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A MULTI-LEVEL CORRECTION SCHEME

FOR EIGENVALUE PROBLEMS

QUN LIN AND HEHU XIE

Abstract. In this paper, a type of multi-level correction scheme is proposed
to solve eigenvalue problems by the finite element method. This type of multi-
level correction method includes multi correction steps in a sequence of finite
element spaces. In each correction step, we only need to solve a source problem
on a finer finite element space and an eigenvalue problem on the coarsest finite
element space. The accuracy of the eigenpair approximation can be improved
after each correction step. This correction scheme can improve the efficiency
of solving eigenvalue problems by the finite element method.

1. Introduction

The purpose of this paper is to propose a type of multi-level correction scheme
based on the finite element discretization to solve eigenvalue problems. The two-
grid method for solving eigenvalue problems has been proposed and analyzed by
Xu and Zhou in [25]. The idea of the two-grid method comes from [23, 24] for
nonsymmetric or indefinite problems and nonlinear elliptic equations. Since then,
there have existed many numerical methods for solving eigenvalue problems based
on the idea of the two-grid method (see, e.g., [1, 6, 10, 18, 19, 21]).

In this paper, we present a type of multi-level correction scheme to solve eigen-
value problems. With the proposed method, solving the eigenvalue problem will
not be much more difficult than the solution of the corresponding source problem.
Our method is some type of operator iterative method (see, e.g, [12, 25, 27]). The
correction method for eigenvalue problems in this paper is based on a series of fi-
nite element spaces with different approximation properties which are related to
the multi-level method (cf. [22]).

The standard Galerkin finite element method for eigenvalue problems has been
extensively investigated, e.g., Babuška and Osborn [2, 3], Chatelin [5] and refer-
ences cited therein. And many high efficient methods have also been proposed and
analyzed for different types of eigenvalue problems (see, e.g., [6, 7, 11, 14, 15, 17–19,
21, 25]) based on the superconvergence theory (cf. [17–19, 21] and the “comosol
guide”), the extrapolation technique (cf. [7,11,14,15,17]) and the two-grid method
(cf. [6, 25]). Here we adopt some basic results in these papers to give the error
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72 QUN LIN AND HEHU XIE

estimates of the type of multi-level correction scheme that is introduced here. It
will be shown that the convergence rate of the eigenpair approximations can be
improved after each correction step.

The multi-level correction procedure can be described as follows: (1) solve the
eigenvalue problem in the coarsest finite element space; (2) solve an additional
source problem in an augmented space using the previously obtained eigenvalue
multiplying its associated eigenfunction as the load vector; (3) solve the eigenvalue
problem again on the finite element space that is constructed by combining the
coarsest finite element space with the obtained eigenfunction approximation in step
(2). Then go to step (2) for the next loop.

Similarly to [25], in order to describe our method clearly, we give the following
simple Laplace eigenvalue problem to illustrate the main idea in this paper with
the multi-grid implementation method (see Section 5).

Find(λ, u) such that

(1.1)

⎧⎨
⎩

−Δu = λu, in Ω,
u = 0, on ∂Ω,∫

Ω
u2dΩ = 1,

where Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω and Δ denotes
the Laplace operator.

Let VH denote the coarsest linear finite element space defined on the coarsest
mesh TH . Additionally, we also need to construct a series of nested finite element
spaces Vh2

, Vh3
, · · · , Vhn

which are defined on the corresponding series of meshes
Thk

(k = 2, 3, · · ·n) such that VH ⊂ Vh2
⊂ · · · ⊂ Vhn

(cf. [4, 8]). Our multi-level
correction algorithm can be defined as follows (see Sections 3 and 4):

(1) Solve an eigenvalue problem in the coarsest space VH :
Find (λH , uH) ∈ R× VH such that ‖uH‖0 = 1 and∫

Ω

∇uH∇vHdΩ = λH

∫
Ω

uHvHdΩ, ∀vH ∈ VH .

(2) Set h1 = H and Do k = 1, · · · , n− 2:
• Solve the following auxiliary source problem:
Find ũhk+1

∈ Vhk+1
such that∫

Ω

∇ũhk+1
∇vhk+1

dΩ = λhk

∫
Ω

uhk
vhk+1

dΩ, ∀vhk+1
∈ Vhk+1

.

