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The society is changing towards a new paradigm in which an increasing number of old adults live alone. In parallel, the
incidence of conditions that affect mobility and independence is also rising as a consequence of a longer life expectancy.
In this paper, the specific problem of falls of old adults is addressed by devising a technological solution for monitoring
these users. Video cameras, accelerometers and GPS sensors are combined in a multi-modal approach to monitor humans
inside and outside the domestic environment. Machine learning techniques are used to detect falls and classify activities
from accelerometer data. Video feeds and GPS are used to provide location inside and outside the domestic environment. It
results in a monitoring solution that does not imply the confinement of the users to a closed environment.
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1. Introduction

Every developed country is currently dealing (or about to
deal) with the effects of population ageing, which can be
defined as a shift in the distribution of a country’s popula-
tion towards greater ages (Weil 2006). It is generally due
to lower birth rates and higher life expectancy, resulting
in a bigger slice of the elder population. However, popula-
tion ageing means much more in its consequences (Turner,
Giorno, Serres, Vourc’h, and Richardson 1998). There are
evidently both social and economical costs associated (Tai
and Williams in press). As the situation evolves, econom-
ical costs become too expensive to be supported by the
diminishing active population, leading to the bankruptcy of
the social security systems. In fact, according to a report
by the United Nations (2002), not only the working popu-
lation is declining but also the labour force participation of
the older population has declined worldwide over the last
decades (Malmberg 1996). According to the same report,
the number of older persons has tripled over the last 50 years
and will more than triple again over the next 50 years. This
phenomenon is happening all over the globe in both de-
veloped and developing countries, being some African and
South-American countries the only exceptions. However,
this challenge for the twenty-first century is also social. El-
derly frequently have special needs and require a close and
personalised monitoring, mainly due to health-related is-
sues (Dosi 1998). The elder frequently moves to a relative’s
house or to a care centre (Costa et al. 2009), being out from
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their environment, their routines and their life (Al-Hamad,
Flowerdew, and Hayes 1997).

People should be allowed to age actively and main-
tain their quality of life while dealing with all the diseases
and limitations that arise (Mandal and Sairam 2012; Polat
2012). This vision, as noted by the World Health Organi-
zation (WHO), defines the process of active ageing as opti-
mising opportunities for health, participation and security to
enhance quality of life as people age (WHO 2002). Society,
as well as the elderly, can benefit from the latter active par-
ticipation in cultural, civic or spiritual affairs. However, in
order to experience this integration, the elderly need to feel
independent and safe. In this sense, technological solutions
may play an important role. While technological solutions
aimed only at supporting the health care professionals in
the past, there is a growing trend towards decentralised ap-
proaches which provide support to patients in a personalised
way, even outside of the hospital environment.

This is being much driven by the concept of Ambient
Intelligence (AmI) as defined in 1999 by the ISTAG – In-
formation Society Technologies Advisory Group (ISTAG
1998). AmI describes a potential future in which users are
surrounded by ‘traditional’ devices with embedded com-
putational power communication capabilities that create a
sensing and acting network aimed at supporting the user
in his/her daily activities or in maintaining a given level
of comfort, quality of life and security. Early approaches
focused on monitoring patients with cardiac risk (Gouaux
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et al. 2002), domestic care and independent living of the
elderly (Riva 2003) and learning the user’s frequent be-
haviours in the environment (Aztiria, Izaguirre, Basagoiti,
Augusto, and Cook 2010). In an approach in line with this
recent vision, our research teams are focusing on the clas-
sification of activities and detection of falls in the context
of senior care. We chose this specific issue because falls
have a significant weight on the worsening of an already
precarious health condition. After a fall, a timely detection
and rapid response is of utmost importance to minimise its
potentially negative effects.

Thus, in this paper a technological approach to detect
falls is introduced. We are aware of the challenges that this
field of research poses, namely in terms of the quality of the
information, the accuracy of the classification and the issues
related to privacy. In that sense, a multi-modal approach is
followed. A chest-worn accelerometer is used to classify
activities; and a video camera is used to detect the location
of the user inside the house or a global positioning system
(GPS) receiver to provide location outside the home. Some
major drawbacks of the use of these approaches can be
pointed out:

(1) Threshold-based fall detection approaches often
have a significant number of false positives when
people perform common daily activities such as
sitting down or getting up.

(2) Many accurate approaches use several accelerom-
eters or combine them with other sensors such as
gyroscopes. However, people need to remember to
place them and have to do it correctly.

(3) Placing video cameras in domestic environments
raises many issues, namely in what concerns
privacy.

In that sense, we are merging these two approaches to
tackle some of the known criticism. Namely, we use a single
accelerometer placed in the chest since we can accurately
detect falls and classify activities with it (as described in
Section 6). However, there is the problem with false pos-
itives. In order to address it, we make use of the video
cameras, which provide contextual information about the
user, namely concerning his/her precise location, trajec-
tory and surroundings (e.g. in which room of the house the
user is; where inside the room the user is; what objects are
around the user (e.g. sofa, bed)). Based on this, we are able
to reduce the number of false positives in the accelerometer
and complement it with the context of the user to enable a
more accurate interpretation of the data.

Now, focusing on the importance of the user’s loca-
tion, there is no doubt that it is also important to minimise
the time spent between the fall and the arrival of help.
Hence, fall-detection and activity classification is seen in
this work as a location-aware service (Carneiro, Novais,
Costa, Gomes, and Neves 2009). As already stated, the lo-

cation of the user is acquired through video feeds inside the
domestic environment, which can also provide measures of
the level of activity of the user.

