a lot of back-

trackings labeling is eliminated from the general search

algorithm for solving CSPs (Fig. 3). Ubiquitous use of pre-

solving methods in various forms and manners contributes

substantially to the reduction, aggregation and transforma-

tion of decision variables and constraints. Thus the ”lean”

CSPs become the basis for generating a noticeably smaller

MILP model.

For the solution of the generated model, we use

mathematical programming methods and techniques instead

of CLP, which is possible to avoid a lot of backtracking

labeling techniques (extremely time-consuming). You can

also skip other CLP techniques such as variable ordering,

forward checking etc.

Another important novelty of the proposed approach is

the ability to expand each of the subproblems modeled

as CSPs without having to change and implement the

whole problem as such Sitek and Wikarek [21, 22]

This allows the use of a model with an architecture as

presented in (Section 3.2). Knowledge of the problem is

stored in the form of facts, which is possible due to the

declarative approach – CLP. Facts are also transformed

(Fig. 6) and become a data layer for the model (3.2)

(Appendix A, B).

4 Illustrative example

To show the practical application of the multi-level

approach (Fig. 4), we used the problem of sustainable sup-

ply chain management (SSCM) Brandenburg and Rebs [6],

with the formal model proposed in Sitek and Wikarek

[19]. The problem, studied before, was chosen to com-

pare the effectiveness of the proposed multi-layer approach

with other solutions, in particular with our previous results

Sitek and Wikarek [19], Sitek [19]. It is the combinatorial

optimization problem which consists of the layers corre-

sponding to production, distribution, recycling and retail.

These layers are connected by transport (most frequently

multimodal), as shown in Fig. 5. Each modeled layer has

a specific set of constraints (mode of transport, produc-

tion and distribution capacity, recycling centers capacity,

etc.) presented in the form of interconnected CSPs. Such a

method of modeling constraints essentially distinguishes the

presented model from those published previously Sitek and

Wikarek [21]; Sitek [19] where all constraints and objec-

tives were modeled globally at the same time. The set of

constraints that bind the layers (the number and capacity

of transport means, environmental constraints, etc.) are also

modeled as CSPs. The forms of CSPs for consecutive lay-

ers, the connecting, additional and logical constraints are

shown in Table 1. The proposed way of problem mod-

eling (Section 3.1) gave many of the constraints (1C1,

Table 1 CSPs for illustrative example

CSP Description

CSP0 presolving, provides binarity and integrality CSP0 = (C = {1C0, 2C0)}, X = {Zxp, Xpf,p, Xry,p, Xsc,p, Tcc, Trcy, Xbf,c,t, Ybc,r,t ,

Zbr,y,t , Xaf,c,p,t , Yac,r,p,t , Xkf,c,p,t , Y kc,r,p,t , Zkj,y,p,t }

D = {D0
Zx , D0

Xp, D0
Xr , D

0
Xs , D

0
T c, D

0
T rc, D

0
Xb, D

0
Yb, D

0
Zb, D

0
Xa, D

0
Ya, D

0
Xk, D

0
Yk, D

0
Zk})

CSP1 for production CSP 1 = (C = {1C1, 2C1, 3C1)}, X = {Xpf,p}, D = {D1
Xp})

CSP2 for recycling CSP 2 = (C = {1C2, 2C2, 3C2)}, X = {Xry,p}, D = {D2
Xr })

CSP3 for distribution centers CSP 3 = (C = {1C3, 2C3, 3C3, 4C3)}, X = {Xsc,p, Tcc}, D = {D3
Xs , D

3
T c})

CSP4 for recycling centers CSP 4 = (C = {1C4, 2C4, 3C4, 4C4)}, X = {Xry,p, Trcy}, D = {D4
Xr , D

4
T rc})

CSP5 for transportation CSP 5 = (C = {1C5, 2C5, 3C5, 4C5)}, X = {Xbf,c,t, Ybc,r,t , Zbr,y,t }, D =

{D5
Xb, D

5
Yb, D

5
Zb})

CSP6 allows to link CSP5 with CSP1 and CSP2 CSP 6 = (C = {1C6, 2C6, 3C6, 4C6, 5C6, 6C6, 7C6)}, X =

{Xbf,c,t, Ybc,r,t , Zbr,y,t , Xaf,c,p,t , Yac,r,p,t , Tcc, Xkf,c,p,t , Y kc,r,p,t , Zkr,y,k,t }, D =

{D6
Xb, D

6
Yb, D

6
Zb, D

6
Xa, D

6
Ya, D

6
T c, D

6
Xk, D

6
Xk, D

6
Zk})

CSP7 allows to link CSP1 with CSP2, CSP3 and CSP4 CSP 7 = (C = {1C7, 2C7, 3C7, 4C7, 5C7)}, X =

{Xkf,c,p,t , Y kc,r,p,t , Zkr,y,p,t , Xpf,p, Xsc,p, Xry,p}, D =

{D7
Xk, D

7
Xk, D

7
Zk, D

7
Xp, D7

Xs , D
7
Xr })n =

Amulti-level approach to ubiquitous modeling and solving constraints... 1351



Table 2 CSPsT for illustrative example

CSP Description

CSPT CSP T = (C = {2T a, 2T b, 3T , 4T , 5T a, 5T b, 6T , 7T , 8T , 9T , 10T , 11T , 21T a, 21T b, 21T c, 22T , 23T , 24T }), X =

{XT
f,p,c,r,t1,t2, XbT

f .c.t , YbT
c,r,t , T cT

c , T rcT
c , ZrT

y,p,t }, D = {D0
XT , D0

XbT , D0
YbT , D0

T cT , D0
T rcT , D0

ZrT })

CSP8T ensures

the exclusion

storage, transport

and manufacturing

CSP 8T = (C = {26T , 27T , 28T }), X = {XT
f,p,c,r,d1,d2, ZrT

r,y,k,d }, D = {D8
XT , D8

ZrT })

CSP9T CSP 9T = (C = {12T , 13T , 14T , 15T , 16T , 17T , 18T , 19T , 20T }, X = {XT
f,p,c,r,d1,d2, XbT

f,c,t, YbT
c,r,t }, D =

{D9
XT , D9

XbT , D9
YbT })

1C2, 2C2, 2C3, 2C4, 1C5, 2C5, 3C5, 1C6, 2C6, 3C6, see

Appendix C and D) of the model (Table 1 and Appendix D)

a binary character. This is another feature that differen-

tiated SSCM problem formalization from other models

already presented in Sitek and Wikarek [21], Sitek [19].