• Define a new finite element space VH,hk+1
= VH + span{ũhk+1

} and
solve the following eigenvalue problem:
Find (λhk+1

, uhk+1
) ∈ R× VH,hk+1

such that ‖uhk+1
‖0 = 1 and∫

Ω

∇uhk+1
∇vH,hk+1

dΩ = λhk+1

∫
Ω

uhk+1
vH,hk+1

dΩ, ∀vH,hk+1
∈ VH,hk+1

.

end Do
(3) Solve the following auxiliary source problem:

Find ũhn
∈ Vhn

such that∫
Ω

∇uhn
∇vhn

dΩ = λhn−1

∫
Ω

uhn−1
vhn

dΩ, ∀vhn
∈ Vhn

.
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A MULTI-LEVEL CORRECTION SCHEME FOR EIGENVALUE PROBLEMS 73

Then compute the Rayleigh quotient

λhn
=

‖∇uhn
‖20

‖uhn
‖20

.

If, for example, λH is the first eigenvalue of the problem at the first step and Ω is
a convex domain, then we can establish the following results (see Sections 3 and 4
for details):

‖∇(u− uhn
)‖0 = O

( n∑
k=1

hkH
n−k

)
and |λhn

− λ| = O
( n∑

k=1

h2
kH

2(n−k)
)
.

These two estimates means that we can obtain asymptotic optimal errors by taking
H = n

√
hn and hk = Hk (k = 1, · · · , n − 1). This result is different from the two-

grid method [25] (H =
√
hn) and the extended two-grid method [10] (H = 4

√
hn),

since we can choose different n to control H under the condition of fixed hn.
In this method, we replace solving the eigenvalue problem in the finest finite

element space by solving a series of boundary value problems in a series of the
nested finite element spaces and a series of eigenvalue problems in the coarsest
finite element space. It is well known that there exists the multi-grid method
that can solve boundary value problems efficiently. So this correction method can
improve the efficiency of solving eigenvalue problems.

An outline of the paper goes as follows. In Section 2, we introduce the finite
element method for the eigenvalue problem. A type of one correction step is given
in Section 3. In Section 4, we propose a type of multi-level correction algorithm
to solve the eigenvalue problem by the finite element method. In Section 5, some
numerical examples are presented to validate our theoretical analysis and some
concluding remarks are given in the last section.

2. Discretization by finite element method

In this section, we introduce some notation and error estimates of the finite
element approximation for eigenvalue problems. In this paper, the letter C (with
or without subscripts) denotes a generic positive constant which may be different
at different occurrences. For convenience, the symbols �, � and ≈ will be used in
this paper. That x1 � y1, x2 � y2 and x3 ≈ y3, mean that x1 ≤ C1y1, x2 ≥ c2y2
and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are independent of
mesh sizes.

Let (V, ‖ · ‖) be a real Hilbert space with inner product (·, ·) and norm ‖ · ‖,
respectively. Let a(·, ·), b(·, ·) be two symmetric bilinear forms on V × V satisfying

a(w, v) � ‖w‖‖v‖, ∀w ∈ V and ∀v ∈ V,(2.1)

‖w‖2 � a(w,w), ∀w ∈ V(2.2)

and

0 < b(w,w), ∀w ∈ V, and w �= 0.(2.3)

From (2.1) and (2.2), we know that ‖ · ‖a := a(·, ·)1/2 and ‖ · ‖ are two equivalent
norms on V . We assume that the norm ‖ · ‖ is relatively compact with respect to
the norm ‖ · ‖b := b(·, ·)1/2 in the sense that any sequence which is bounded in ‖ · ‖,
one can extract a subsequence which is Cauchy with respect to ‖ · ‖b. We shall use
a(·, ·) and ‖ · ‖a as the inner product and norm on V in the rest of this paper.
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Set

W := the completion of V with respect to ‖ · ‖b.
Thus W is a Hilbert space with the inner product b(·, ·) and compactly imbedded
in V . Construct a “negative space” by V ′ = the dual of V with a norm ‖ · ‖−a

given by

‖w‖−a = sup
v∈V,‖v‖a=1

b(w, v).(2.4)

Then W ⊂ V ′ compactly, and for v ∈ V , b(w, v) has a continuous extension to
w ∈ V ′ such that b(w, v) is continuous on V ′ by Hahn-Banach theorem (cf. [9]).
We assume that Vh ⊂ V is a family of finite-dimensional spaces that satisfy the
following assumption:

For any w ∈ V ,

lim
h→0

inf
v∈Vh

‖w − v‖a = 0.(2.5)

Let Ph be the finite element projection operator of V onto Vh defined by

a(w − Phw, v) = 0, ∀w ∈ V and ∀v ∈ Vh.(2.6)