While providing location is important for the traditional
scenario of users living alone, it is equally important for el-
derly care centres. In fact, in such institutions it is particu-
larly difficult to monitor every patient without some kind of
technological support (Novais, Costa, Carneiro, and Neves
2010). However, the use of video cameras to locate patients
has the main disadvantage that the patients must remain in-
side the environment. In that sense, GPS receivers are also
considered so that positions are provided outdoor. Thus, the
multi-sensory framework described in this paper provides
real-time services that (1) allow the estimation of the loca-
tion of the users both indoor and outdoor, (2) classify the
activities being performed and (3) focus on fall-detection.
It may present advantages for elder users living at home as
well as for elders living in care centres.

1.1. Related approaches

Extensive work already exists in this field of study, all fo-
cused on fall detection and/or activity classification (Riedel,
Venkatesh, and Liu 2006; Sivatha Sindhu, Geetha, and
Kannan 2012). The first thing these works have in com-
mon is that they are all based on relatively new technolog-
ical solutions. In fact, all these works point out that new
technologies can be part of the solution for the problem of
fall-detection.

The simplest approach and one of the most common
ones consists in using tri-axial accelerometers to measure
the magnitude and direction of the acceleration in three
orthogonal directions, while the body of the user moves.
Generally, an alarm is raised when the value of the ac-
celeration or velocity goes over a given threshold. Differ-
ent strategies exist under this approach, ranging from the
use of one single triaxial accelerometer mounted in the
waist of the user (Mathie, Basilakis, and Celler 2001) to the
use of accelerometers mounted in the hearing aid housing
(Lindemann, Hock, Stuber, Keck, and Becker 2005). From
such approaches it is possible to extract information about
acceleration and velocity. In order to improve the quality
of the data acquired, some researchers focused on placing
the hardware in different parts of the body to find the one
more suited (Kangas, Konttila, Winblad, and Jamsa 2007).
Waist and head are often pointed out as the best places for
placing accelerometers. Still in order to get more accurate
data, other authors focused on collecting data simultane-
ously on different parts of the body, as described in Prado,
Reina-Tosina, and Roa (2002). This approach uses several
accelerometers and one threshold for each accelerometer.

The main critique to all these approaches is that such
threshold values can be reached with other daily activities
such as sitting down abruptly or jumping, thus resulting in
a large number of false positives. Supporting such conclu-
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sions, 13 accelerometer-based approaches were analysed by
Bagalà et al. (2012). In order to address this drawback, ac-
celerometers can be complemented with other techniques
or devices. In Luštrek et al. (2011), location sensors and
accelerometers are mixed to detect falls. The authors use
several radio tags on the clothing of the user that are used
to detect the position of the different parts of the body. The
authors claim that it improves traditional accelerator-based
approaches by up to 40%. The problem is that it requires
the user to set up several tags in specific places in order
for the solution to be used. Besides this inconvenience, typ-
ical problems associated to such approaches are the user
forgetting to do so or not being able to accurately do it.

Other approaches mixing several devices (which can be
different or of the same kind) include the combined use of
gyroscopes, accelerometers, tilt sensors or vibration sen-
sors (Noury et al. 2000, 2003; Qian et al. 2009). However,
the same problems are present: users have to be able and re-
member to place specific hardware on specific places. The
alternative is that this hardware is embedded in the cloth-
ing. This results more expensive (e.g. each piece of clothing
must have the hardware, wearable hardware is more expen-
sive) and is at the moment still not feasible. In order to
address such problems, Zhang, Wang, Liu, and Hou (2009)
proposed the incorporation of micro sensors on daily using
devices, in this case a cell phone. The authors thus incor-
porated a tri-axial accelerometer in the user’s cell phone
showing that it can still detect falls accurately and be less
intrusive, with the phone being carried on the pocket or
around the neck. Although the authors achieved an accu-
racy of around 80%, this solution applies only if the user
carries the phone with him. However, typically, when inside
the house a person does not carry a cell phone.

An alternative line of research focuses on the analysis
of video feeds in order to detect falls. This approach raises
some concerns right away: (1) the privacy of the user is
more significantly threatened than with the previous ones
and (2) image analysis is a far more complex subject. Dif-
ferent approaches exist to this problem. In some examples
location markers are used to reconstruct a 3D representa-
tion of the person’s position (Nyan, Tay, and Mah 2008).
Again, markers must be worn in specific points of the body.
This technique often results impracticable for other reasons
(e.g. position markers are not visible at all time). This does
not result so invasive as no ‘real image’ from the person
is acquired, only a representation. Other techniques do not
require markers but need however access to still images of
the person, which may be seen as a more severe violation of
privacy, particularly in specific spaces of the house (Brulin,
Courtial, and Allibert 2009).

Summing up, despite the wide number of existing ap-
proaches, some significant problems can still be pointed
out, namely: (1) threshold-based values often fail because
they consider the values blindly, without context about what
the user is doing; (2) many of the projects analysed focus

only on detecting falls and not on classifying daily activi-
ties that may be important to understand the context of the
user and (3) mixed approaches require different pieces of
hardware to be placed and worn by the user, who may forget
or be unable to do so accurately.