The remaining constraints also have different forms. Thus,

the proposed formalization (Appendix D) is a completely

new concept.

a b

Fig. 8 a Current use of distributors’ capacity (Vx1,Vx2,Vx3) for

particular distributors depending on the numbers of orders (N) (F1-

objective function, V1,V2,V3- distributors’ capacity). b Current use

of distributors’ capacity (Vx1,Vx2,Vx3) for particular distributors

depending on the numbers of orders (N) (F2-objective function,

V1,V2,V3- distributors’ capacity)

1352 P. Sitek and J. Wikarek



Fig. 9 a Effect of the impact of capacity V (distributor) on the objective function Fc=F1 (V=V1 =V2 =V3). b Effect of the impact of capacity

V (distributor) on the objective function Fc=F2 (V=V1 =V2 =V3)

All the experiments and studies were carried out for

the same data instances and in the same computational

environment. Data instances for CSPs are presented using

a set of facts. The structure of the facts describing the

illustrative example, the relationship between facts and keys

attributes for facts are shown in Fig. 6. The schematic

diagram follows that well known from the database design,

ERD (Entity Relationship Diagram) Teorey et al. [24] .The

same diagram (Fig. 6) shows the transformation of facts for

the illustrative example which is a presolving element and

refers to the model data layer (Table 1 and Appendix A,

Appendix B). Some of the facts after transformation change

their structure and some are eliminated (15 facts before and

10 after transformation). It has to be noted that the number

of instances of each fact is also greatly reduced.

Appendix A and B list the facts and decision variables

for particular CSPs and CSPsT.

The implementation of the approach in Fig. 4, Section 3,

which took the form of the framework, Fig. 7, was used

to model and solve the illustrative example. Practical

implementation of the UMSC concept in the framework

form contains ubiquitous CSPs and ubiquitous presolving

methods. Both elements are present at many levels (Fig. 7).

In this illustrative example, the presolving methods are

represented by constraint propagation (Level 2, Level 4)

and transformation with constraint propagation (Level 5).

Constraint propagation reduces the domains of decision

variables and, in some cases, detects the situations, in which

certain decision variables do not satisfy the constraints

and removes them. In our example, constraint propagation

defined, among others, the minimum number of distribution

and recycling centers needed for the processing of an order

set and the minimum number of transport means needed

for the distribution of products, etc. Transformation in this

example included the change of problem representation by

the elimination of infeasible routes, that is, the routes left out

due to technological constraints or lack of orders for specific

products from specific distributors and manufacturers.

The additional (CSP9T) and logical (CSP8T) constraints

were modeled at the same level (Level 5). Table 2

shows the CSPsT after transformation. The transformation

technique for the decision variables and constraints from the

illustrative example is included in Appendix D (Tables 8

and 9). The Level 5 CSPs and selected objective functions

(examples of objective functions are listed in Appendix C)

were used to generate the problem formulated as an MILP

model solved in the next step with an MP solver (Level 6).

Full forms of CSPs and CSPsT with a description of the

constraints are included in Appendix D (Tables 6 and 7).

An alternative approach consists of modeling the whole

problem in the form of an MILP model that covers all

the areas and all the constraints and solves the problem

using the MP solver. This approach is less effective

computationally, as only small size problems can be solved

within acceptable time (Appendix E), with nonlinear and

logical constraints excluded.

The tool of choice for the implementation of the

framework (Fig. 7) was ECLiPSe Eclipse [8] which is

an open-source software system for the cost-effective

development and deployment of constraint programming

applications. MP-based environment in the implementation

framework was EPLEX built in ECLiPSe MP-solver.

ECLiPSe was used to implement the levels of the

framework: Level 1, Level 2, Level 3, Level 4 and Level 5.

EPLEX was used for implementing Level 6 and for solving.

5 Computational experiments for illustrative
example

In order to verify and evaluate the proposed framework,

many computational experiments were performed for the

illustrative example. All the experiments relate to the supply

chain with six manufacturers (f =1..6), three distributors
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(c =1..3), ten customers (r =1..10), four modes of

transportation (t =1..4), two center 2 (recycling) (y =1..2),

fifteen product items (p =1..15), and nine sets of orders

(Or1(5), Or2(10), Or3(15), Or4(20), Or5(30), Or6(40),

Or7(60),Or8(75), Or9(90),-(N)-the number of orders in set

Ori). Two objective functions F1 (total supply chain costs)

and F2 (total environmental costs) were used during the

generation of the MILP model (Section 4, Fig. 7, Level

5). Both functions are shown in detail in Appendix C. The

experiments were carried out in two directions. Firstly, the

methods for applying the proposed approach as a framework

to the complex illustrative model (Implementation A) and

examining the properties for the sample instance of data

(Figs. 8a, b, 9a, b and 10a, b) are shown. At this stage,

the values of Vx- current use of distributors’ capacity,

Dx- current use of transportation units were determined

for different numbers of orders. The impact of parameter

V - distributors’ capacity on the objective function was

Fig. 10 a Current use of transportation units (Dx1,Dx2, Dx3, Dx4) for

different mode of transportation (F1-objective function, D1,D2,D3,D4

- the number of transportation units for different mode of trans-

portation) . b Current use of transportation units (Dx1,Dx2, Dx3,

Dx4) for different mode of transportation (F2-objective function,

D1,D2,D3,D4 - the number of transportation units for different mode

of transportation)
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a b

Fig. 11 a Graph showing the number of decision variables of the implementation A, implementation B and implementation C for objective

function F1. b Graph showing the number of decision variables of the implementation A, implementation B and implementation C for objective

function F2

defined. The same procedure can be applied to evaluate

the values and impacts of other model parameters. The

information obtained from the evaluations forms the basis

for decision support in SSCM. The key element of

the proposed experiments was the consecutive stage in

which effectiveness analysis for the proposed approach

is performed in terms of computing time and problem

size. For the comparative analysis, the same illustrative

example was implemented in the MP-based approach and

hybrid approach. Over 200 computational experiments were

carried out for different model parameters and for nine

series of data varied by the number of orders N. Analysis of

the results of the second part of experiments clearly shows

the benefit of the proposed approach (Implementation A)

in relation to classical approaches based on mathematical

programming (Implementation B) and hybrid approach

(Implementation C). To ensure comparable conditions, all

experiments were performed using a PC Intel core (TM2),

2.4 GHz, 2 GB RAM. The same MP solver was used in the

same configuration in all three implementations (A,B,C).

