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ABSTRACT The agriculture sector holds paramount importance in Pakistan due to the intrinsic agrarian

nature of the economy. Pakistan has its GDP based on agriculture, however it relies on manual monitoring of

crops, which is a labour intensive and ineffective method. In contrast to this, several cutting edge technology-

based solutions are being employed in the developed countries to enhance the crop yield with the optimal

use of resources. To this end, we have proposed an integrated approach for monitoring crop health using IoT,

machine learning and drone technology. The integration of these sensing modalities generate heterogeneous

data which not only varies in nature (i.e. observed parameter) but also has different temporal fidelity. The

spatial resolution of these methods is also different, hence, the optimal integration of these sensingmodalities

and their implementation in practice are addressed in the proposed system. In our proposed solution, the IoT

sensors provide the real-time status of environmental parameters impacting the crop, and the drone platform

provide the multispectral data used for generating Vegetation Indices (VIs) such as Normalized Difference

vegetation Index (NDVI) for analyzing the crop health. The NDVI provides information about the crop

based on the chlorophyll content, which offers limited information regarding the crop health. In order

to obtain a rich and detailed knowledge about crop health, the variable length time series data of IoT

sensors and multispectral images were converted to a fixed-sized representation to generate crop health

maps. A number of machine and deep learning algorithms were applied on the collected data wherein deep

neural network with two hidden layers was found to be the most optimal model among all the selected

models, providing an accuracy of (98.4%). Further, the health maps were validated through ground surveys

and by agriculture experts due to the absence of reference data. The proposed research is basically an

indigenous, technology based agriculture solution capable of providing important insights into the crop

health by extracting complementary features from multi-modal data set, and minimizing the crop ground

survey effort, particularly useful when the agriculture land is large in size.

INDEX TERMS Internet of Things (IoT), precision agriculture, NDVI, crop health.

I. INTRODUCTION

Pakistan is an agricultural country owing to its natural

resources including fertile arable land, favorable climate

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

conditions and the largest irrigation system in the world [1].

The agriculture sector accounts for 18.5% of Pakistan

GDP [2] and has a significant impact on the economy of

the country. Despite of all suitable conditions for crops cul-

tivation, Pakistan is still unable to produce surplus yield for

national and international market needs. Every year, Pakistan
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faces a huge loss in the agriculture sector due to several

factors such as extreme climatic variations, lack of technol-

ogy adoption, improper use of major resources like water,

fertilizer, and pesticides [3]. The inappropriate utilization of

these resources leads to loss of organic content & nutrients

in the crop and a significant reduction in its yield. In order to

address these problems, technology-based solutions should

be employed to overcome the manual farming practices

which are inherently time consuming and laborious.

In Pakistan, major crops wheat, rice, maize, sugarcane and

cotton are planted on 8.74, 2.80, 1.30, 1.30 and 2.47 million

per ha in 2018 to 2019. Among these, wheat is the staple crop

of the country and typically sown from October to Decem-

ber and harvested from March to May [4]. The wheat plant

undergoes several development stages such as seeding, tiller-

ing, booting, heading and ripening. In each stage, the wheat

plant has specific requirements of water, temperature, solar

radiations and nutrients / fertilizer for optimal growth. These

requirements are directly correlated with climate change, for

instance, the frequency of rainfall and temperature variations.

For the ideal development of the wheat plant, the primary

resources should be applied in a controlled fashion in a

site-specific manner as the deficiency of any resource can

adversely affect the crop growth where as, the excessive use

of these resources can damage the crop [5]. To precisely esti-

mate the resource requirements, Precision Agriculture (PA)

is widely practiced across the world and it basically enhances

the food production with optimal use of resources [6].

As of today, the smart agriculture systems based on IoT

are rapidly gaining popularity as they provide real time sta-

tus of the environmental variables pertaining to the crop

using low cost sensors [7]. Such systems not only advance

the PA practices but also play a key role in making the

crop monitoring system more efficient and effective. On the

other hand, the IoT based systems are generally suitable for

small to medium scale farming due to their sensitivity to the

high maintenance & deployment cost and power constraints.

In contrast to IoT, remote sensing is widely used for large

scale farming which is based on a reflective analysis of satel-

lite images [8]. Conventionally, satellite images have been

used as the key source of information for analyzing crop

status in precision agriculture. But, obtaining most recent

aerial/satellite imagery is very expensive, and data process-

ing is also intensive and complicated. In addition to this,

the images obtained from satellites are of low resolution and

are only suitable for large scale studies. This limit their appli-

cability in studies based on precision agriculture. On the other

hand, the satellites (such as Quick Bird, ASTER) providing

higher resolution images have long revisit time which makes

them unsuitable for applications (such as pest monitoring,

nutrient stress monitoring etc.) that require images on fre-

quent basis [9]. To overcome these limitations, low altitude

platforms such as drone with on-board imaging sensors are

used, where these platforms provide high-resolution images

and flexible data acquisition [6].

Typically, the multispectral data collected using drone is

used to compute the VIs of the crop for determining its

health status. Generally, NDVI is used as a strong indicator

of crop health. However, if the crop health conditions are

only determined from the NDVI values, then the inferred

crop health status would be misleading due to the varying

level of chlorophyll content at different stages of the crop.