Motivated by the present issues, we propose an alter-
native approach for monitoring daily activities and detect-
ing falls. It is a mixed one, merging visual analysis with
accelerometer data. In the experiments described in this
paper, for commodity, the internal accelerometer of the
Android platform was used. In the forthcoming version of
the solution, it is being replaced by a LilyPad one, based
on the ADXL335 accelerometer. The LilyPad is a triaxial
accelerometer that can be sewn to clothing and washed.
It is placed at the level of the chest and its data are ac-
cessed through the use of a smartphone, that collects it and
forwards it to a data gateway. While the accelerometer mea-
sures the intensity of the movement of the user in different
axes, the visual analysis complements this with information
about the context and location of the user. This allows for
a higher quality of the information acquired as understand-
ing the context and location of the user allows diminishing
the number of false positives associated to given activities,
such as sitting down or getting up from a sofa or bed.

The two approaches are also complementary in the
sense that the use of cameras is not be desirable in cer-
tain spaces of the home (e.g. bedroom, bathroom) while
the use of the accelerometer is not so problematic. In that
sense, when cameras can be used they are used to increase
the quality of the information of the system; when they are
not, the system relies on the accelerometer alone. A GPS
sensor was also included to allow the seamless monitoring
of the user, inside and outside his environment. This seeks
to increase the sense of autonomy and security of the user:
often, users of monitoring solutions start to feel less safe
outside the monitored environment, changing their habits
to remain more time inside. This is, obviously, counter-
productive, as one of the aims is that the user remains ac-
tive, particularly socially active. This decision thus aims at
increasing the sense of security of the users, independently
of the location. The envisioned solution was designed to
be simple and cost-effective (e.g. video cameras are widely
available nowadays, the LilyPad accelerometer costs around
25 USD), but still efficient in classifying activities and falls.
The approaches merged, although controversial when con-
sidered separately, result interesting in conjunction, tackling
each others’ drawbacks.

2. The importance of detecting falls

As people get older, their health conditions worsen, bones
get weaker and denser (being osteoporosis a frequent condi-
tion) and the organism gets more susceptible to infections.
For elderly people, falling worsens the health state in sev-
eral ways, in a short and long-term perspective, affecting
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4 J.C. Castillo et al.

both the physical and physiological spheres of the elderly.
The physical short-term effects of a fall include lacera-
tions, hip fractures or head traumas. Studies point out that
20%–30% of people who fall suffer moderate to severe in-
juries of these types (Alexander, Rivara, and Wolf 1992;
Sterling, O’Connor, and Bonadies 2001). These injuries
make it harder to live independently and maintain the regu-
lar routines, and may even increase the risk of early death.
In the year 2000 falls were the most common cause for trau-
matic brain injuries (Jager, Weiss, Coben, and Pepe 2000).
Falls are also pointed out as the main cause of fractures
among old adults, commonly affecting the spine, hip, fore-
arm, leg, ankle, pelvis, upper arm and hand (Scott 1990).
A fall has also long-term effects on the life of the elder.
Psychologically, the elder that falls, even if not injured, is
likely to develop a fear of falling again (Vellas, Wayne,
Romero, Baumgartner, and Garry 1997). This fear con-
stitutes a psychological limitation to the regular activities,
leading to reduced mobility, loss of physical fitness, isola-
tion and solitude. This will, in turn, increase the likeliness
of future falls.

Thus, falls represent a serious social problem. However,
they encompass also economical consequences. The Cen-
ter for Disease Control and Prevention maintains a database
for assessing the causes and consequences of falls, under
the web-based injury statistics query and reporting system1.
Reports from 2009 point out that 2.2 million non-fatal fall
injuries among older adults were treated in emergency de-
partments in the United States only. Of these patients, more
than 581,000 were hospitalised. This represents an evident
cost for the public health care systems and insurance com-
panies. The same reporting system points out that in the
United States, direct medical costs of falls in year 2000 to-
talled a little over $19 billion (including fatal and non-fatal
injuries). Falls are nefarious not only for their consequences
but also for the number of old adults affected. A study by
WHO reveals that 30% of the people aged 65 years fall at
least one time per year, with this number increasing to 50%
after the age of 80 (Giannakouris 2008; Suelves, Martı́nez,
and Medina 2010).

Given all these factors, the negative effects of falls on
the society and the economy are evident. To minimise these
effects one could focus on preventing falls. In order to do
so, older adults should be encouraged to exercise regularly
(focusing on improving balance and strength), review their
medicines (some have side effects such as dizziness), have
their eyes checked and make their homes safer by building
ramps, grab bars or improving lighting, for example. How-
ever, falls will continue to happen. In that sense, we believe
that it is paramount to focus on the decrease of the time spent
between the fall and the arrival of help. While the elder is
laying on the ground, the risks of infections, myocardial
infarction, pneumonia or pulmonary thromboembolism in-
crease. Moreover, this period of time has also an effect on
the degree of eventual mobility impairments and on the

Figure 1. Example of level hierarchy with input/output relations.

recovery time, which in turn aggravates the psychological
consequences.

This problem is worsened by the fact that the number
of elderly living alone is increasing sharply. According to
the UK Office for National Statistics, the number of people
aged over 85 rose by 84% between 1981 and 2004, and
so has risen the number of this people living alone. Be-
sides, most of these old adults have only the television for
company: in a survey of 1018 adults aged over 65 more
than half of them did not see their family more than once
a month. Such reality calls for automated and autonomous
technology-based mechanisms for fall detection that mon-
itor the patient 24/7, independently of the location. Such
solutions have the potential to be accurate, to detect a fall
in real-time and to minimise significantly the time spent
between the fall and the arrival of help. This minimises the
negative consequences of the fall and, ultimately, could be
the difference between life and death.