Implementation A offers a 5-fold reduction in the

number of variables (Fig. 11a, b), a 35-fold reduction

in the number of constraints (Fig. 12a, b) and a 25-fold

reduction in the calculation time (Fig. 13a, b) compared

with Implementation B. The search time was reduced when

the data instances were small (up to 15 orders). In the

case of larger size instances, the optimal solution could

not be found with less than 600 s and the mathematical

programming calculations were stopped (Appendix E).

Compared with Implementation C, Implementation A offers

a 3-fold reduction in the number of variables (Fig. 11a, b),

a 6-fold reduction in the number of constraints (Fig. 12a, b)

and a 6-fold reduction in the calculation time (Fig. 13a, b)

for the same computational examples. The search time was

reduced when the data instances were medium size (up to

60 orders). In the case of larger sizes of the data instances,

the optimal solution could not be found with less than 600 s

and the calculations were stopped (Appendix E). The results

can be explained by analyzing potential solution space for

each implementation. The space defined by the Cartesian

product of V(variables)xC(Constraints) was determined for

all numerical cases Or(N). Figure 13c compares the size

of these spaces for each implementation. Due to large

differences between the sizes, the logarithmic scale was

used. The differences between implementations reach at

least an order of magnitude.

a b

Fig. 12 a Graph showing the number of constraints of the implementation A, implementation B and implementation C for objective function F1.

b Graph showing the number of constraints of the implementation A, implementation B and implementation C for objective function F2
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Fig. 13 a Graph showing the calculation time of the implementation

A, implementation B and implementation C for objective function F1

(Time stop=600s). b Graph showing the calculation time of the imple-

mentation A, implementation B and implementation C for objective

function F2 (Time stop=600s). c Graph showing the size (VxC) of

the solution space for the implementation A, implementation B and

implementation C (V-the number of decision variables, C-the number

of constraints)

6 Conclusions

The paper provides a robust modeling and solving method to

combinatorial optimization for production and distribution

problems. This method, based on the concept of UMSC

in multi-level architecture, is an extension to the hybrid

approach, discussed in previous studies Sitek and Wikarek

[20], Sitek and Wikarek [21], both in the area of modeling

(modeling subproblems as separate CSPs, linked CSPs,

logical CSPs and ancillary CSPs) and solving (with multiple

use of presolving). The efficiency of the proposed method

was examined through a set of computational experiments

for illustrative example (optimization of SSCM). The

experiments were also performed for the hybrid approach

and mathematical programming. The outcome of the

proposed method includes (a) flexible modeling and

introduction of many binary constraints to the model, (b)

a significant reduction in solution space, which allows

solving larger problems in shorter times compared with

hybrid approach and mathematical programming and (c) a

possibility of independent modification and extension of the

model CSPs.

The multi-level architecture is suitable for problems such

as ubiquitous manufacturing, supply chain management,

distribution, vehicle routing etc., because it allows the

implementation of constraints and presolving of the

constraints in all areas and at all levels of the problem.

This property is very important as it makes it possible to

early detect constraint infeasibility in each subproblem. The

use of the paradigms of constraint logic programming and

mathematical programming in multi-level architecture takes

advantage of the synergy of individual paradigms, which is

clear in numerical experiments (Section 5 Fig. 11a and b,

Appendix E Tables 10, 11, 12, 13, 14 and 15).

Further studies will focus on the implementation of other

production-distribution models with the use of the proposed

approach (Nielsen at al. [13]; Grzybowska and Gajšek

[10]). The proposed method can be extended to modeling

and solving soft and fuzzy constraints and multi-objective

optimization. In the further extension of the method MP

solvers will be replaced with heuristics and metaheuristics

for solving industrial size problems. In future, a comparative

analysis between the proposed approach and the pure

CLP-based approach will be carried out. Advanced CLP

techniques like different variable ordering techniques, GAC

(Generalized-Arc-Consistency) for n-constraints will be

tested in the context of modeling and solving distribution

problems.
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Appendix A

The tables show the fact structure, including key attributes and

parameters (Table 3), and decision variables (Table 4). All this

information is needed to formalize the CSPs of the modeled

problem. In brackets is the number of instances of a given fact,

which are used for computational experiments (Section 4).

Table 3 Summary facts and decision variables for CSPs

Facts Keys Parameters

Data facts (facts describing the structure of the problem)

product (#p, parameters) [15] #p -product item

p=1..P(P-number of products)

Pp, - the volume/capacity occupied by product

item p; Udp-percentage coefficient of product item

p

factory (#f, parameters) [6] #f -factory f=1..F(F-number of factories)

center 2 (#y, parameters) [2] #y – center 2 (recycling)

y=1..Y(Y-number of centers 2)

Vry - center 2 y maximum capacity;

fact f p (#f,#p, parameters) [31] #f - factoryf=1..F; #p -product item p=1..P; Wf,p-production capacity at factory f for product

item p; Cf,p - the cost of product item p at factory f

center 1 (#c, parameters) [3] #c – center 1(distribution) c =

1..C (C- number of centers 1)

Vc - center 1 c maximum capacity; fc - the fixed

cost of center 1 c

fact c p (#c,#p, parameters) [40] c - center 1(distribution) c = 1..C

#p - product item p=1..P

Tpc,p - the time needed for center 1 c to prepare

the shipment of product item p; Uzc,p - if center 1

c can delivery product item p then Uzc,p=1,

otherwise Uzc,p= 0

mode of transport (#t, parameters) [4] #t - mode of transportation t=

1..T; (T-number of mode of trans-

portation)

Ptt the capacity of transportation unit; Ztt- the

number of transportation units; Lot - the envi-

ronmental cost of using mode of transportation

t;

fact f c t (#f,#c,#t, parameters) [24] #f - factory i=1..F; #c- center 1 c

= 1..C; #t - mode of transporta-

tion t=1..T

Af,c,t-the fixed cost of delivery from factory f to

center 1 c using mode of transportation t; Pzf,c,t

- if factory f can delivery to center 1 c using

mode of transportation t then Pzf,c,t = 1, otherwise

Pzf,c,t = 0

fact y p (#y,#p, parameters) [25] #y – center 2 y=1..Y; #p - product

item p=1..P

Wry,p-capacity at center 2 for product item p;