Every development stage of crop has some predefined range

of NDVI values, which can help to assess the health of the

crop. The low NDVI value does not always refer to the

stressed or unhealthy crop, we have to integrate the temporal

information of the crop development stage as well to deter-

mine the crop health status.

In view of the above, we have proposed a multi modal

data driven approach for agricultural monitoring based on

IoT, drone based remote sensing and machine learning. The

proposed work is based on testing the hypothesis that the inte-

gration of multi modal data can enhance the representation

of crop health information as compared to the crop health

status depicted only by NDVI. For this purpose, the collected

data from IoT nodes and drone were analyzed at different

growth stages of the crop and its health maps were generated

to localize the area under stress.

The major contributions of the paper are highlighted

below:

• Integration of IoT and drone multispectral data for crop

health monitoring. Both these sensing modalities gener-

ate heterogeneous data which not only varies in nature

(i.e. observed parameter) but also has different temporal

fidelity. The spatial resolution of these methods is also

different, hence, the optimal integration of these sens-

ing modalities and their implementation in practice are

addressed in this paper.

• Development of crop health maps for enhanced

visualization of the stressed areas and their subsequent

validation through ground survey.

• Development of IoT sensors data maps which provided

insights for identifying the factors affecting the crop

health.

This multi modal integration of data for crop health mapping

differentiates the proposed work from the existing work.

Most of the existing technology based solutions in agricul-

ture domain are either based on IoT data or remote sensing

data, but the proposed system exploits the benefits of both

technologies to provide a better solution.

The rest of the paper is organized as follows, the related

work is described in section-2, the proposed system is dis-

cussed in section-3, the methodology is detailed in Section-4;

results are discussed in Section-5, and conclusion and future

work is discussed in section-6

II. RELATED WORK

Agriculture sector has evolved with the emergence of the

information and communication technology. Several attempts

have been made to improve the crop productivity and
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minimize the loss by using the modern technology [7], [10].

There are several agricultural applications based on Remote

sensing in which reflective analysis of spectral bands [8]

is performed using multiple VIs which provide useful

insights about the health of the crops. The most com-

mon VIs are NDVI, Soil Adjusted Vegetation Index

(SAVI), Enhanced Vegetation Index (EVI), and many others.

Typically, the satellites used for agriculture monitoring are

Landsat, QuickBird, Envisat, SPOT 6 & 7, Sentinel 1 & 2,

and MODIS [11].

In [12], an automated system for monitoring the cotton

crop based on IoT has been proposed to acquire the data

in real time. The proposed automated system comprised the

deployment of wireless sensor network (WSN) in the cotton

fields for the monitoring and recording the health status of the

crop. For this purpose, theWaspmote agriculture sensor board

has been used which consisted of temperature and humidity

sensors, soil moisture sensors and leaf wetness sensors. The

main aim of the proposed system was to take proactive and

preventive actions to reduce the losses due to diseases and

insects/pests attack.

Crop irrigation is the primary building block of any agricul-

ture system. therefore, there is a need of a proper water man-

agement system for irrigation purposes to minimize water

loss. For this purpose, this paper [13] recommends the use

of Wireless Sensor and Actuator Network (WSAN) for the

crop irrigation and control by developing an in-house design

and development of WSAN and its communication protocol.

In [14], a framework for modern farming using various

techniques such as IoT, big data and mobile computing,

has been discussed. Through this model, the farmer can be

enabled to obtain information related to the needed fertilizers

from the soil samples. The farmers are then informed about

the total fertilizer requirement through a mobile app.

In [15], [16], the soil moisture sensing is discussed which

is one of the frequently used methods by farmers to schedule

irrigation. The purpose of this study was to make a low-cost

and low power IoT system based on Arduino, where soil

moisture sensors (Watermark 200SS sensors) were placed

in the field to send data wirelessly using LoRa technology.

These type of IoT based systems are known as Internet of

under ground Things (IOUT). The systemwas effectively val-

idated on the study site by deploying the sensors at 4 different

depths in a wheat field. The advantage of the proposed system

was that it provided the proof of concept of an affordable

real time data gathering and analysis system for soil moisture

monitoring and showed a great potential for a system that can

be widely used by farmers. An IoT based system for insects

detection in plants was discussed in [17]. Similarly, another

IoT based system was presented in [18] in which images

were processed for disease detection; while soil moisture

sensor and humidity sensors were used to monitor water

requirements.

The research work presented in [19] describes the use

of an inexpensive low altitude remote sensing platform,

GreenDrone, developed for monitoring the Maize crop.

This platform consisted of a large durable fixed wing air

frame mounted with a Canon camera and the FLIR thermal

camera for the computation of the indices such as Normal-

ized Difference Vegetation Index (NDVI) and Water Stress

Index (WSI). There were a number of flight missions that

were run to scan the study area during various development

stages of the crop. The collected images were used to generate

the NDVI and NGB (Near infrared Green Blue) images,

which helped to delineate the regions with low yield potential,

areas with variable plant counts, and identify uneven distribu-

tion of nitrogen and water management related problems.

Similarly, in another study [20], a crop health monitoring

system was developed by using WSN and drone technology.