3. A framework for human fall detection

In first place, a framework is developed to carry out user
monitoring and fall detection tasks (Castillo, Fernández-
Caballero, Serrano-Cuerda, and Sokolova 2012; Sokolova,
Castillo, and Fernández-Caballero 2012). Several visual
sensors implement user detection to assess the position
where an important activity is detected. This is particularly
important in the event of a fall. To perform fall detection, the
framework establishes a set of operation levels with clearly
defined input/output interfaces to hierarch the processing.
The levels are composed by a set of modules that hold the
specific algorithms devoted to each level’s operation (see
Figure 1). At the lower level, several sensors providing in-
formation are found. Following this scheme, one module is
included to deal with each sensor. At each level, the frame-
work establishes a set of inputs and outputs available for
each level’s modules. The inputs and outputs are indepen-
dent from each other and from the modules. This implies
that a module does not need to implement all inputs and
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International Journal of Systems Science 5

Figure 2. Framework execution scheme. Remote nodes perform information acquisition and processing. The central node gathers and
visualises the remote nodes’ information.

outputs, but must select its interfaces among them. This is
the key for the connection of different kinds of sensors and
different algorithms to process their information running in
parallel. Following the scheme proposed in Figure 1, the
framework levels establish a hierarchy from the sensor ac-
quisition level to the activity analysis one, connecting low
level outputs to their respective higher level inputs. The
level hierarchy is detailed in Section 3.2.

As aforesaid, the proposed framework is designed to
operate with different sources of information coming from
cameras and accelerometers. In this proposal, the accel-
eration sensor is embedded in a mobile phone and con-
nected to the framework through a client/server scheme,
acting like another sensor; that is, performing continuous
monitoring. Nevertheless, other proposals such as wireless
sensor networks might be taken into account to fulfil this
purpose.

3.1. Execution model

It is a requirement for a framework in charge of fall detec-
tion tasks at home to monitor at different locations, obtain-
ing large amounts of data to be processed. For this reason,
the framework execution is defined as hierarchical, provid-
ing a series of remote nodes in charge of collecting sensor
information and processing it, while a central node is in
charge of joining remote information and performing the
visualisation. The proposed scheme distinguishes two kinds
of remote nodes, namely the one in charge of accelerometer
processing and the one in charge of camera processing. The
second kind of node may have several instances, each one
devoted to one camera. Figure 2 depicts the connection be-
tween the framework nodes as well as the execution levels
they carry out.

3.2. Levels

In order to optimise the integration of the different algo-
rithms that comprise the framework operation, a stack of
four processing levels is proposed here. The lower level
corresponds to the acquisition of information coming from
the sensors. In this case two sensor technologies are pro-
posed: visual sensors and accelerometers. For this reason,
two modules are placed in this first level, dealing with both
sensing technologies. Furthermore, this level is in charge
of information preprocessing to enhance higher levels’ per-
formance. The second level, designated as segmentation,
performs the extraction of relevant information from sen-
sor data. A segmentation algorithm isolates the spots corre-
sponding to the objects of interest contained in the images.
The spots are also filtered according to a series of con-
straints to ensure they contain humans. Next, the tracking
level adds a temporal component to the segmented spots,
matching spots along different captures. This way, the mod-
ule provides information about the trajectory the objects
have followed in the scene. Moreover, tracking algorithms
also infer future positions of the objects according to their
trajectories. The last level, designated as activity detection,
extracts semantic information from the accelerometer in-
formation. The data describing the acceleration measured
on the handheld device are processed at this level. Specif-
ically, for each instance of the acceleration measured in a
given instant t, a seven-tuple is created:

acct = (x, y, z,m, u, d, t), (1)

where x, y and z denote the values of the acceleration mea-
sured on each axis, m contains the module of the accelera-
tion vector, u identifies the user, d the model of the handheld
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6 J.C. Castillo et al.

device and t the time instant in which the acceleration is
measured.

The detected activities only involve human as scene ob-
jects and are constrained to the classification of falls and
common daily movement patterns such as walking, stand-
ing or running. Activity analysis from visual information
follows a fuzzy-based approach, while activities from infor-
mation regarding acceleration rely on an implementation of
a C4.5 classifier.

4. Human detection from video

The detection of humans using a video feed entails two
phases, namely, segmentation and tracking. The segmenta-
tion phase consists of a motion-based approach to detect
humans in the scene according to their dynamic features.
That is, if a human stays still, it is possible that the algo-
rithm produces a miss detection. This problem is solved
by the second phase. Tracking uses the information of the
detected humans in previous time instants to assess their
trajectories, being able to keep them in mind if the seg-
mentation fails. This is also useful in case of actual miss
detections, and in this case, the tracking algorithm predicts
the future positions of the humans. These two phases are
explained in detail below.

4.1. Segmentation

The proposal for human detection in images uses the ac-
cumulative computation approach (Fernández-Caballero,
López, Castillo, and Maldonado-Bascón 2009). Motion
calculation allows obtaining gradually all moving human
shapes through this mechanism. The different stages of the
algorithm cover the main features of the proposed approach,
as depicted in Figure 3 and detailed as follows.