Obviously,

‖Phw‖a ≤ ‖w‖a, ∀w ∈ V.(2.7)

For any w ∈ V , by (2.5) we have

‖w − Phw‖a = o(1), as h → 0.(2.8)

Define ηa(h) as

ηa(h) = sup
f∈V,‖f‖a=1

inf
v∈Vh

‖Tf − v‖a,(2.9)

where the operator T : V ′ → V is defined as

a(Tf, v) = b(f, v), ∀f ∈ V ′ and ∀v ∈ V.(2.10)

In order to derive the error estimate of eigenpair approximations in the negative
norm ‖·‖−a, we need the following negative norm error estimate of the finite element
projection operator Ph.

Lemma 2.1 ([3, Lemma 3.3 and Lemma 3.4]).

ηa(h) = o(1), as h → 0(2.11)

and

‖w − Phw‖−a � ηa(h)‖w − Phw‖a, ∀w ∈ V.(2.12)

In our methodology description, we are concerned with the following general
eigenvalue problem:

Find (λ, u) ∈ R× V such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ V.(2.13)

For the eigenvalue λ, there exists the following Rayleigh quotient expression (see,
e.g., [2, 3, 25])

λ =
a(u, u)

b(u, u)
.(2.14)
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From [3, 5], we know the eigenvalue problem (2.13) has an eigenvalue sequence
{λj} :

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and the associated eigenfunctions

u1, u2, · · · , uk, · · · ,
where b(ui, uj) = δij . In the sequence {λj}, the λj are repeated according to their
geometric multiplicity.

Now, let us define the finite element approximations of the problem (2.13). First
we generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d =
2, 3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3).
The diameter of a cell K ∈ Th is denoted by hK . The mesh diameter h describes
the maximum diameter of all cells K ∈ Th. Based on the mesh Th, we can construct
a finite element space denoted by Vh ⊂ V . In order to do the multi-level correction
method, we start the process on the original mesh TH with the mesh size H and
the original coarsest finite element space VH defined on the mesh TH .

Then we define the approximation of eigenpair (λ, u) of (2.13) by the finite
element method as:

Find (λh, uh) ∈ R× Vh such that b(uh, uh) = 1 and

a(uh, vh) = λhb(uh, vh), ∀vh ∈ Vh.(2.15)

From (2.15), the following Rayleigh quotient expression for λh holds (see, e.g.,
[2, 3, 25])

λh =
a(uh, uh)

b(uh, uh)
.(2.16)

Similarly, we know from [3, 5] the eigenvalue problem (2.13) has eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,

and the corresponding eigenfunctions

u1,h, u2,h, · · · , uk,h, · · · , uNh,h,

with b(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element
space Vh).

From the minimum-maximum principle (see, e.g., [2, 3]), the following upper
bound result holds

λi ≤ λi,h, i = 1, 2, · · · , Nh.

Let M(λi) denote the eigenfunction set corresponding to the eigenvalue λi which
is defined by

M(λi) =
{
w ∈ V : w is an eigenfunction of (2.13) corresponding to λi

and ‖w‖b = 1
}
.(2.17)

Then we define

δh(λi) = sup
w∈M(λi)

inf
v∈Vh

‖w − v‖a.(2.18)

For the eigenpair approximations by the finite element method, there exist the
following error estimates.
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Proposition 2.1 ([2, Lemma 3.7, (3.29b)], [3, p. 699 and Section 9] and [5]).
(i) For any eigenfunction approximation ui,h of (2.15) (i = 1, 2, · · · , Nh), there is
an eigenfunction ui of (2.13) corresponding to λi such that ‖ui‖b = 1 and

‖ui − ui,h‖a ≤ Ciδh(λi).(2.19)

Furthermore,

‖ui − ui,h‖−a ≤ Ciηa(h)‖ui − ui,h‖a.(2.20)

(ii) Assume λi,h is the smallest eigenvalue approximation of the multiple eigen-
value λi and the corresponding eigenfunction approximation is ui,h. Then there is
an eigenfunction ui such that ‖ui‖b = 1 and

‖ui − ui,h‖a ≤ Ci inf
w∈M(λi)

inf
v∈Vh

‖w − v‖a(2.21)

and

‖ui − ui,h‖−a ≤ Ciηa(h)‖ui − ui,h‖a.(2.22)

(iii) For each eigenvalue, we have

λi ≤ λi,h ≤ λi + Ciδ
2
h(λi).(2.23)

Here and hereafter, Ci is some constant depending on i but independent of the mesh
size h.