The key contribution of this paper is the construction of run

time clusters of sensors by taking into account the factors such

as run time data acquisition, the area of interest to be scanned,

absence of adequate number of nodes, and dynamic flight

path of drone. In addition to this, Bayesian classifier was used

to identify the most appropriate node as a cluster head. The

proposed system was validated by simulating results through

various software tools, and conducting experiments in labs

and in agriculture field using concept devices. The results

producedwere supportive in terms of installation time, energy

ingestion, response time and its usability.

Remote sensing systems based on satellite are suitable for

large arable land because of their wide area coverage, how-

ever, their long revisit time and coarse resolution make them

unsuitable for certain agricultural application where rapid

response is required such as disease mapping, pest detection

etc. To overcome these limitations, drone platforms were

used which provided high resolution imagery on frequent

basis but their power limitations do not allow them to cover

large fields in a single flight mission. In addition to this, IoT

based systems provide real-time statistics about crop health

such as climate variables which have a significant impact

on the crop health but owing to their high deployment and

maintenance cost, these systems are preferably suitable for

small and medium sized agriculture lands.

There are various smart agriculture systems which are

based on hybrid approach and incorporate IoT, remote sens-

ing, machine and deep learning as discussed in [21]–[23].

Nexus to this, a smart irrigation system using deep learning

is presented in [24] where the research work is based on

developing WSN comprising of several sensors. The data

collected from these sensors is sent to the cloud where a

deep learning architecture ‘Long and Short Term Memory

(LSTM)’ is applied to predict different features such as soil

temperature, humidity and air temperature. The projected

values of these vital parameters helped to determine the crop

best suited to be grown for subsequent season.

In addition to the application of deep learning in IoT based

smart systems, deep learning is widely used in very complex

agricultural activities such as weed detection, crop disease

mapping, identification of pest attack, plant phenology anal-

ysis, crop yield prediction, crop classification and many more

as discussed in [25]–[29]. In order to perform the above
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TABLE 1. Comparison of proposed system with existing systems.

activities, the most common deep learning techniques are

Convolution Neural Network (CNN), LSTM, Recurrent Neu-

ral Network (RNN) and Region based CNN (R-CNN) [22].

Similarly, another application of CNN is presented in [30],

in which wheat yield is estimated by detecting and counting

wheat spikes. An important area of precision agriculture is

to accurately estimate the area under pest or disease attack.

Therefore, R-CNN is used to accurately localize the area

under disease attack as presented in [31]. In addition to this.

LSTM is also used for disease detection in potato plants as

discussed in [32].

There are several studies in which WSN or IoT is used

along with drone technology. Toward such end, an intelligent

crop health monitoring system is presented in [33], in which

a collaborative approach of UAV and WSN is used. The

drone and WSN were used to collect images and real time

data respectively. This paper was mainly focused on drone

trajectory planning to collect WSN data. The collected data

from WSN is transmitted to the cloud and processed by

the end user. Subsequently, soil & temperature maps of the

study area are generated. Although, the data is collected from

multiple sources; but it is not combined together to produce a

unified output. In [34], several applications of drone based

agricultural systems are proposed where multiple sensors

are mounted on the drone to collect multi source payload

including real time data of different crop related parameters

and spectral data. This research work is only focused on

proposing the architectures of agriculture applications and

does not provide any implementation detail of the proposed

architecture and data processing.

A comparison of the existing and proposed work based on

the important parameters such as ‘Drone data’, ‘IoT data’,

‘Multi-source Data integration’, ‘VI maps’, ‘Health maps’

and ‘IoT data maps’ is given in the Table 1. The compara-

tive analysis of the previous research work has revealed that

the IoT and drone data have been used separately to infer

crop health status but the integration of these two modalities

have not been highlighted in the recent research. However,

to provide rich representation of crop health, the integra-

tion of these two modalities to generate crop health maps
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would be very useful. In this regard, we propose a multi-

source data integration approach that combines IoT and drone

technology to provide an improved crop monitoring system.

Both these sensing modalities generate heterogeneous data

which not only varies in nature (i.e. observed parameter) but

also has different temporal fidelity. The spatial resolution of

these methods is also different, hence, the optimal integra-

tion of these sensing modalities and their implementation in

practice are addressed in the proposed system. Additionally,

machine learning approaches and deep learning architec-

tures [6] are applied on the combined data to generate crop

health maps which provide more detailed and clear visual-

ization of stressed areas as compared to traditional NDVI

maps. Moreover, IoT sensors maps are generated which help

to correlate the factors affecting the health of the crop. The

proposed system has provided a technology based solution in

comparison to the traditional practices in vogue and would be

useful for the agricultural and research community.

A. STUDY AREA

The study area selected is National Agriculture Research

Center (NARC) which is located at 33.67◦N, and 73.13◦E

in Islamabad, Pakistan. Figure 1 shows the study area map

of NARC. This map is generated using ‘ArcGIS’ software

and the shape file is retrieved from the open source platform

‘Diva-GIS’. The average temperature of this area is 21.74◦C

and average annual rainfall recorded is 1142 mm. The

major crops harvested in this region are wheat, maize, and

mustard etc.

FIGURE 1. Study area map (NARC, Pakistan).