Grey level segmentation. The module segments the
original image (named as I(x, y, t)) into a preset group of N
bands. Each of these bands corresponds to a different range
of grey levels from 0 to 255. For example, if we use eight
grey level bands, the first band covers a range of grey levels
from 0 to 31, the second band covers a range from 32 to
63, and so on. At the end of this stage there are N binary
images. The pixels whose grey level value in the original
image is in the grey level range of a given band will have
maximum value on that particular band while the rest of the
pixels have a minimum value. These images are named as
GLSi, where i ∈ [0..N − 1].

Permanence. Now, a charge or discharge value cal-
culation due to motion detection is performed. The mod-
ule has been designed to obtain the accumulated charge
PMi(x, y, t) on a quantisation basis that will memorise
the value of the accumulative computation present at time
scale t for each pixel (x, y).

At each pixel (x, y) we are in front of three possibilities:
(1) The charge value at pixel (x, y) is discharged down

Figure 3. Accumulative computation approach.

to vdis (the minimum allowed charge value, usually set as
0) when no motion information is detected at band i. No
motion information is available as pixel (x, y) does not
correspond to band i. (2) The charge value at pixel (x, y) is
saturated to vsat (the maximum charge value, usually set as
255 since is the maximum value for a pixel in a 256 grey
level image) when motion is detected at t. Motion is detected
as the image pixel now belongs to this band at time instant
t, and it did not correspond to the band at the previous
instant t − �t, or vice versa. (3) The charge value at pixel
(x, y) is decremented by a value vdm when the pixel keeps
on being detected in consecutive intervals t and t − �t,
meaning that motion information was not detected in that
time interval. Of course, the permanence value cannot get
off a minimum value vdis. Notice that the discharge of a
pixel by a quantity of vdm (usually set as 64 so the pixel
will totally be discharged if motion is not detected after
four consecutive frames) is the way to stop maintaining
attention to a pixel of the image that did capture our interest
in the past.

Human parts fusion. During this step, we take the
maximum value of all outputs of the N bands to show the
detected blobs associated to a moving human as obtained
for each colour component:

S(x, y, t) = max(PMi(x, y, t)),∀i ∈ [0..N − 1]. (2)

An example of the output generated by this stage is
available at the centre of Figure 4.

Human blob detection. This module performs a bi-
narisation with threshold �obj. Values over the threshold
are set to max(255) and below threshold are set to min(0).
Once the image is binarised, some morphologic operations,
namely a series of erosion and dilation operations, leading
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Figure 4. Accumulative computation result. Left, input image; centre, movement detected at different time instants; right, humans
detection result.

to eliminate image noise are performed. Finally, spots are
filtered based on human characteristic features, such as
height, width and compactness. As a result, each human
in I(x, y, t) is obtained as a region of interest (ROI). A
ROI is defined as the minimum rectangle where the human
detected can be contained. This rectangle is characterised
by its upper-left coordinates (xmin, ymin) and its lower-right
coordinates (xmax, ymax). These ROIs are enlisted into the
list of blobs detected LB.

4.2. Tracking

To deal with humans trajectories, a tracking algorithm
was developed (Serrano-Cuerda, López, and Fernández-
Caballero 2011). This tracking approach starts from the list
of blobs LB obtained from the segmentation by accumula-
tive computation described above. The tracking algorithm
has its own list of ROIs, LT, which will be refreshed ac-
cording to the results obtained in each iteration. Firstly,
the algorithm will select a ROI from LB, named as LBi, i
∈ {0, 1, . . . , N − 1}, comparing it with each ROI present
in LT. The centre of a blob LBi can be defined as:

LBi.xc = LBi.xmin + LBi.xmax

2
, (3)

LBi.yc = LBi.ymin + LBi.ymax

2
, (4)

where (LBi.xmin, LBi.ymin) will be the initial coordinates
from the ROI and (LBi.xmax, LBi.ymax) its final coordinates
as noted before. Thus, those ROIs Ltj whose centres are
to a distance d lower than an established threshold (which
value depends on external factors such as the height where
the camera is placed and the dimensions of the room being
monitored) will be marked as shown in:

d =
√

(LBi.xc − LT j .xc)2 + (LBi.yc − LT j .yc)2. (5)

Now, the ROI with the lowest distance to LBi will be se-
lected updating its coordinates with the objective of finding

correspondence between the human in the ROI of the cur-
rent frame and the humans contained in previous frames.
If a correspondence is not found, a new element is added
to LT with the coordinates of LBi. In both cases a perma-
nence factor p(LTj) = 255 will be assigned to the new (or
the updated) ROI. This factor will be useful to calculate if a
human has left the scene. Once the segmented ROIs LB have
been associated with their respective identifiers, a smooth-
ing process must be performed to mitigate the effects from
the noise associated to the detection.

A prediction of the possible path will be performed for
each ROI that has not been detected in the segmentation,
L′

T = LT − LB . This prediction will be calculated accord-
ing to the average distance covered between frames, based
on �xc and �yc and its displacement angle. If the perma-
nence value is minimal, the ROI is discarded because it is
assumed that it has left the scene. The detected objects may
include some noise modifying the shape of the ROI con-
taining them. To mitigate this problem, a smooth operation
is applied on the obtained ROIs, based on an adjustment
of the height and width with respect to the average values.
The detected ROI location will also be modified.