Rby,p – if recycling center 2 can utilized product

p then Rby,p = 1, otherwise Rby,p = 0 (for MILP

models)

customer(#r) [10] #r - customer r=1..R; (R- number

of customers)

fact c r t (#c,#r,#t, parameters) [60] #c – center 1 c=1..C;#r - cus-

tomer r=1..R; #t - mode of trans-

portation t=1..T

Gc,r,t-the fixed cost of delivery from center 1 c to

customer r using mode of transportation t; Rbc,r,t -

if center 1 c can delivery to customer r using mode

of transportation t then Rbc,r,t = 1, otherwise

Rbc,r,t = 0 (for MILP models)

fact r y t (#r,#y,#t, parameters) [45] #r - customer r=1..R; #y - cen-

ter 2 y=1..Y; #t - mode of trans-

portation t=1..T

Krr,y,t - the fixed cost of delivery from customer r

to center 2 y using mode of transportation t; Rdr,y,t

- if customer r can deliver to center 2 y using mode

of transportation t then Rdr,y,t = 1, otherwise

Rdr,y,t = 0 (for MILP models)

fact f c p t (#f,#c,#p,#t, parameters) [360] #f - factory f=1..F; #c - center 1

c=1..C; #p - product item p=1..P;

#t - mode of transportation t=1..T

Kaf,c,p,t - the variable cost of delivery of product

item p from factory f to center 1 c using of mode

of transportation t

fact c r p t (#c,#r,#p,#t, parameters)[800] #c – center 1 c=1..C; #r - cus-

tomer r=1..R; #p - product item

p=1..P; #t - mode of transporta-

tion t=1..T

Kbc,r,p,t - the variable cost of delivery of product

item p from center 1 c to customer r using mode

of transportation t
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Table 3 (continued)

Input facts

orders (#r,#p, parameters) [max 90] #p - product item p=1..P; #r-

customer r=1..R

Tcr,p - the cut-off time of deliv-

ery to the delivery point/customer

r of product item p; Zr,p - cus-

tomer demand/order r for product

item p

Decision variables

Xpf,p the volume of production item p in the factory f

Xry,p the product item p rate in a center 2 y

Xsc,p the number of item p that is handled at the

center 1 c

Tcc if center 1 c participates in deliveries, then

Tcc =1, otherwise Tcc =0

Trcy if center 2 y participates in utilization, then

Trcy =1, otherwise Trcy =0

Xbf,c,t the number of courses from factory f to center 1

c using mode of transportation t

Ybc,r,t the number of courses from center 1 c to customer

r using mode of transportation t

Zbr,y,t the number of courses from customer r to center 2

y using mode of transportation t

Xkf,c,p,t the size of delivery item p from factory f to

center 1 c using mode of transportation t

Ykc,r,p,t the size of delivery item p from center 1 c to

customer rusing mode of transportation t

Zkr,y,p,t the size of delivery item p from customer r to

center 2 y using mode of transportation t

Xaf,c,p,t if delivery item p is from factoryf to center 1 c

using mode of transportation t then Xaf,c,p,t =1,

otherwise Xaf,c,p,t =0

Zar,y,t if delivery is from customer r to center 2 y

using mode of transportation t then Zar,y,t =1,

otherwise Zar,y,t =0

Yac,r,p,t if delivery product item p is from center 1 c to

customer r using mode of transportation t then

Yac,r,p,t =1, otherwise Yac,r,p,t =0

Values calculated

Zxp cumulative product item p demand

Koaf,c,t the total cost of delivery from factory f to center 1

c using mode of transportation t

Vxc the value corresponds to the center 1 real uptake

capacity

Kogc,r,t the total cost of delivery from center 1 c to

customer rusing mode of transportation t

Cw arbitrarily large constant, for instance, the sum of

all orders

Appendix B

The tables show the fact structure, including key attributes

and parameters (Table 4), and decision variables (Table 5)

after transformation. All this information is needed to

formalize the CSPTs of the modeled problem. In brackets is

the number of instances of a given fact, which are used for

computational experiments (Section 4).

1358 P. Sitek and J. Wikarek



Table 4 Summary facts for CSPsT

Facts Keys Parameters

Data facts after transformation (facts describing the structure of the problem)

routes (#f,#p,#c,#r,#t1,#t2, parameters) [2076] #f - factory f = 1..F; #p -product

item p = 1..P#c - center 1 c=1..C;

#r - customer r = 1..R; #t1 - mode

of transportation t1=1..T #t2 - mode of

transportation t2 = 1..T

Kzf,p,c,r,t1,t2-the cost of delivery of prod-

uct item p from factory f to customer r

via center 1 c using of mode of trans-

portation t1 and t2 Xdf,p,c,r,t1,t2 – if avi-

able delivery of product item p from

factory f to customer r via center 1

c using of mode of transportation t1

and t2 then Xdf,p,c,r,t1,t2 = 1 otherwise

Xdf,p,c,r,t1,t2 =0

fa c r t (#c,#r,#t,parameters) [60] #c - center 1 c = 1..C; #r - customer r =

1..R; #t - mode of transportation t = 1..T

KSmc,r,t - the fixed cost of delivery from

center 1 c to customer r using mode of

transportation t;

fa f c t (#f,#c,#t,parameters) [24] #f - factory f = 1..F; #c - center 1 c =

1..C; #t - mode of transportation t = 1..T

KSCf,c.t - the fixed cost of delivery from

factory f to center 1 c using mode of

transportation t;

Data facts without transformation

product(#p, parameters), fact f p(#f,#p, parameters),

center 1 (#c, parameters) center 2 (#y, parameters)

mode of transport(#t, parameters), fact y p(#y,#p,

parameters), orders(#r,#p, parameters).