The crop selected for this research work is wheat. It is a

Rabi crop which is generally sown in October-November and

harvested inApril-May depending on the temperature and the

soil type. The life cycle of the wheat crop spans over different

stages of development as shown in Figure 2. The wheat field

was selected at NARC for this research work. In the trial area

of 4200m2, the wheat variety, ‘BORLUAG-16’, was planted

in 28 passes of 100 meters length. Each pass had 6 rows with

inter row distance of 0.25m.

III. PROPOSED SYSTEM

We proposed an integrated system for wheat crop health mon-

itoring. The main building blocks of the system are IoT agri

nodes, communication channel for transmitting data, drone

with a multispectral camera, local server for archiving data,

and a web portal for data visualization. The high level system

architecture is shown in Figure 3.

The detail of the above mentioned building blocks are

described in the following sections:

A. DEVELOPMENT OF IoT AGRI NODES

The development of a typical IoT node primarily involves

the careful selection of sensors, communication module and

the power source. The details of these components for the

purpose of the current research work are described below.

1) IoT SENSORS

For the proposed system, three sensors were used including

air temperature & humidity sensor, soil temperature sensor,

and soil moisture sensor. For recording the air temperature

and humidity, ‘DHT11’ digital sensor was used, for sensing

Soil temperature, ‘DS18B20’ digital sensor was selected, and

for monitoring the soil moisture level, the ‘Capacitive Soil

Moisture’ sensor was used. There are two major categories of

soil moisture sensors including volumetric and tensiometric.

The volumetric sensors measure the water level in the soil;

whereas the tensiometric sensors measure the water potential

in the soil [35]. The selected capacitive soil moisture sensors

used for this research work are Grove - Capacitive Soil Mois-

ture Sensor (Corrosion Resistant), which are volumetric in

nature. They are not factory calibrated, therefore, the opti-

mal calibration of these sensors is a challenge. This issue is

addressed by manually configuring the sensors in the lab and

field using multi-point calibration technique [36].

On the other hand, volumetric soil moisture sensors which

are factory calibrated are more accurate but at the same time

they are expensive as well [37] and deploying such sensors

in numbers are beyond the budgetary provisions of the pilot

studies.

The capacitive soil moisture sensor outputs an analog volt-

age level which is inversely proportional to the moisture

content. This sensor is sensitive to the variation in temper-

ature, salinity and pH content of the soil. The calibrated

IoT sensors’ measurements were fairly accurate and this was

validated by comparing the readings with the commercial

sensors provided by NARC.

2) COMMUNICATION MODULE

The purpose of the communication module is to reliably

transmit the data from one end to the other, and plays a key

role in characterizing the performance of the system. For

our research work, the ‘LoRA’ (Long Range) communication

module was found more suitable owing to its long range
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FIGURE 2. Wheat growth stages.

of transmission. Moreover, in an agriculture land, there is

a clear line of sight which makes LoRa technology to be

more effective for such a set up. The LoRa modules operate

on two types of frequencies i.e. 433MHz and 868MHz. For

our application, the 433MHz frequency module was used

as this frequency band is license free, however, the 868mhz

ISM band is not free in Pakistan. The LoRa modules use

their proprietary modulation techniques in which data is sent

using Chirps and they can also be interfaced with the micro-

controller over the serial-parallel interface (SPI) protocol.

For the transmission of data, the IoT agri nodes were

configured using star topology, which has 8× slave nodes and

1×master node. The slave nodes sent data to the master node

using LoRa technology whereas, the data from the master

node to the web portal was sent using GSM technology. The

advantage of star topology is its cost effectiveness, however

at the same time, it has a single point of failure as well. This is

because a single master node is responsible for sending data

that is collected from all nodes to the local server. In order to

overcome this limitation to a certain extent, the SD card was

placed on the master node for storing the data for 24 hours in

case of any communication failure at the master node end.

3) POWER MODULE

In the IoT based systems, the continuous provision of power

is the primary concern to keep the system operational for real

timemonitoring. Themost rich source of energy for powering

the proposed agriculture system is the solar energy. For this

purpose, the slave nodes are powered by a 10W solar Panel

and 4Ah Battery to provide long battery backups in case of

rain fall and cloudy weather. The master node is equipped

with 40W solar panel with a 5Ah battery to provide adequate

power to it. The Figure 4 shows an IoT Agri node with LoRA

and power module.

B. SYSTEM DEPLOYMENT

The IoT agri nodes are deployed across the wheat field in a

star topology as shown in Figure 5.

The field is divided into a 3 × 3 matrix comprising of

9 cells where the area covered by each cell is 0.15 acres.

We have deployed one IoT node in each cell to collect IoT

sensors data. Each IoT node consists of sensors along with

other components as shown in Figure 4. These IoT nodes

cannot be deployed in bulk due to budget constraints of this

research work. So, we have chosen a small experimental plot

and made deployment topology accordingly. In each cell,

we have recorded multiple readings by placing IoT node

at different locations. On average, the readings of tempera-

ture and soil moisture did not vary significantly. Although,

the information regarding the soil moisture for the given

crop field can be increased by deploying more IoT nodes in

each cell, but for the preliminary study, we have deployed

VOLUME 8, 2020 112713



U. Shafi et al.: Multi-Modal Approach for Crop Health Mapping Using Low Altitude Remote Sensing, IoT and Machine Learning

FIGURE 3. Proposed system architecture.

FIGURE 4. IoT Agri Node with its components.