As an example, we will use a possible case where a ROI
LTj has moved in two consecutive time instants. Only the
height component LTj(t).h and its associated formula (see
Equation 6) is shown in order to not make the figure too
complicated, although the width calculation is performed
in a similar way:

LTj(t).h

LT j .h = N − λ

N
· LT j .h + λ

N
· LT j .h, (6)

where N is the number of previous instances of the ROI LTj

used to calculate the average dimensions, λ is the weight of
the current height values, and LT .h is the average height.

Afterwards, a location smooth is realised, taking into
account the displacement angle θ , as well as the blob centre
(LTj.xc, LTj.yc) and the newly calculated height and width.
The calculations are described in the following equations:
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8 J.C. Castillo et al.

LT j .xmax =
{

3/5 · LT j .w + LT j .xc, if cos θ ≥ 0
2/5 · LT j .w + LT j .xc, if cos θ < 0

,

(7)

LT j .xmin =
{

2/5 · LT j .w − LT j .xc, if cos θ ≥ 0
3/5 · LT j .w − LT j .xc, if cos θ < 0

,

(8)

LT j .ymax =
{

3/5 · LT j .h + LT j .yc, if sin θ ≥ 0
2/5 · LT j .h + LT j .yc, if sin θ < 0

,

(9)

LT j .ymin =
{

2/5 · LT j .h − LT j .yc, if sin θ ≥ 0
3/5 · LT j .h − LT j .yc, if sin θ < 0

.

(10)

Now the permanence value will be discharged for each
ROI in L′

T whose information was not updated with the
segmentation according to the Equation (11) because the
belief over the presence of the human in the scene has been
reduced:

p(LT
′
k) = p(LT

′
k) − δ, (11)

where δ is a discharge value previously established. Two
permanence zones will be defined within a frame, each of
them with a different threshold μl and μh, with μh � μl.
The thresholds for these permanence zones are established
according to the situation of the entry points to the scene
being monitorised, e.g. mul will be set to 0 if the upper
limits of the room monitorised belong to a wall. A ROI
located near the frame borders will be more easily discarded,
because it is very likely for it to have left the scene.

Now the path will be predicted for each ROI in LT
′

whose permanence is above the previously mentioned
thresholds. This involves the previous calculation of the
ROI’s covered path, denoted �xc and �yc. The new coor-
dinates are shown in Equations (12)–(15):

xmint = xmint−1 + cos θ · �xc, (12)

xmaxt = xmaxt−1 + cos θ · �xc, (13)

ymint = ymint−1 + sin θ · �yc, (14)

ymaxt = ymaxt−1 + sin θ · �yc. (15)

Finally, the information in LT will be updated according
to the information in LT

′.

5. Activity detection from accelerometer

In this proposal the accelerometer of the Android sensor
platform is used to detect falls. The current availability of
the platform and the ease of developing applications are

key reasons that make use of it. The work started by deter-
mining the best position for the device to accurately detect
falls. Only healthy subjects participated in the experiments
described here. They were requested to perform daily ac-
tivities such as walking, running or sitting and to simulate
falls on a soft ground, in order to avoid injuries. Therefore,
the classification algorithms described further ahead were
trained using realistic data.

In this process several positions were analysed. When
the Android device was in the pocket of the user it did not
hold satisfactory results, mainly because the device moves
freely inside a loose pocket, generating a significant amount
of noise. Afterwards it was attempted to improve the results
with the use of a second device placed on the wrist of
the user. This neither was effective for detecting falls since
wrists move a lot and make it hard to accurately detect falls.
After experimenting with different configurations, the de-
cision was in favour of using a single device, placed in
the chest of the user. This point has as main advantage to
get a relatively low amount of noise related to unimportant
movements. However, it effectively senses the acceleration
felt in a fall or in other activities such as running or walk-
ing. Figure 5 depicts how the Android device is attached
to the sweater of the user. The y-axis measures the accel-
eration due to vertical movements; the x-axis measures the
acceleration due to moving sideways and the z-axis mea-
sures the horizontal acceleration due to moving forward or
backward. In future works a wearable accelerometer that
can easily and comfortably be carried by the user will be
used.

The differences in the data between the different activ-
ities are accessed graphically and through statistical mea-
sures of tendency and dispersion. In order to assess the sta-
tistical significance of these differences, the Mann–Whitney
test is used. This test is a non-parametric statistical hypoth-
esis test for assessing whether one of two samples of inde-
pendent observations tends to have larger values than the
other. The null hypothesis is thus: H0 = The medians of
the two distributions are equal. For each two distributions
compared, the test returns a p-value, with a small p-value
suggesting that it is unlikely that H0 is true. We thus com-
pare each axis of each activity with all the others. In all
the tests, a value of α = 0.05 is used. Thus, for every
Mann–Whitney test whose p-value < α, the difference is
considered to be statistically significant, i.e. H0 is rejected.

Several datasets are recorded with the accelerometer
placed as depicted in Figure 5. The datasets contain data
about several users performing specific activities for around
two minutes: walking, running and standing still. They also
include a few falls for each user. Figure 6 depicts an excerpt
of a dataset containing data from each of the activities
under study. The data for activity idle are acquired with the
user standing still or performing minor hand movements in
an upright position. Data for activity running are acquired
with the user running forward at a moderate pace. Data
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International Journal of Systems Science 9

Figure 5. Direction of the three axes of acceleration with the accelerometer placed on the centre of the chest of the user.

Figure 6. Excerpt from a dataset containing all the activities under study.

for activity walking are also acquired with the user moving
forward but at a slower pace. Finally, in order to acquire data
about falls, each user is requested to fall into a mattress
placed in front of him/her. After the fall, the user moves
little or remains still.