Table 5 Summary indices,parameters and decision variables for CSPsT

Input parameters

Rmint the minimum number of means of transport t (determines presolving)

Rmaxt the maximum number of means of transport t (determines presolving)

Fc the minimum number of means of transport on the route from factory to center 1 (determines presolving)

Cm the minimum number of means of transport on the route from center 1 to customer (determines presolving)

Sro the minimum number of means of transport (determines presolving)

Kzf,p,c,r,t1,t2 the variable cost of delivery of product item p from factory f to customer r via center 1 c using mode of transport t1

and t2(determines presolving)

Xdf,p,c,r,t1,t2 if possible delivery of product item p from factory f to customer r via center 1 c using mode of transport t1 and t2

than Xdf,p,c,r,t1,t2 =1 otherwise Xdf,p,c,r,t1,t2 =0 (determines presolving)

Kscf,c,t the total cost of delivery from factory f to center 1 c using mode of transportation t (determines presolving)

Ksmc,r,t the total cost of delivery from center 1 c to customer rusing mode of transportation t (determines presolving)

Decision variables

XT
f,p,c,r,t1,t2 the size of delivery item p from factory f to customer r via center 1 c using mode of transport t1 and t2

XbT
f,c,t the number of courses from factory f to center 1 c using mode of transportation t

YbT
c,r,t the number of courses from center 1 c to customer r using mode of transportation t

TcT
c if center 1 c participates in deliveries, then Tcc =1, otherwise Tcc =0

TbT
y if center 2 y participates in deliveries, then Tby =1, otherwise Tby =0

ZrT
r,y,p,t the size of delivery item p from customer r to center 2 y using mode of transportation t

ZaT
r,y,t if delivery is from customer r to center 2 y using mode of transportation t then ZaT

r,y,t =1, otherwise ZaT
r,y,t =0

ZbT
r,y,t the number of courses from customer r to center 2 y using mode of transportation t
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Appendix C

F1 =

C∑

c=1

(Fc · TcT
c ) +

T∑

t=1

Lot(

F∑

f=1

C∑

c=1

XbT
f,c,t +

C∑

c=1

R∑

r=1

YbT
c,r,t) +

F∑

f=1

C∑

c=1

T∑

t=1

Koaf,c,t +

C∑

c=1

R∑

r=1

T∑

t=l

Kogc,r,t +

Y∑

y=1

(Fry · TbT
y ) +

F∑

f=1

P∑

p=1

(Cf,p ·

C∑

c=1

R∑

r=1

T∑

t1=1

T∑

t2=1

XT
f,p,c,r,t1,t2) −

Y∑

y=1

P∑

p=1

(Cry,p ·

R∑

r=1

T∑

t=1

ZrT
r,y,p,t) +

T∑

t=1

Lot(

Y∑

y=1

R∑

r=1

ZbT
r,y,t) +

R∑

r=1

Y∑

y=1

T∑

t=l

Krr,y,t ∗ ZbT
r,y,t

F2 =

T∑

t=1

Lot(

F∑

f=1

C∑

c=1

XbT
f,c,t +

C∑

c=1

R∑

r=1

YbT
c,r,t) −

Y∑

y=1

P∑

p=1

(Cry,p ·

R∑

r=1

T∑

t=1

ZrT
r,y,p,t) +

T∑

t=1

Lot(

Y∑

y=1

R∑

r=1

ZbT
r,y,t)

F1- total supply chain costs minus the profit from recycling

F2-environmental total supply chain costs minus the profit

from recycling.

Appendix D

Table 6 Explicit forms of CSPs with a description of the constraints

CSPs Constrains

R∑
r=1

Zr,p = Zxp ∀ p = 1..P (1C0)

Determining the cumulative demand for particular products p.

CSP0 Xpf,p ∈ N ∀ f = 1..F, p = 1..P (2C0)

Xry,p ∈ N ∀ y = 1..Y, p = 1..P

Xsc,p ∈ N ∀ c = 1..C, p = 1..P

Tcc ∈ {0, 1} ∀ c = 1..C

Trcy ∈ {0, 1} ∀ y = 1..Y

Xbf,c,t ∈ N ∀ f = 1..F, c = 1..C, t = 1..T

Xaf,c,p,t ∈ {0, 1} ∀ f = 1..F, c = 1..C, p = 1..P, t = 1..T

Ybc,r,t ∈ N ∀ c = 1..C, r = 1..R, t = 1..T

Yac,r,p,t ∈ {0, 1} ∀ c = 1..C, r = 1..R, p = 1..P, t = 1..T

Zbb,j,d ∈ N ∀ b = 1..U, j = 1..M, d = 1..L

Xkf,c,p,t ∈ N ∀ f = 1..F, c = 1..C, p = 1..P, t = 1..T

Ykc,r,p,t ∈ N ∀ c = 1..C, r = 1..R, p = 1..P, t = 1..T

Zkr,y,p,t ∈ N ∀ r = 1..R, y = 1..Y, p = 1..P, t = 1..T

Integrity and binarity

CSP1 Xpf,p ≤ Wf,p ∀ f = 1..F, p = 1..P (1C1)

The production capacity Wf,p of the factory is not exceeded.
P∑

p=1

Xpf,p

Waf,p
≤ 1 ∀ f = 1..F (2C1)

The joint production capacity in the factory f for all item p.
F∑

f=1

Xpf,p = Zxp ∀ p = 1..P (3C1)

Production covers all customer orders.

Table 6 shows the explicit form of CSPs. For each CSP the

set of constraints is presented in algebraic form.

Analogously, Table 7 shows the explicit form of

CSPsT (after transformation). Comparison of decision

variables and constraints before and after transformation are

presented in Tables 8 and 9.
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Table 6 (continued)

CSP2 ZXry,p ≤ Wry,p ∀ y = 1..Y, p = 1..P (1C2)

The capacity of the recycling center will not be exceeded.

Xry,p ≤ Wry,p ∀ y = 1..Y, p = 1..P (2C2)

The joint capacity in the recycling center y for all item p.
Y∑

y=1

Xry,p · Rby,p = Udp · Zxp ∀ p = 1..P (3C2)

The percentage of sold item p that is recycled.

CSP3
C∑

c=1

Xsc,p = Zxp ∀ p = 1..P (1C3)

The quantity of item p will be handled in the distribution centerc which result from the customer orders.

Xsc,p · Pp · Uzc,p ≤ Vc ∀ c = 1..C, p = 1..P (2C3)

Distribution only specific items p by the distribution center c due to technological conditions.
P∑

p=1

(Xsc,p · Pp) ≤ Vc ∀ c = 1..C (3C3)

The total volume of items p distributed by each distribution center cis less than the capacity of this center.
C∑

c=1

P∑
p=1

(Xsc,p · Pp · Uzc,p) ≤
C∑

c=1

Vc · Tcc (4C3)

The available capacity of distribution centers c is greater than cumulative capacity of distributed items p.

CSP4
Y∑

y=1

Xry,p = Udp · Zxp ∀ p = 1..P (1C4)

The recycling center y will be recycled only those items p which enables its technology.