3. One correction step

In this section, we present a type of correction step to improve the accuracy of
the current eigenvalue and eigenfunction approximations. This correction method
consists of solving an auxiliary source problem in the finer finite element space
and an eigenvalue problem on the coarsest finite element space. For simplicity of
notation, we set (λ, u) = (λi, ui) (i = 1, 2, · · · , k, · · · ) and (λh, uh) = (λi,h, ui,h) (i =
1, 2, · · · , Nh) to denote an eigenpair of problem (2.13) and (2.15), respectively.

To analyze our method, we introduce the error expansion of eigenvalue by the
Rayleigh quotient formula which comes from [2, 3, 17, 18, 25].

Theorem 3.1. Assume (λ, u) is the true solution of the eigenvalue problem (2.13),
0 �= ψ ∈ V . Let us define

λ̂ =
a(ψ, ψ)

b(ψ, ψ)
.(3.1)

Then we have

λ̂− λ =
a(u− ψ, u− ψ)

b(ψ, ψ)
− λ

b(u− ψ, u− ψ)

b(ψ, ψ)
.(3.2)

Assume we have obtained an eigenpair approximation (λh1
, uh1

) ∈ R × Vh1
.

Now we introduce a type of correction step to improve the accuracy of the current
eigenpair approximation (λh1

, uh1
). Let Vh2

⊂ V be a finer finite element space such
that Vh1

⊂ Vh2
. Based on this finer finite element space, we define the following

correction step.
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Algorithm 3.1. One Correction Step:

(1) Define the following auxiliary source problem:
Find ũh2

∈ Vh2
such that

a(ũh2
, vh2

) = λh1
b(uh1

, vh2
), ∀vh2

∈ Vh2
.(3.3)

Solve this equation to obtain a new eigenfunction approximation ũh2
∈ Vh2

.
(2) Define a new finite element space VH,h2

= VH + span{ũh2
} and solve the

following eigenvalue problem:
Find (λh2

, uh2
) ∈ R× VH,h2

such that b(uh2
, uh2

) = 1 and

a(uh2
, vH,h2

) = λh2
b(uh2

, vH,h2
), ∀vH,h2

∈ VH,h2
.(3.4)

The eigenpair approximation (λh2
, uh2

) obtained in Step (2) is the output of this
algorithm which is denoted by (λh2

, uh2
) = Correction(VH , λh1

, uh1
, Vh2

).

Remark 3.2. If the concerned eigenvalue λ is multiple, we choose the smallest eigen-
value approximation of λ as λh2

and its associated eigenfunction approximation as
uh2

which has the biggest component in the direction of ũh2
.

Remark 3.3 ([20]). We would like to consider the conditions of the eigenvalue prob-
lem (3.4). It is well known that the condition for eigenvalues of symmetric matrices
is 1 (see [20, p. 71]). Since the condition for the eigenvector v corresponding to the
eigenvalue λ of symmetric matrices is (see [20, p. 74])

cond(v) =
1

minλj �=λ |λ− λj |
,

then the conditions of eigenvalue problem (3.4) in each correction step are almost
the same as the eigenvalue problem defined on the coarsest finite element space.
Furthermore, the obtained eigenpair approximations also give very good prelimi-
nary information for the next correction step. For example in the multi-space way
of Example 6.1, the CPU time of eigenvalue solving is 0.063119s on the coarsest
mesh and 0.014806s for the first correction when H = 1/16.

Theorem 3.4. Assume there exists an exact eigenpair (λ, u) of (2.13) such that
the current eigenpair approximation (λh1

, uh1
) ∈ R × Vh1

has the following error
estimates:

‖u− uh1
‖a � εh1

(λ),(3.5)

‖u− uh1
‖−a � ηa(H)‖u− uh1

‖a,(3.6)

|λ− λh1
| � ε2h1

(λ).(3.7)

Then after one correction step, there exist an exact eigenpair (λ, û) of (2.13) such
that the resultant approximation (λh2

, uh2
) ∈ R × Vh2

has the following error esti-
mates:

‖û− uh2
‖a � εh2

(λ),(3.8)

‖û− uh2
‖−a � ηa(H)‖u− uh2

‖a,(3.9)

|λ− λh2
| � ε2h2

(λ),(3.10)

where εh2
(λ) := ηa(H)εh1

(λ) + ε2h1
(λ) + δh2

(λ).
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Proof. From problems (2.6), (2.13), and (3.3), and (3.5), (3.6), and (3.7), the fol-
lowing estimate holds:

‖ũh2
− Ph2

u‖2a � a(ũh2
− Ph2

u, ũh2
− Ph2

u) = b(λh1
uh1

− λu, ũh2
− Ph2

u)

� ‖λh1
uh1

− λu‖−a‖ũh2
− Ph2

u‖a
� (|λh1

− λ|‖uh1
‖−a + λ‖uh1

− u‖−a)‖ũh2
− Ph2

u‖a
�

(
ε2h1

(λ) + ηa(H)εh1
(λ)

)
‖ũh2

− Ph2
u‖a.