6. Results

In order to prove the behaviour of the proposed segmen-
tation and tracking algorithms a standard dataset is used
(CAVIAR 2004). The dataset sequences provide a source
of reference information to compare the performance of the
proposed algorithms. The datasets used consist of an indoor

environment with a top view camera, able to monitor a hall.
To assess the performance of the proposed system in a real
environment, San Juan de Dios retirement home in Madrid
was used as a testbed. It is necessary to point out that falls
were performed by actors to ensure elder people safety.

6.1. Metrics definition

Next the metrics used in the experiments are described.
Accuracy is the degree of conformity of a measured or
calculated quantity to its actual (true) value. The accuracy
of an experiment/object/value is a measure of how closely
the experimental results agree with a true or accepted value.

accuracy = true positive + true negative

true positive + false positive + true negative + false negative
. (16)

Sensitivity (of recall) measures the proportion of actual
positives which are correctly identified as such (e.g. the
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10 J.C. Castillo et al.

percentage of sick people who are correctly identified as
having the condition).

sensitivity = true positive

true positive + false negative
. (17)

F-score or F-measure is a measure of a test’s accuracy.
It considers both the precision p and the recall r of the test to
compute the score: p is the number of correct results divided
by the number of all returned results and r is the number of
correct results divided by the number of results that should
have been returned. The F-score can be interpreted as a
weighted average of the precision and recall, where an F-
score reaches its best value at 1 and worst score at 0.

F -score

= 2*true positive

2*true positive + false negative + false positive
.

(18)

6.2. Human detection

As shown in Table 1, the quantitative results in comparison
with CAVIAR’s ground truth are very promising, showing
an F-score (of F-measure) over 91% in all cases, reaching
the 97.9% in the best test case scenario. Moreover, the
tolerance to false positives and false negatives is also quite
high as provided through accuracy and sensitivity measures
(97.2 % and 92.7%, respectively).

Table 1. Results of the segmentation algorithm on CAVIAR
datasets.

Dataset Accuracy Sensitivity F-Score

Browse2 0.885 0.982 0.935
Browse3 0.992 0.855 0.919
Bww 0.995 0.964 0.979
Walk1 0.996 0.915 0.954
Rest1 0.993 0.917 0.953

Mean 0.972 0.927 0.948

Also, some qualitative results are offered to assess the
tracking performance. Figure 7 shows the detection and
tracking of the moving humans along a sequence from the
real scenario. It is depicted how the two humans are per-
fectly followed through their most accurate positions. A
third human (labeled as 3) is only detected at the beginning
of the sequence and besides some of the humans are not
detected through the different frames. This is caused by the
nature of the segmentation algorithm, a movement-based
approach, which discards those image zones with little or
no movement. The tracking algorithm is in charge of adding
the ability to track humans during a period after they stop
moving. This is the case observed with human 3 with very
little movement, but the tracking algorithm keeps the de-
tection for a few frames.

Figure 7. Results of the tracking algorithm on the real environment.
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6.3. Activity detection

Given the shape of the datasets and the objective of this
work, a decision tree constructor is used to classify the
instances. Specifically, the java implementation of the
C4.5 algorithm (Quinlan 1993), also known as J48, is used.
The experiments detailed in this section are implemented
using the Weka 3.6.3 workbench (Holmes, Donkin, and
Witten 1994). We have a particular interest in using decision
trees since a model of a decision tree can then be used
to classify user activities in real-time and in a real life
application by following the explicit rules defined by the
model.

The approach consists in developing a different clas-
sifier for each axis. The results of the three classifiers are
assessed by analysing some performance measures such as
the percentage of correctly classified instances and the Co-
hen’s kappa coefficient, which is a statistical measure of
inter-rater agreement that tells how much of the accuracy
is due to chance. The results of this study are summarised
in Table 2.

It is possible to conclude that all the classifiers behave
fairly well, not only in terms of correctly classified instances
but also in terms of the Kappa statistic, with the classifier of
the y-axis performing particularly well. When we compare

Table 2. Summary of the performance of the classifiers for the
different axes. The total number of instances is 829.

Axis Leaves Tree size Corr. Incorr. Pct. Corr. κ

x 11 21 615 214 74.1858% 0.6297
y 7 13 751 78 90.5911% 0.8655
z 6 11 613 216 73.9445% 0.628

these results with the ones of other accelerometer-based
approaches, we conclude that they are similar: in Bagalà
et al. (2012), 13 fall-detection algorithms are assessed in
terms of their performance with real data; they correctly
classify, in average, 83% of the falls [ ± 30.3% standard
deviation (SD)]. If we compute the average value of the
performance of the three classifiers trained with our data, we
get the value of 79.57%, which is in line with the algorithms
analysed.

The classification of an instance of data as a given ac-
tivity thus has three different levels of confidence: ranging
from low (when each classifier points to a different activity
for the same instance) to high (when the three classifiers
point out to the same activity).

6.4. Fall detection

After having acquired the datasets, measures of central ten-
dency and dispersion are determined to gain a better under-
standing of the data. The main conclusion drawn from this
initial analysis is that the data from activities falling and
running are more similar than the remaining ones. Table 3
depicts the values analysed for all activities. Specifically,
we consider the maximum, minimum and mean value of
the acceleration in each axis for each activity as well as the
standard deviation and the median. In a first analysis, the
data for each activity have different distributions.