Xry,p · Pp ≤ Rry,p · Vry ∀ y = 1..Y, p = 1..P (2C4)

The available capacity of recycling centers y is greater than the total volume of recyclable items p.
Y∑

y=1

(Xry,p · Pp) ≤ Rry,p · Vry ∀ y = 1..Y (3C4)

The cumulative volume of recyclable items p for each recycling center y is less than the capacity of this center.
Y∑

y=1

P∑
p=1

(Xrr,p · Pp) ≤
Y∑

y=1

Ry,p · Vry · Trcy (4C4)

Cumulative available capacity of recycling centers y is greater than cumulative capacity of recycled items p.

CSP5 Xbf,c,t ≤ Pzf,c,t · Ztt ∀ f = 1..F, c = 1..C, t = 1..T (1C5)

The deliveries from the factory f to the distribution center c are transported along the existing routes by acceptable means of transport t .

Ybc,r,t ≤ Rbc,r,t · Ztt ∀ c = 1..C, r = 1..R, t = 1..T (2C5)

The deliveries from the distribution center c to the customer r are transported along the existing routes by acceptable means of transport t

Zbr,y,t ≤ Rdr, y, t · Ztt ∀ r = 1..R, y = 1..Y, t = 1..T (3C5)

The deliveries from the customer r to the recycling center y are made along the existing routes by acceptable means of transport t .
F∑

f=1

C∑
c=1

Xbf,c,t +
C∑

c=1

R∑
r=1

Ybc,r,t +
R∑

r=1

Y∑
y=1

Zbr,y,t ≤ · Ztt ∀ t = 1..T (4C5)

Transportation process does not use more means of transport t than is currently available.

CSP6 Xbf,c,t ≤ Cw · Tcc ∀ f = 1..F, c = 1..C, t = 1..T (1C6)

Xbf,c,t ≥ Xaf,c,p,t ∀ f = 1..F, c = 1..C, p = 1..P, t = 1..T

Transportation process from the factory f to the operating distribution centers c using acceptable means of transport t.

Ybc,r,t ≤ Cw · Tcc ∀ c = 1..C, r = 1..R, t = 1..T (2C6)

Ybc,r,t ≥ Yac,r,,p,t ∀ c = 1..C, r = 1..R, p = 1..P, t = 1..T

Transportation process from operating distribution centers c to the customer rusing acceptable means of transport t .

Zbr,y,t ≤ Cw · Trcy ∀ r = 1..R, y = 1..Y, t = 1..T (3C6)

Transportation process from the customer r to the operating recycling centers y.
P∑

p=1

(Xkf,c,p,t · Pp) ≤ Xbf,c,t · Ptt ∀ f = 1..F, c = 1..C, t = 1..T (4C6)

Constraint sets the adequate number of transport means t for transporting items p from factory f to distribution center c.
P∑

p=1

(Ykc,r,p,t · Pp) ≤ Ybc,r,t · Ptt ∀ c = 1..C, r = 1..R, t = 1..T (5C6)

Amulti-level approach to ubiquitous modeling and solving constraints... 1361



Table 6 (continued)

Constraint sets the adequate number of transport means t for transporting items p from distribution centerc to customer r .
P∑

p=1

(Zkr,y,p,t · Pp) ≤ Zbr,y,t · Ptt ∀ r = 1..R, y = 1..Y, t = 1..T (6C6)

Constraint sets the adequate number of transport means t for transporting items p from customer r to recycling centery.

Tff,c,t1 · Xaf,c,p,t1 + Xaf,c,p,t1 · Tpc,p + Tmc,r,t2 · Yac,r,t2 ≤ Tcr,p ∀ i = f..F, c = 1..C, t1, t2 = 1..T, p = 1..P, r = 1..R (7C6)

Delivery was completed in due time.

CSP7 Xpf,p =
C∑

c=1

TL∑
t=1

Xkf,c,p,t ∀ f = 1..F, p = 1..P (1C7)

Balance constraint 1-the volume of production in the factory f is equal to the volume delivered to a distribution center c.
F∑

f=1

T∑
t=1

Xkf,c,p,t =
R∑

r=1

T∑
t=1

Ykc,r,p,t ∀ c = 1..C, p = 1..P (2C7)

Balance constraint 2-the volume delivered from distribution center c is equal the volume delivered to customer r .
P∑

p=1

T∑
t=1

Xkf,c,p,t = Xsc,p ∀ c = 1..C, p = 1..P (3C7)

Balance constraint 3- the volume delivered to distribution center c is equal the volume handled by this distribution center.
C∑

c=1

T∑
t=1

Ykc,r,p,t = Zr,p ∀ r = 1..R, p = 1..P (4C7)

Balance constraint 4 - the volume delivered to customer r is equal the volume ordered by this customer.
Y∑

y=1

T∑
t=1

Zkr,y,k,p = Xry,p ∀ y = 1..Y, p = 1..P (5C7)

Balance constraint 5- the volume delivered to recycling center y is equal thevolume handled in this center .

Table 7 Explicit forms of CSPsT with a description of the constraints

CSPsT Constrains

CSPT XT
f,p,c,r,t1,t2 = 0 ∀ Xdf,p,c,r,t1,t2 = 0 ∀ f = 1..F, p = 1..P, c = 1..C, r = 1..R, t1, t2 = 1..T 7T

XT
f,p,c,r,t1,t2 ∈ C ∀ f = 1..F, p = 1..P, c = 1..C, r = 1..R, t1, t2 = 1..T 8T

XbT
f,c,t ∈ C ∀ f = 1..F, c = 1..C, t = 1..T 9T

YbT
c,r,t ∈ C ∀ c = 1..C, r = 1..R, t = 1..T 10T

TcT
c ∈ {0, 1} ∀ c = 1..C 11T

Constraints provide binarity and integrality of decision variables.
C∑

c=1

R∑
r=1

T∑
t1=1

T∑
t2=1

XT
f,p,c,r,t1,t2 ≤ Wf,p ∀ f = 1..F, p = 1..P 2Ta

The production capacity of the factory f is not exceeded.
P∑

p=1

Waf,p · (
T∑

t1=1

T∑
t2=1

C∑
c=1

XT
f,p,c,r,t1,t2 · Uzc,p) ≤ 1 ∀ f = 1..F 2Tb

The joint production capacity in the factory f for all item p.