Then we have

‖ũh2
− Ph2

u‖a � ε2h1
(λ) + ηa(H)εh1

(λ).(3.11)

Combining (3.11) and the error estimate of finite element projection

‖u− Ph2
u‖a � δh2

(λ),

we have

‖ũh2
− u‖a � ε2h1

(λ) + ηa(H)εh1
(λ) + δh2

(λ).(3.12)

Now we come to estimate the error of the eigenpair solution (λh2
, uh2

) of (3.4).
Based on the error estimate theory of eigenvalue problem by finite element method
(see, e.g., [2, 3]), (2.21)–(2.22) and Remark 3.2, there exists an eigenfunction û ∈
M(λ) such that the following estimates hold (if λ is simple, we have u = û):

‖û− uh2
‖a � inf

w∈M(λ)
inf

v∈VH,h2

‖w − v‖a � ‖u− ũh2
‖a(3.13)

and

‖û− uh2
‖−a � η̃a(H)‖u− uh2

‖a,(3.14)

where

η̃a(H) = sup
f∈V,‖f‖a=1

inf
v∈VH,h2

‖Tf − v‖a ≤ ηa(H).(3.15)

From (3.12), (3.13), (3.14), and (3.15), we can obtain (3.8) and (3.9). The estimate
(3.10) can be derived by Theorem 3.1 and (3.8). �

Remark 3.5. The Algorithm 3.1 adopts the two-grid method to construct One
Correction Step. In [10], the authors provide an extension of the two-grid method.
We can also use this extended two-grid method to construct another One Correction
Step by replacing the auxiliary source problem (3.3) by

a(ũh2
, vh2

)− λh1
b(ũh2

, vh2
) = λh1

b(uh1
, vh2

), ∀vh2
∈ Vh2

.(3.16)

Under the same conditions of Theorem 3.4 and the given eigenpair approximation
(λh1

, uh1
) has the error estimates (3.5), (3.6), and (3.7), the resultant approximation

(λh2
, uh2

) by the new correction step has the error estimates (3.8), (3.9), and (3.10)
with εh2

(λ) := ηa(H)ε3h1
(λ) + δh2

(λ).

4. Multi-level correction scheme

In this section, we introduce a type of multi-level correction scheme based on the
One Correction Step defined in Algorithm 3.1. This type of correction method can
improve the convergence order after each correction step which is different from the
two-grid methods in [10, 25].
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Algorithm 4.1. Multi-level Correction Scheme:

(1) Construct a coarse finite element space VH and solve the following eigen-
value problem:

Find (λH , uH) ∈ R× VH such that b(uH , uH) = 1 and

a(uH , vH) = λHb(uH , vH), ∀vH ∈ VH .(4.1)

(2) Set h1 = H and construct a series of nested finite element spaces Vh2
, · · · ,

Vhn
such that ηa(H) � δh1

(λ) ≥ δh2
(λ) ≥ · · · ≥ δhn

(λ).
(3) Do k = 1, · · · , n− 2

Obtain a new eigenpair approximation (λhk+1
, uhk+1

) ∈ R × Vhk+1
by a

correction step

(λhk+1
, uhk+1

) = Correction(VH , λhk
, uhk

, Vhk+1
).(4.2)

end Do
(4) Solve the following source problem:

Find uhn
∈ Vhn

such that

a(uhn
, vhn

) = λhn−1
b(vhn−1

, vhn
), ∀vhn

∈ Vhn
.(4.3)

Then compute the Rayleigh quotient of uhn
:

λhn
=

a(uhn
, uhn

)

b(uhn
, uhn

)
.(4.4)

Finally, we obtain an eigenpair approximation (λhn
, uhn

) ∈ R× Vhn
.

Theorem 4.1. After implementing Algorithm 4.1, there exists an eigenpair (λ, u)
of (2.13) such that the resultant eigenpair approximation (λhn

, uhn
) has the follow-

ing error estimates:

‖uhn
− u‖a � εhn

(λ),(4.5)

|λhn
− λ| � ε2hn

(λ),(4.6)

where εhn
(λ) =

n∑
k=1

ηa(H)n−kδhk
(λ).