In Table 4 the results of comparing the distributions
of the data from all activities (by axis) are depicted. The
Mann–Whitney test indicates that most of the activities
are indeed significantly different, expect for a few ones.
Running and falling do not have statistically significant dif-
ferences in the x-axis. This is explained by the fact that the
x-axis is the lateral acceleration and, since in the dataset

Table 3. Statistics of the datasets of the different activities for each axis.

Maximum Minimum Mean SD

x y z x y z x y z x y z

Fall 0.45 0.00 −9.72 0.34 −0.30 −9.83 0.38 −0.18 −9.79 0.02 0.06 0.02
Run 5.28 19.57 6.20 −7.80 −7.08 −3.28 −0.57 8.79 0.45 2.83 9.08 2.20
Walk 1.68 14.67 2.79 −3.21 7.23 −0.26 −0.59 9.84 1.52 0.88 1.56 0.64
Idle 0.26 9.92 2.33 −0.64 9.49 1.29 −0.25 9.72 1.93 0.17 0.06 0.20

Table 4. p-value of the Mann–Whitney test comparing the data of all pairs of activities. Results that are not statistically significant for
α = 0.05 are emphasised.

Activities x y z

Running, falling 0.0909698 1.03786∗10−9 2.25063∗10−35
Running, walking 0.00264749 0.699423 7.44563∗10−10
Running, idle 0.174125 0.734344 8.15983∗10−14
Walking, falling 4.5554∗10−25 8.48262∗10−39 7.78607∗10−39
Walking, idle 0.000319418 1.79978∗10−7 5.06943∗10−20
Idle, falling 4.68619∗10−37 4.69001∗10−38 5.47099∗10−37
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12 J.C. Castillo et al.

the users ran and fell forward, the lateral acceleration is
very low. For that same reason, the comparison between
the distributions of activities running and idle for the same
axis does not hold statistically significant differences. Fi-
nally, for the y-axis (vertical acceleration) and for the pairs
of activities ‘running,walking’ and ‘running,idle’ the re-
sults also do not point for a significant difference in the
distributions.

The differences between the data can also be seen graph-
ically through the Box and Whisker charts that depict the
distribution of each of the variables under study, as depicted

in Figure 8. The distribution of the accelerometer data for
each activity is shown by axis. Falls are also detected when
the user is outside the domestic environment. However, in
this case the position of the user is provided by a GPS sen-
sor. It allows to keep track of the user’s movements and to
react accordingly and more efficiently in case of need when
the user is on the move.

A web application that can be accessed remotely by
relatives or care givers has also been developed to provide
the information about the current user activity and location
in real-time. Its interface is depicted in Figure 9. In this

Figure 8. Box and Whisker charts detailing the distributions of the data for each axis and each activity.

Figure 9. Prototype of the web interface showing the latest known user location and activity.
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case the user is on the move, outside the environment being
monitored. Therefore, the interface shows the position on
the map.

7. Conclusions and future work

The current phenomenon of ageing population poses chal-
lenges that call for innovative and sustainable solutions.
Specifically, new approaches must be devised to address
its social and economical aspects. People should age well
by maintaining a certain degree of autonomy and safety,
continuing actively involved in their social context. This
vision, in line with the concept of Active Ageing defined
by the European Union, is frequently threatened by social
and economical constraints. In fact, many elderly are alone
most of the day, either because they have no informal care
givers or because they cannot afford specialised care cen-
tres. In our line of research, we believe that technological
solutions can in fact address both concerns: provide better
care and a sense of security while being affordable.

In this paper the development of a particular solution for
activity monitoring and fall detection based on the merging
of video cameras, accelerometers and GPS sensors have
been introduced. The solution provides the location of the
user inside and outside the environment by means of video
cameras and GPS sensors. The classification of the activities
and the detection of falls is performed through accelerome-
ters. This solution increases the sense of security of elderly
living alone in their homes. However, it results even more
interesting in the case of specialised elderly care centres
with dozens of patients. In fact, it frequently results diffi-
cult to efficiently monitor a large number of elder patients.
The use of technological approaches as support systems
for specialised care givers may improve the safety of the
patients. It may improve efficiency of the care provided by
increasing the efficiency of detection of events such as falls.
This results in a better time management of the staff, since
care givers have more free time to dedicate to the patients.

The main innovative aspect of this approach relies
in the merger of accelerometers and video cameras. Al-
though these two approaches, when used independently,
have some known drawbacks, their joined use may result
advantageous. We combine them with a specific purpose:
accelerometers classify the activities being performed and
video cameras provide the context that allow to correctly
interpret such activities and reduce false-positives.

In future iterations we will focus on developing a more
user-friendly prototype based on a LilyPad wearable ac-
celerometer placed in the same central position. It will re-
sult in a lighter and less invasive solution, making it easier
to accept and to be used by the elderly. We will also capi-
talise on the data concerning the activities being performed.
In fact, there is a large interest from specialised care centres
in analysing the activities of the patients. On the one hand,
we will focus on the elaboration of periodic activity reports

detailing the routines of the patients. This way, care givers
will use these reports to provide advice for improving the
older people lifestyles. On the other hand, we will use ma-
chine learning techniques to detect deviations on the normal
activity patterns of the patients that indicate a significant
change in the health state. This approach will definitely have
an impact on the quality of life of the patients, providing
an increased sense of security and autonomy, constituting a
step forward towards the vision of Active Ageing.
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