Z
F∑

f=1

C∑
c=1

T∑
t1=1

T∑
t2=1

XT
f,p,c,r,t1,t2 = Zj,k ∀ r = 1..R, p = 1..P 3T

Constraint enforces the realization of all customer orders.
F∑

f=1

C∑
c=1

T∑
t1=1

T∑
t2=1

XT
f,p,c,r,t1,t2 = Zj,k ∀ r = 1..R, p = 1..P 21Ta

The utilization capacity of the recycling center is not exceeded.
P∑

p=1

Wray,p · (
R∑

r=1

T∑
t=1

ZRT
r,y,p,t) ≤ 1 ∀ y = 1..Y 21Tb

The joint utilization capacity in the recycling centeryfor all item p.
Y∑

y=1

T∑
t=1

(ZRT
r,y,p,t · Udr,p) = Zr,p ∀ r = 1..R, p = 1..P 21Tc

A specified percentage of manufactured/sold items/products are recycled
F∑

f=1

P∑
p=1

R∑
r=1

T∑
t1=1

T∑
t2=1

XT
f,p,c,r,t1,t2 ≤ Vc · TcT

c for c = 1..C 4T
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Table 7 (continued)

The distribution capacities for particular distribution centers c are not exceeded.
P∑

p=1

(Pp ·
R∑

r=1

T∑
t=1

ZRT
r,y,p,t) ≤ TbT

y · Vby ∀ y = 1..Y 23T

The recycling capacities for particular recycling centers yare not exceeded.
F∑

f=1

C∑
c=1

XbT
f,c,t +

C∑
c=1

R∑
r=1

YbT
c,r,t + +

R∑
r=1

Y∑
y=1

ZbT
r,y,t ≤ Ztt ∀ t = 1..T 6T

During transportation cannot be used more means of transport than is available.

Zbr,y,t ≤ Cw · Zar,y,t ∀ r = 1..R, y = 1..Y, t = 1..T 22T

The deliveries from the customer to the recycling center is carried out by the selected routes.
P∑

p=1

R∑
r=1

T∑
t1=1

(Pt · XT
f,p,c,r,t1,t2) ≤ Ptt1 · XbT

f,c,t1 ∀ f = 1..F, c = 1..C, t2 = 1..T 5Ta

The right amount of means of transport to delivery items p from the factory f to the distribution center c.
F∑

f=1

P∑
p=1

T∑
t2=1

(Pp · XT
f,p,c,r,t1,t2) ≤ Ptt2 · YbT

c,r,t2 ∀ c = 1..C, r = 1..R, t2 = 1..T 5Tb

Constraint sets the right amount of means of transport t for delivery items p from the distribution center c to the customer r .

ZbT
r,y,t · Ptt ≥ ZRT

r,y,p,t · Pp ∀ r = 1..R, y = 1..Y, p = 1..P, t = 1..T 24T

Constraint sets the right amount of means of transport t for delivery items p from the customer r to the recycling center y.

CSP8T Exclusion C(Xf,p1,c,r,t1,t2, Xf,p2,c,r,t1,t2, c) ∀ p1 �= p2, p1, p2 = 1..P, f = 1..F, c = 1..C, r = 1..R, t1, t2 = 1..T 26T

Constraint enables the distribution of exclusively one of the two selected items p in the distribution center c.

Exclusion F(Xf,p1,c,r,t1,t2, Xf,p2,c,r,t1,t2, f) ∀ p1 �= p2, p1, p2 = 1..P, f = 1..F, c = 1..C, r = 1..R, t1, t2 = 1..T 27T

Constraint enables the production of exclusively one of the two selected items p in the factory f .

Exclusion Y(Xf,p1,c,r,t1,t2, Xf,p2,c,r,t1,t2, y) ∀ p1 �= p2, p1, p2 = 1..P, f = 1..F, c = 1..C, r = 1..R, t1, t2 = 1..T 28T

Constraint enables the recycling of exclusively one of the two selected items in the recycling center y.

CSP9T Po =
P∑

p=1

R∑
r=1

(Zr,p · VPp) 12T

Constraint determines a total volume of carrying products.

Pmr =
P∑

p=1

(Zr,p · Pp) ∀ r = 1..R 13T

Constraint determines the overall volume of products that must be delivered to each customer
F∑

f=1

C∑
c=1

T∑
t=1

(Ptt · XbT
f,c,t) ≥ Po 14T

Capacity constraint determines the means of transport reserved for the transport / delivery from manufacturers to

distributors, which must be greater than total demand.
C∑

c=1

T∑
t=1

(Ptt · YbT
c,r,t) ≥ Pmr ∀ r = 1..R 15T

Capacity constraint determines the means of transport reserved for the transport / delivery from distributors to

customer, which must be greater than demand for the customer.
F∑

f=1

C∑
c=1

XbT
f,c,t +

C∑
c=1

R∑
r=1

YbT
c,r,t +

R∑
r=1

Y∑
y=1

ZbT
r,y,t ≥ R mint ∀ t = 1..T 16T

Constraint taking into account the lower bound of the required number of means of transport.
F∑

f=1

C∑
c=1

XbT
f,c,t +

C∑
c=1

R∑
r=1

YbT
c,r,t +

R∑
r=1

Y∑
y=1

ZbT
r,y,t ≤ R maxt ∀ t = 1..T 17T

Constraint taking into account the upper bound of the required number of means of transport.
F∑

f=1

C∑
c=1

T∑
t=1

XbT
f,c,t ≥ FC 18T

Constraint estimates the minimum number of courses from factory f to distribution center c
C∑

c=1

R∑
r=1

T∑
t=1

YbT
c,r,t ≥ CM 19T

Constraint estimates the minimum number of courses from distribution center c to customer r
F∑

f=1

C∑
c=1

T∑
t=1

XbT
f,c,t +

C∑
c=1

R∑
r=1

T∑
t=1

YbT
c,r,t +

R∑
r=1

Y∑
y=1

T∑
t=1

ZbT
r,y,t ≥ Srod 20T

Constraint estimates the minimum number of courses.
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Table 8 The transformation of

decision variables during the

transition from CSPs to CSPsT

CSPs CSPsT Description

Xpf, p, Xry, p, Xsc, p XTf,p,c,r,t1,t2 transformed decision variable is generated only for the

technologically possible combinations of indexes.