9 nodes to cover the subject area. In future, we may add more

sensors and adopt the robot technology for data capturing.

The agriculture robot will be like a moving trolley which will

move across the field and collect sensors data.

IV. METHODOLOGY

In order to develop our proposed system, the multi modal data

obtained from IoT nodes and drone imagery was integrated in

order to get a detailed picture of the crop health. The data

from two different modalities was generated at a variable

temporal resolution, which was further mapped to a fixed

sized representation for data processing and analysis.

The optical andmultispectral images were collected byDJI

Phantom 4 advance drone with Sentera multispectral imager

mounted on it. The specification of drone and the on-board

imager are given in the Table 2 and Table 3 respectively.
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FIGURE 5. IoT Agri Nodes deployed across the wheat field.

TABLE 2. Drone specifications.

Subsequently, various machine learning and deep learning

algorithms were applied on the fused data for crop health

classification and generating health maps. Later on, the health

maps were compared with the NDVI maps and IoT sensors

data maps for validation purposes. The block diagram rep-

resenting various modules of the proposed system and the

sequence of data flow among them is shown in Figure 7,

whereas the details of each processing step is described in

the following sub sections.

A. DATA PRE-PROCESSING

The data was collected from two heterogeneous sources

including IoT agri nodes and drone, where the data from IoT

nodes was sent to the local server with an interval of 5minutes
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TABLE 3. Drone imager and image specifications.

FIGURE 6. Layout of Wheat Field in the form of 3 × 3 matrix.

and drone imagery was collected on weekly basis. The IoT

nodes were powered by solar panels, however in an event

of cloudy or rainy weather conditions, the batteries were not

sufficiently charged. As a result of this, the data was not sent

to the web portal leading to missing values, which were then

interpolated by using bi-linear interpolation.When the batter-

ies restored their charge, the data transmission was resumed.

During the first few minutes of the resumption of the power

supply, the sensors were reconfigured and consumed some

time to stabilize. During this interval, the transmitted data was

considered as an outlier because the values did not correspond

to the true values of the environmental parameters, therefore,

the outliers were removed from the data set. In order to picto-

rially represent the statistical summary of all IoT agri nodes

data in terms ofmonthlymean, variation, min-max values and

outliers, the box plot was used as shown in Figure 8.

The two whiskers in Figure 8 show the minimum and

maximum values of a particular variable whereas the line in

the box shows the mean of the particular variable; and the

black circles show the outliers, which were removed later

from the data set. A distinct variation over the period of three

months has been observed for humidity, which was mainly

attributed to the weather fluctuations in the year 2019-20.

Similarly, in the box plot of soil moisture, it has been observed

that its values were increased gradually ranging from 10%

to 90%. This observed behavior of soil moisture is due to

the fact that during the initial crop growing stage, the soil

moisture was less, however, as the crop grew in size, the soil

moisture increased incrementally. It was observed from the

air temperature box plot that the behaviour of the tempera-

ture profile is negatively correlated with the humidity data.

The variation in the air temperature was also credited to

the changes in the weather conditions. During the month of

December and January, the crop was typically covered by

frost and dew drops in early morning. Due to these factors,

the soil temperature rapidly dropped ranging from 5◦C-15◦C

which eventually increased in the soil moisture.

In addition to the IoT nodes data, themultispectral data was

also pre-processed. For capturing the multispectral images,

the drone was flown at the recommended height of 120 feet

with speed of 6 miles per hour. These recommendations

were provided by the multispectral imager vendor, i.e Sen-

tera. With these configurations, the ground sampling distance

(GSD) was 1.2 inches per pixel. GSD can be computed by

using the Eq 7 [38].

GSD =
α × h

f
(1)

where ‘h’ is the altitude of the platform; ‘f’ indicates the focal

length of the image sensor and α refers to the size of the

charged coupled device (CCD) cell of the imager.

There was no cloud cover in the recorded imagery as the

drone is typically flown below the cloud height. On average,

25 to 30 images were captured in a single flight mission with

an overlap of 70% in the image content. This overlap was

then used to stitch the images seamlessly in order to obtain

the complete scene representation.

B. NDVI MAPS

It is mentioned earlier that we have 9 × IoT agri nodes

deployed in the field (see Figure 6), therefore, the stitched

image obtained during the pre-processing stage was mapped

onto these 9 cells as shown in Figure 10.
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FIGURE 7. Block diagrams of the data processing.

FIGURE 8. Statistical summary of IoT agri nodes data.

The NDVI values of the stitched images were computed to

find the chlorophyll content of the crop. which is an indicator

of the crop health status. The NDVI of the stitched images

was computed using Eq 2 [39].

NDVI =
NIR− R

NIR+ R
(2)

where, ‘NIR’ is the Near Infra Red band and ‘R’ is the Red

band.

Typically, the NDVI profile for the entire wheat growth

cycle represents a parabola as shown in Figure 11.

The dotted bounding box in Figure 11 is representing the

months for which we have collected the data and generated

the NDVI maps. It can been seen in Figure 11 that during

the early stages of crop development, the NDVI value is low

as compared to the matured stage of stem elongation phase,

and again a decline in NDVI values is observed during the

grain ripening stage, when crop turns golden and loses the

chlorophyll content.