Proof. From ηa(H) � δh1
(λ) ≥ δh2

(λ) ≥ · · · ≥ δhn
(λ) and Theorem 3.4, we have

εhk+1
(λ) � ηa(H)εhk

(λ) + δhk+1
(λ), for 1 ≤ k ≤ n− 2.(4.7)

Then by recursive relation, there exists an eigenfunction u ∈ M(λ) of (2.13) such
that the following estimate holds:

‖uhn−1
− u‖a � εhn−1

(λ) � ηa(H)εhn−2
(λ) + δhn−1

(λ)

� ηa(H)2εhn−3
(λ) + ηa(H)δhn−2

(λ) + δhn−1
(λ)

�
n−1∑
k=1

ηa(H)n−k−1δhk
(λ)(4.8)

and

‖uhn−1
− u‖−a � ηa(H)‖uhn−1

− u‖a.(4.9)
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Based on the proof in Theorem 3.4 and (4.8)-(4.9), the final eigenfunction approx-
imation uhn

has the error estimate

‖uhn
− u‖a � ε2hn−1

(λ) + ηa(H)εhn−1
(λ) + δhn

(λ)

�
n∑

k=1

ηa(H)n−kδhk
(λ).(4.10)

This is the estimate (4.5). From Theorem 3.1 and (4.10), we can obtain the estimate
(4.6). �

Remark 4.2. Using the One Correction Step defined in Remark 3.5 and replacing
the source problem (4.3) by

(4.11) a(uhn
, vhn

)− λhn−1
b(uhn

, vhn
) = λhn−1

b(vhn−1
, vhn

), ∀vhn
∈ Vhn

,

we can construct a new Multi-level Correction Scheme which has the error estimates

(4.5) and (4.6) with εhn
(λ) =

n∑
k=1

ηa(H)
3n−k−1

2 δhk
(λ)3

n−k

.

5. The application to second order elliptic eigenvalue problem

In this section, for example, the multi-level correction method presented in this
paper is applied to the second order elliptic eigenvalue problem. We also discuss
two possible ways to implement the multi-level correction Algorithm 4.1. The first
way is the “two-grid method” of Xu and Zhou introduced and studied in [25]. The
second one proposed and studied by Andreev and Racheva in [1,19] uses the same
mesh but higher order finite elements.

In (2.13), the second order elliptic eigenvalue problem can be defined by

a(u, v) =

∫
Ω

∇u · A∇vdΩ, b(u, v) =

∫
Ω

ρuvdΩ,

where Ω ⊂ Rd (d = 2, 3) is a bounded domain, A ∈
(
W 1,∞(Ω)

)d×d
a uniformly

positive definite matrix on Ω and ρ ∈ W 0,∞(Ω) is a uniformly positive function
on Ω. We pose Dirichlet boundary condition to the problem and it means here
V = H1

0 (Ω) and W = L2(Ω). In order to use the finite element discretization
method, we employ the meshes defined in Section 3.

Here, we introduce two ways to implement the multi-level correction Algorithm
4.1. The first way uses finer meshes to construct the series of nested finite element
spaces. The advantage of this approach is that it uses the same finite element
method and does not require higher regularity of the exact eigenfunctions (see [19]).
The second way is based on the same finite element mesh but using higher order
finite elements. In order to improve the convergence order, the higher regularity of
the exact eigenfunctions is required.

Let us discuss the methods to construct the series of finite element spaces Vhk
(k =

2, 3, · · · , n) for implementing the multi-level correction method.
Way 1. (“Multi-grid method”): In this case, Vhk

(k = 2, 3, · · · , n) is the same
type of finite element as VH and is defined on the finer mesh Thk

with a smaller
mesh size hk. Here Thk

is a finer mesh of Ω that can be generated by the (e.g.,
regular or bisectional) refinement just as in the multi-grid method(see, e.g., [25])
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from Thk−1
such that hk = ηa(H)hk−1. Assume the computing domain Ω is a

convex domain. Then ηa(H) = O(H) and δhk
= O(hk) = O(Hk) (k = 1, 2, · · · , n),

and we can obtain the following error estimate for (λhn
, uhn

):

|λ− λhn
| � ηa(H)2n−2δ2H(λ) = O(H2n) = O(h2

n),(5.1)

‖u− uhn
‖a � ηa(H)n−1δH(λ) = O(Hn) = O(hn).(5.2)

From the error estimates above, we can find that the multi-level correction scheme
can obtain the accuracy the same as solving the eigenvalue problem directly on the
finest mesh Thn

. This improvement costs solving the source problems on the finer
finite element spaces Vhk

(k = 2, 3, · · · , n) and the eigenvalue problems in coarse
spaces VH,hk

(k = 2, 3, · · · , n−1). This is better than solving the eigenvalue problem
on the finest finite element space directly, because solving the source problem needs
much less computation than solving the corresponding eigenvalue problem.