Xkf,c,p,t – unnecessary

Xbf,c,t XbT
f,c,t the same meaning

Ykc,r,p,t – unnecessary

Xaf,c,p,t – unnecessary

Yac,r,p,t – unnecessary

Ybc,r,t YbT
c,r,t the same meaning

Tcc TcT
c the same meaning

Trcy TbT
y the same meaning

Zkr,y,p,t ZrT
r,y,p,t the same meaning

Zar,y,t ZaT
r,y,t the same meaning

Zbr,y,t ZbT
r,y,t the same meaning

Table 9 The transformation of

constraints during the transition

from CSPs to CSPsT

CSPs CSPsT Description

1C0 – unnecessary

2C0 7T,8T,9T,10T,11T the same meaning

1C1 2Ta the same meaning

2C1 2Tb the same meaning

3C1 3T the same meaning

1C2 21Ta the same meaning

2C2 21Tb the same meaning

3C2 21Tc the same meaning

1C3, 2C3, 3C3, 4C3 4T the same meaning

1C4, 2C4, 3C4, 4C4 23T the same meaning

1C5, 2C5, 3C5, 4C5 6T the same meaning

1C6, 2C6, 3C6, 4C6 – unnecessary- no need to bind decision variables.

5C6, 6C6, 7C6, 1C7 – unnecessary- no need to bind decision variables.

2C7, 3C7, 4C7, 5C7 – unnecessary- no need to bind decision variables.

Appendix E

Table 10 The results of numerical experiments for Fc=F1 and implementation A

Implementation A (multi-level approach)

V1 =1000, V2 =1000, V3 =2000, d1 =70, d2 =40, d3 =30, d4 =15

N F1c T V(Vint) C Vx1 Vx2 Vx3 dx1 dx2 dx3 dx4

90 143 426 285 3692(2433) 889 950 989 1991 68 40 30 15

75 103 533 173 3346(2087) 889 975 969 1331 43 33 22 15

60 71 918 143 2998(1739) 889 842 999 779 36 27 15 15

40 40 170 130 2540(1281) 889 640 1000 0 28 12 7 12

30 33 300 205 2304(1045) 889 410 900 0 18 15 9 7

20 22 093 16 2076(817) 889 0 780 0 14 10 6 4

15 18 082 8 1960(701) 889 0 655 0 14 9 5 3

10 10 128 6 1842(593) 889 0 330 0 16 4 1 2

5 6 270 4 1712(473) 889 0 125 0 9 1 0 1
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Table 11 The results of

numerical experiments for

Fc=F1 and implementation B

Implementation B (mathematical programming)

V1 =1000, V2 =1000, V3 =2000, d1 =70, d2 =40, d3 =30, d4 =15

N F1c T V(Vint) C

90 NFSF 600∗ 7992(6306) 30 549

75 184 346∗∗ 600∗ 7992(6306) 26 229

60 78 651∗∗ 600∗ 7992(6306) 21 909

40 40 445∗∗ 600∗ 7992(6306) 16 149

30 33 499∗∗ 600∗ 7992(6306) 13 269

20 22 107∗∗ 600∗ 7992(6306) 10389

15 18 082∗∗ 600∗ 7992(6306) 8 949

10 10 128 143 7992(6306) 7 509

5 6 270 10 s 7992(6306) 6 069

Table 12 The results of numerical experiments for Fc=F2 and implementation A

Implementation A (multi-level approach)

V1 =1000, V2 =1000, V3 =2000, d1 =70, d2 =40, d3 =30, d4 =15

N F2c T V(Vint) C Vx1 Vx2 Vx3 dx1 dx2 dx3 dx4

90 20 515 285 3692(2433) 889 1000 975 1955 67 40 30 15

75 17 345 318 3346(2087) 889 290 994 1991 50 30 28 15

60 13 797 268 2998(1739) 889 979 645 996 12 40 20 15

40 8 552 214 2540(1281) 889 798 87 755 6 28 4 14

30 7 546 148 2304(1045) 889 760 440 110 14 21 6 8

20 5 237 35 2076(817) 889 465 0 315 11 12 3 6

15 4 557 21 1960(701) 889 655 0 0 11 11 3 4

10 3 188 10 1842(593) 889 315 15 0 16 4 1 2

5 1 170 4 1712(473) 889 0 125 0 9 1 0 1

Table 13 The results of

numerical experiments for

Fc=F2 and implementation B

Implementation B (mathematical programming)

V1 =1000, V2 =1000, V3 =2000, d1 =70, d2 =40, d3 =30, d4 =15

N F2c T V(Vint) C

90 31 456∗∗ 600∗ 7992(6306) 30 549

75 20 546∗∗ 600∗ 7992(6306) 26 229

60 14 860∗∗ 600∗ 7992(6306) 21 909

40 8 988∗∗ 600∗ 7992(6306) 16 149

30 8 149∗∗ 600∗ 7992(6306) 13 269

20 5 643∗∗ 600∗ 7992(6306) 10389

15 4 557 514 7992(6306) 8 949

10 3 188 204 7992(6306) 7 509

5 1 170 9 s 7992(6306) 6 069
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Table 14 The results of

numerical experiments for

Fc=F1 and implementation C

Implementation C (hybrid approach)

V1 =1000, V2 =1000, V3 =2000, d1 =70, d2 =40, d3 =30, d4 =15

N F1c T V(Vint) C

90 195 345∗∗ 600 6156(3156) 5123

75 174 216∗∗ 600 5878(2945) 5123

60 74 545∗∗ 600 5734(2846) 4956

40 40170 523 5556(2645) 4956

30 33 300 356 5445(2453) 4956

20 22 093 134 4745(2137) 4956

15 18 082 67 4389(1945) 4574

10 10 128 34 3967(1734) 4574

5 6 270 23 3472(1326) 4565

Table 15 The results of

numerical experiments for

Fc=F2 and implementation C

Implementation C (hybrid approach)

V1 =1000, V2 =1000, V3 =2000, d1 =70, d2 =40, d3 =30, d4 =15

N F2c T V(Vint) C

90 21 456∗∗ 600∗ 6156(3156) 5123

75 18 521∗∗ 600∗ 5878(2945) 5123

60 13 797∗∗ 600∗ 5734(2846) 4956

40 8 552 568 5556(2645) 4956

30 7 546 456 5445(2453) 4956

20 5 237 234 4745(2137) 4956

15 4 557 89 4389(1945) 4574

10 3 188 45 3967(1734) 4574

5 1 170 25 3472(1326) 4565
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