The spatial NDVI maps generated for the period of

three months starting from November to January are shown

in Figure 12. The NDVI map for the month of November did

not cover the entire field due to an unstable drone flight.

However, NDVI maps for the other months include the com-

plete region of the study area (Figure 12).

The area covered by the cells in Figure 12 showed the

variations of NDVI at different development stages of wheat.

In the Figure 12-A, the yellow color is representing sparse
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FIGURE 9. Ground sampling distance at a specific height.

FIGURE 10. Stitched NIR image.

vegetation, while, the Figure 12-B shows the dense vegetation

of crop because the plants canopy and height was relatively

matured during the month of December. The yellow color

in Figure 12 -A is attributed to early stages of crop devel-

opment when the vegetation is low and sparse. It does not

indicate the Unhealthy status of the crop at this stage. The

red color shows the presence of the bare soil. In comparison

to Figure 12-B, the Figure 12-C represents more yellowish

content which indicates that the crop was under stress. This

comparison is marked by ellipses, drawn on the Figure 12-B

and Figure 12-C. Generally, in all three images, the spread of

the wheat plant canopy is thin in some regions, while thick

FIGURE 11. NDVI profile of entire growth cycle of Wheat crop.

in others. The crop is in the stem elongation stage which

starts after 5 leafs stage (Figure 2) and lasts until the end of

February. The height of the crop in this stage is not uniform

across the field i.e. low in some regions and high is other

regions. The green color in the NDVI image represents the

region where the crop is more dense and taller. The variation

in the crop height and its thickness over our the study area

is mainly attributed to several factors such as the sunlight

reaching to that plant, fertilizer distribution in that area, and

the terrain slope to hold the water in that region.

The advantage of NDVI maps is that they provide an over-

all picture of crop health and help to identify the crop under

stress. However, they provide limited information regarding

the stressed area. These maps do not identify the sources of

stress, for instance, rust disease, lack of soil moisture, extreme

weather conditions, evapotranspiration, insufficient fertilizer

etc. Therefore, a ground survey was performed to validate the

results of NDVI maps and the visual inspection has shown

that the stressed areas indicated by NDVI maps were present

in the crop field.

NDVI is not the sole criteria to determine the crop health

because it only indicates the presence of chlorophyll content

in the plants. However, additional information and knowl-

edge regarding the crop growth is required to determine its

health status. This includes information about meteorological

parameters such as air temperature, humidity, soil parameters

such as soil temperature and soil moisture information, and

knowledge about the crop development stage. For this pur-

pose, the maps of the data obtained from IoT sensors were

also plotted to relate them to the NDVI maps and to draw

some useful inferences as discussed in the following section.

C. IoT SENSORS DATA MAPS

To analyze the variations in the crop health illustrated by crop

NDVI maps, the IoT sensors data was utilized to highlight

the environmental events impacting the crop health. For this

purpose, the atmospheric and soil parameters maps were

generated as shown in Figure 13.

These maps showed cell wise variation in the atmospheric

parameters (air temperature and humidity); and variation in

112718 VOLUME 8, 2020



U. Shafi et al.: Multi-Modal Approach for Crop Health Mapping Using Low Altitude Remote Sensing, IoT and Machine Learning

FIGURE 12. Spatial NDVI maps.

FIGURE 13. Soil moisture map, soil temperature map, humidity and air temperature map (January 2020).

the soil parameters (soil moisture and soil temperature). The

variation in the NDVI maps directly corresponded to the

changes reflected in the IoT data. For instance, the area

covered by the cell-8 in Figure 12-C corresponded to the

area under stress which was due to high humidity and soil

moisture as shown in Figure 13. Consequently, the wheat

growth was effected and the leaves of the crops turned yellow

due to excessive moisture and low temperature. The ideal

temperature requirement is 22◦C at this stage (as mentioned

by NARC agriculture experts), however, the recorded average

temperature was 16◦C, which has consequently suppressed

the crop growth across the study area.

There were several other factors that effected the crop

growth such as terrain slope, fertilizer distribution across the

field, type of the soil, and the seed quality. The terrain surface

of the study area was not uniform & smooth and varied

across each cell. This is noticeable in the soil moisture map

(cell wise) as shown in Figure 13-A. It is observed in cell-5

of Figure 13-B that the terrain was uneven and the dip in

the ground caused the runoff water to be accumulated for a

longer period of time. This has increased the soil moisture

more than the crop required at this stage which caused the

crop to go under stress. It is clear from the above discussion

that the IoT sensors data provided added information to better

comprehend the NDVI maps and helped in assimilating the

reasons for the stressed crop.

In the view of above, this multi source data (IoT sen-

sors, NDVI, and crop development stage) was subsequently

integrated to generate more detailed crop health maps as

discussed in the following sections.

D. MULTI-MODAL DATA INTEGRATION

In multi modal data acquisition, the data is generally pro-

duced from heterogeneous sources at variable intervals and
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of variable length. This multi source data is mapped to a

common temporal resolution for integration and further pro-

cessing. In our focused research, the IoT data was logged at an

interval of 5 minutes owing to the infrequent environmental

changes. Likewise, in order to discern the incremental growth

of the crop, the drone imagery was recorded after every week.