Remark 5.1. If we use the multi-level correction described in Remark 4.2, the mesh
size of Thk

can be chosen as

hk = H
3k−1

2 , k = 2, · · · , n.(5.3)

It means H = h
2

3n−1
n which is a weaker requirement than H = h

1
n
n .

Way 2. (“Multi-space method”): In this case, Vhk
is defined on the same mesh

TH but uses a higher order finite element than Vhk−1
. In order to describe the

scheme simply, we suppose the exact eigenfunction has sufficient regularity. We use
the linear finite element space to solve the original eigenvalue problem (2.13) on
VH , and solve the source problem (3.3) in higher order finite element space with
the way that the order of Vhk

is one order higher than Vhk−1
. Then we have the

following error estimates for the final eigenpair approximation (λhn
, uhn

):

|λ− λhn
| � ηa(H)2n−2δ2H(λ) = O(H2n),(5.4)

‖u− uhn
‖a � ηa(H)n−1δH(λ) = O(Hn).(5.5)

The improved error estimates above just cost solving the source problems on the
same mesh but in higher order finite element spaces and eigenvalue problems in the
lowest order finite element space.

Remark 5.2. If we use the multi-level correction described in Remark 4.2, the order

of Vhk
can be chosen as 3k−1

2 . For example, we can choose fourth order finite
element for Vh2

and thirteenth order finite element for Vh3
.

6. Numerical results

In this section, we give two numerical examples to illustrate the efficiency of the
multi-level correction algorithm proposed in this paper.

6.1. Model eigenvalue problem. We solve the model eigenvalue problem (1.1)
on the unit square Ω = (0, 1)× (0, 1).

Multi-space way. Here we give the numerical results of the multi-level correc-
tion scheme in which the finer finite element spaces are constructed by improving
the finite element orders on the same mesh. We first solve the eigenvalue problem
(1.1) in the linear finite element space on the mesh TH . Then do the first correction
step with the quadratic element and the cubic element for the second correction
step.
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Here, we adopt the meshes which are produced by the regular refinement from
the initial mesh generated by Delaunay method to investigate the convergence be-
haviors. Figure 1 shows the initial mesh. Figure 2 gives the corresponding numerical
results for the first eigenvalue λ1 = 2π2 and the corresponding eigenfunction. Fig-
ure 3 gives the numerical results for the first 6 eigenvalues: 2π2, 5π2, 5π2, 8π2, 10π2

and 10π2.
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Figure 1. Initial mesh for multi-space way
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Figure 2. The errors for the eigenpair approximations by multi-
level correction algorithm for the first eigenvalue 2π2 and the cor-
responding eigenfunction with multi-space way

From Figures 2 and 3, we can find that each correction step can improve the
convergence order by two for the eigenvalue approximations and one for the eigen-
function approximations with the multi-space way when the exact eigenfunction is
smooth enough.
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Figure 3. The errors for the eigenvalue approximations by multi-
level correction algorithm for the first 6 eigenvalues with multi-

space way, where the error is defined by Err0 =
∑6

j=1 |λj,h0
− λj |,

Err1 =
∑6

j=1 |λj,h1
− λj | and Err2 =

∑6
j=1 |λj,h2

− λj |

Table 1. The comparison of the first eigenvalue approximations
obtained by the multi-level correction method and the extended
two-grid method

h Errors of initial Errors of the extended Errors of multi-level
approximations two-grid method correction method

1/2 1.2261E+01 1.2819E-01 2.1362E-07
1/4 3.1266E+00 6.5478E-04 7.7200E-11

We also compare the results of the multi-level correction method with those
of the extended two-grid method. The linear finite element is used to obtain the
initial eigenvalue approximations and the fourth order element is applied to do the
extended two-grid correction method (see [10]). For the aim of comparison, we use
the multi-level correction method stated in Remark 4.2 to do two corrections. The
linear finite element is also adopted to obtain the initial eigenvalue approximations
and the fourth order element is applied to do the first correction. In order to
eliminate the effect of the machine error, we only use the eighth order element
to do the second correction even the thirteenth order element can be used in the
second correction as predicted in Remark 5.2.