In order to combine the data of these different modalities,

the IoT nodes data was averaged over 7 days and mapped to

the temporal resolution of the multispectral imager data.

After equalizing the temporal resolution, the next step was

to map the two different data set on the same the spatial

resolution. The NDVI values obtained at a given crop devel-

opment stage of each cell of the 3 × 3 matrix layout (see

Figure 12) were flattened into a vector, where, the index of

the vector represented the NDVI value of each pixel. This

was further mapped to the corresponding IoT agri node data,

where each record of IoT data consisted of air temperature,

humidity, soil temperature, soil moisture and the temporal

information of crop development stage as shown in Figure 14.

The same process was repeated for each cell of the

3 × 3 matrix layout of the field. The final data set comprised

a matrix [X]i,j, where i represented the no. of records and j

denoted the no. of features, which include IoT sensors data,

NDVI values, and information related to the crop develop-

ment stage. Once the data has been integrated and prepared

for the entire crop field, it was labeled record wise to perform

crop health classification.

FIGURE 14. Format of multi modal data set in the context of the
proposed system.

E. CROP HEALTH CLASSIFICATION

For crop health classification, the data was categorized into

three classes i.e. ‘Unhealthy’, ‘Stressed’ and ‘Healthy’. The

labeled vector was transformed into one-hot encoding since

we were dealing with a multi-class problem [40]. Thus,

a separate label matrix [Y]i,k was generated where i = no

of records and k = no of classes. The final classification

data set [X]i,j included i = 570408 and j = 6, where i

was total number of records and j indicated the total features

including NDVI values, crop development stage and data

of IoT sensors. Subsequently, the data set was split, where

2/3 data set was used for training and 1/3 data set was used for

testing purposes. As a result, the training data set comprised

382173 records and test data set contained 188235 records.

The distribution of the records for three classes in the train-

ing data set i.e. ‘Unhealthy’, ‘Stressed’ and ‘Healthy’ was

36,904, 137,887, 207,282 respectively. Similarly, for the

test data set, the distribution of ‘Unhealthy’, ‘Stressed’ and

‘Healthy’ classes was 18379, 68336 and 101520 records

respectively.

In order to perform crop health classification, several clas-

sification models were tested including Naive Bayes (NB),

Support Vector Machine (SVM) and Neural Network

(NN) [22], [41], which were found suitable for the nature

of the collected data. The NB is a supervised classification

algorithm which uses Bayes theorem based on probabilities

to classify the distinct objects. Whereas, SVM is a classi-

fier which uses kernel function to generate highly discrim-

inant classes with significant margin [42]. For this research

work, SVM was trained using ‘Radial Basis’ as a kernel

function.

TheNNwas trained using different shallow and deep learn-

ing models with different hyper-parameter settings includ-

ing the (i) selection of hidden layers,(ii) hidden nodes in

each layer, (iii) activation function, and (iv) loss function.

Table 4 shows the design and hyper-parameter configuration

of different NNmodels. The Figure 15 shows the architecture

of NN.

FIGURE 15. Neural Network architecture.

For this research work, cross entropy is used as a loss

function in NN because it minimizes the difference between

predicted and actual values in classification problems. This

function is computed by using Eq 3 [43].

Cross Entropy = −
1

N

n∑

i=1

yi log(ȳi) (3)

where N is the total number of records, yi is the actual label

(ground truth) of ith record, and ȳi is the predicted value of ith
record computed by a classifier.

The above mentioned classification models were applied

on our multi modal data set and the obtained results are

discussed in the following section.
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TABLE 4. Hyper-parameter configuration of different NN models.

TABLE 5. Performance of all classification models.

V. RESULTS AND DISCUSSIONS

In this section, before discussing the classification results,

the various metrics used to evaluate the performance of

the applied machine and deep learning algorithms will be

described.

(1) Accuracy

Accuracy defines the capability of the model to generate

the correct number of predictions for the observed values.

it defines how close a measurement is to a true or accepted

value. Accuracy is measured by Eq 4, where TP denotes to

true positive, TN denotes to true negative, FP denotes to false

positive and FN denotes to false negative [44], [45].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

(2) Precision

Precision refers to the closeness or reproducible correctly

classified instances of a given positive class out of the total

classified instances of that class. It is calculated with the

formula shown in Eq 5, where TP denotes to true positive

and FP denotes to false positive [44]–[46].

Precision =
TP

TP+ FP
(5)

(3) Recall

Recall refers to the proportion of the total instances of a

particular positive class that were correctly classified. It is

calculated with the formula shown in Eq 6, where TP refers

to true positive and FN refers to false negative [44]–[46].

Recall =
TP

TP+ FN
(6)

(4) F1 Score

F1 score is calculated to find a balance between precision

and recall, because individually, they do not cover all aspects

of the accuracy. F1 score is a function of precision and recall

and is calculated using the Eq 7. It ranges between 0 and 1.

The higher the score, the better the accuracy [44]–[46].

F1Score =
2 ∗ Precision ∗ Recall

Precision+ Recall
(7)

A. CLASSIFICATION RESULTS

The classification algorithms (mentioned in sub section IV-E)

were applied on the multi modal data set encompassing

input data from drone imagery, IoT sensor data, and tempo-

ral information of the crop development stage. The perfor-

mance evaluation of these classification algorithms is listed

in Table 5.

It was observed that model M1 exhibited the lowest per-

formance as compared to others because it has no hidden

layer, which made it unsuitable to learn complex structures

for the subject data. The models M2 and M3 had one hidden

layer with 64 and 128 nodes respectively, which also led to

under fitting i.e. the model was too simple to learn complex

relationships in the data.

The model M4 outperformed all other classification mod-

els and showed the highest accuracy, precision, recall and

F1 Score. The models M5 to M7 were less accurate relative

to M4 due to their highly complex structure which resulted

in over fitting. This was owing to a large number of hidden

layers with excessive number of nodes. This configuration

of the model decreased the performance of the classifier on

the test data set as it memorized the structures in the data set

instead of generalizing it.

The performance of NB and SVM models was found to

be between the highest and the lowest performing models

i.e.M4 and M1. Typically, SVM classifier performs better on

the large data set with multiple dimensions (features), while
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FIGURE 16. Spatial crop health maps.

NB provides probabilistic predictions on muti-class prob-

lems. Hence, these characteristics have made these models

suitable for our current data set.

We can conclude from the above discussion that the crop

health can be classified using multi modal data by applying

machine and deep learning models. The comparative analysis

of all classification models has revealed that M4 is the most

optimalmodel among all the selectedmodels. Thismodel was

then used to generate the crop health maps as discussed in the

following section.

B. CROP HEALTH MAPS

To overcome the limitation of the NDVI maps for crop health

assessment, the spatial crop health maps were generated at

different crop development stages. These health maps rep-

resented the crop health status into three main categories

including ‘Unhealthy’, ‘Stressed’ and ‘Healthy’ as shown

in Figure 16. For generating these maps, pixel wise crop

health classification was performed using the model M4.

Each pixel was classified into three classes and was numer-

ically labeled, where 1 referred to ‘Unhealthy’, 2 referred

‘Stressed’ and 3 referred the ‘Healthy’ pixels. This classifi-

cation was mainly based on NDVI and IoT nodes data along

with the temporal information of the crop. The tagging of this

multi source data set into three classes was performed with

the help of NARC agriculture domain experts. Subsequently,

the health maps were generated (as shown in Figure 16) after

applying the M4 model of NN on this multi modal data set.

The gradient in the blue color of Figure 16 represents the three

classes of crop health as shown in the color legend.

It is clear that the health maps in Figure 16 provided a

distinctive and improved visualization of crop health status

as compared to the health information shown in the NDVI

maps in Figure 12. The stressed and Unhealthy areas shown

in Figure 12-C can be seen in more detail in Figure 16-C.

There was no reference data available to validate the crop

health maps, therefore, ground survey was performed and

agriculture specialist were consulted for this. The validation

of the above results have supported the hypothesis formed

earlier in section I, which stated that the integration of multi

modal data can enhance the representation of crop health

information as compared to the crop health status depicted

only by NDVI.

VI. CONCLUSION & FUTURE WORK

A system for crop healthmonitoring has been proposedwhich

is based on integration of the latest technologies such as drone

based remote sensing, IoT andmachine learning. The integra-

tion of these sensing modalities generate heterogeneous data

which not only varies in nature (i.e. observed parameter) but

also has different temporal fidelity. The spatial resolution of

these methods is also different, hence, the optimal integra-

tion of these sensing modalities and their implementation in

practice are addressed in the proposed system.

The multi-modal data was collected from different sources

including IoT sensors and drone with a multispectral cam-

era mounted on it. This multi source data was generated at

variable intervals and of variable length. This data was then

mapped to a common temporal resolution for integration and

labeled to perform supervised classification. The machine

learning techniques such as SVM and NB along with several

deep learning models were applied to classify each pixel as

healthy, Unhealthy or stressed. Among these selectedmodels,

M4 model of NN was found to be the most suitable model

for our multi-modal data set and provided the classification

accuracy of 98.4%.

Conventionally, NDVI is used for monitoring crop health

but it only provides the health information based on chloro-

phyll value, whereas, for a detailed crop health represen-

tation, the data from multiple sources is required such as

soil moisture, soil temperature, humidity and air temperature.
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For this purpose, the data from two different modalities were

combined and crop health maps were generated to provide

a clear picture of the crop health relative to the information

provided by NDVI maps. In addition to this, IoT sensors data

maps were generated to correlate the behaviour of environ-

mental variation with the crop status delineated in the crop

NDVImaps, where these maps provided useful insights about

the factors influencing the crop health. The IoT sensor data

maps were validated by comparing IoT sensors reading with

the commercial senors provided by NARC and they were

found to provide a competitive accuracy. The crop health

maps were validated through the ground surveys and agri-

culture experts due to the absence of reference data (such as

drone imagery database of the subject area, satellite images

with a compatible image resolution, and real time data gener-

ated by IoT sensors). The validated maps revealed that crop

health maps based on multi-modal data provided rich insights

into crop health status relative to the crop health knowledge

provided by individual NDVI maps.

For the future work, the role of other parameters related

to crop health will be investigated, which may enhance the

performance of the proposed work. Additionally, the soil

properties using multispectral data and their effect on crop

health will be analyzed. Further, the fertilizer maps such

as nitrogen maps will be generated to determine it’s spread

across the field and impact on crop health.
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