The results of the comparison are presented in Table 1. From Table 1, we can find
that the multi-level correction method can obtain better results than the extended
two-grid method.

Multi-grid way. Here we give the numerical results of the multi-level correction
scheme where the finer finite element spaces are constructed by refining the existed
mesh. We first solve the eigenvalue problem (1.1) in the linear finite element space
on the mesh TH . Then, as an example,we chose the regular way to refine the
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mesh such that the size of the resultant mesh hk = O(Hk) to obtain the mesh
Thk

(k = 2, · · · , n) and solve the auxiliary source problem (3.3) in the linear finite
element space Vhk

defined on Thk
and the corresponding eigenvalue problem (3.4)

in VH,hk
.

Figure 4 gives the corresponding numerical results for the first eigenvalue λ = 2π2

and the corresponding eigenfunction on the uniform meshes. Figure 5 gives the
numerical results for the first 6 eigenvalues: 2π2, 5π2, 5π2, 8π2, 10π2 and 10π2.
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Figure 4. The errors for the eigenpair approximations by multi-
level correction algorithm for the first eigenvalue 2π2 with multi-
grid way
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Figure 5. The errors for the eigenvalue approximations by multi-
level correction algorithm for the first 6 eigenvalues with multi-
grid way, where the error is defined by Err0 =

∑6
j=1 |λj,h0

− λj |,
Err1 =

∑6
j=1 |λj,h1

− λj | and Err2 =
∑6

j=1 |λj,h2
− λj |
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From Figures 4 and 5, we can also find that each correction step can improve
the convergence order by two for the eigenvalue approximations and one for the
eigenfunction approximations with the multi-grid way.

6.2. Eigenvalue problem on L-shape domain. In the second example, we
consider the model eigenvalue problem on the L-shape domain Ω = (−1, 1) ×
(−1, 1)\[0, 1) × (−1, 0]. Since Ω has a re-entrant corner, the singularity of eigen-
functions is expected. The convergence order for the eigenvalue approximation is
less than 2 by the linear finite element method which is the order predicted by the
theory for regular eigenfunctions.

We investigate the numerical results for the first eigenvalue. Since the ex-
act eigenvalue is not known, we choose an adequately accurate approximation
λ = 9.6397238440219 as the exact first eigenvalue for our numerical tests. We give
the numerical results of the multi-level correction scheme in which the sequence
of meshes TH , Th2

, · · · , Thn
is produced by the adaptive refinement (cf. [21, 26]).

Figure 6 shows the initial mesh and the one after 12 adaptive iterations. Figure 7
gives the corresponding numerical results for the adaptive iterations. In order to
show the accuracy of the multi-level correction method more clearly, we compare
the results with those obtained by the direct adaptive finite element method. From
Figure 7, we can find the multi-level correction method can also work on the adap-
tive family of meshes and obtain the optimal accuracy. Furthermore, the initial
mesh has nothing to do with the finest one which is different from the two-gird [25]
and the extended two-grid method [10]. The multi-level correction method can be
coupled with the adaptive refinement naturally.

Initial mesh Mesh after 12 iterations

Figure 6. The initial mesh and the one after 12 adaptive itera-
tions for Example 2
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Figure 7. The errors of the smallest eigenvalue approximations
and the a posteriori errors of the associated eigenfunction approxi-
mations by multi-level correction method and direct adaptive finite
element method for Example 2

7. Concluding remarks

In this paper, we give a type of multi-level correction scheme to improve the
accuracy of the eigenpair approximations. Comparing with the superconvergence
method (for example PPR in [18, 21]), we would like to say the superconvergence
method has better efficiency when the mesh is structural and the exact eigenfunc-
tion has higher regularity. As the multi-grid method relative to the supercon-
vergence technique in solving boundary value problems, the multi-level correction
method also has its value in solving eigenvalue problems.

We can use the better eigenvalue and eigenfunction approximation (λhn
, uhn

)
to construct an a posteriori error estimator of the eigenpair approximations for
the eigenvalue problems (see, e.g., [7, 16]). Furthermore, our multi-level correction
scheme can be coupled with the multi-grid method to construct a type of multi-grid
and parallel method for eigenvalue problems (see, e.g, [26]). It can also be combined
with the adaptive refinement technique for the singular eigenfunction cases. These
will be our future work.
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