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Abstract. We present a robot that is able to interact with people in a
natural, multi-modal way by using both speech and gesture. The robot
is able to track people, process speech and understand language. To
track people and recognize gestures, the robot uses an RGB-D sensor
(e.g., a Microsoft Kinect). To recognize speech, the robot uses a cloud-
based service. To understand language, the robot uses a probabilistic
graphical model to infer the meaning of a natural language query. We
have evaluated our system in two domains. The first domain is a robot
receptionist (roboceptionist); we show that the roboceptionist is able to
interact successfully with people 77% of the time when people are primed
with the capabilities of the robot compared to 57% when people are not
primed with its capabilities. The second domain is a mobile service robot,
which is able to interact with people via natural language.

1 Introduction

Our aim is to make robots that can interact with people in a natural and intuitive
way and can intelligently understand and respond to the intentions of humans.
In this paper, we develop an approach for human-robot interaction that uses
speech and gesture to create a rich space of verbal and non-verbal meaning.
Our aim is to craft a set of gestures that are intuitive for a human while at the
same time understandable by a robot, and which can be combined with speech
input to improve the experience of people interacting with social robots. This
is a challenging problem because understanding the intentions of a human may
require reasoning over the combination of a large space of gestures and natural
language queries.

In this paper we address this challenge by developing a robot that is able to
combine multi-modal input to understand gestures and task-constrained speech.
Specifically, the robot is able to recognize a hand-raising gesture, detect when
people are approaching and determine when the nearest person is facing the
robot. If the person is not close enough for the interaction to be successful, it
will guide the person to move to more successful states. By guiding the people
to these states, the robot is able to better understand task-constrained natural
language queries that involve the robot’s status as well as the location of people
in a building. This is achieved by learning a probabilistic graphical model that
connects the natural language to the type of question being asked.



We evaluate our approach in two domains. The first domain is a robocep-
tionist that has been placed in the entryway of a building. The second domain
is a mobile service robot that can perform tasks such as delivering objects and
escorting people in indoor environments [1]. In the roboceptionist domain, ten
different people interacted with the robotic system and asked it questions; we
evaluated the results in two conditions. In the first condition, people were not
primed about the capabilities of the robot and could interact with it in any
way that felt natural to them. In the second condition, people were primed by
telling them what the robot could do. In all conditions, we found that the robo-
ceptionist was able recognize the desired gestures and track people effectively
nearly all of the time. In addition, we found that the roboceptionist was able
to understand greetings, questions about it’s capabilities and questions about
the location of people’s offices 77% of the time when people were primed about
the robot’s capabilities. Interactions with un-primed people were only successful
57% of the time, indicating that priming (or long-term interaction) is an im-
portant consideration for robotic systems. We also evaluated the performance
of the mobile service robot at understanding commands and found that it had
successful interactions with people 73% of the time.

2 Related Work

Others have designed robots for long-term social human-robot interaction. Gock-
ley et al. [2] designed a robot receptionist named Valerie to investigate human-
robot social interaction and found that after nine months of deployment, people
still interacted with the robot on a daily basis. This robot now interacts with
people in multiple languages [3] and is aware of the presence of a person, but
is not able to recognize gestures. Salichs et al. [4] developed a robot to cover a
wide spectrum of human-robot social interaction and was able to engage in both
physical and speech driven events.

Work in human-robot interaction will often use gestures. Bohus and Horvitz [5]
developed a system capable of differentiating speakers in a turn-based speaking
environment. The system was able to determine who was speaking to whom
by evaluating hand gestures and other cues. Wu and Huang [6] describe static
gesture recognition of hand pose as well as and temporal gesture modeling.
Eisenstein [7] shows how the use of both hand gesture and speech can be used to
resolve ambiguous noun phrases, the segmentation of speech into topics and the
production of keyframe summaries of spoken language. Christoudias et al. [8]
investigates whether reliable audio-visual classifiers can be learned through co-
training. Scassellati [9] describes a model of joint attention in the context of
recognizing social cues, showing the role of imitation and gesture in terms of
head movements. The interface for the roboceptionist takes inspiration from
other social robots, such as Kismet [10] and interaction paradigms are related
to Mutlu et al. [11], who describe how a robot can establish roles by using gaze
cues.



3 Approach

In this paper, we present a robot that interacts with people in a natural way
by understanding multi-modal input. The approach uses speech, gesture, and an
animated character to communicate with people and understand their intentions.

3.1 Gesture and Event Recognition

Gestures are a natural interface for people that want to interact with robots. To
recognize gestures and track people, the robot uses an RGB-D camera. The infor-
mation extracted from the camera is used to interact with people and determine
when to ignore them if they are uninterested in the robot.

Interactions via Gesture Since many people walk by the robot, it needs a
way to differentiate people showing interest from those that are uninterested in
it. To address this challenge, we developed an approach to recognize a hand-
raise gesture to indicate the start of an interaction. When the person’s hand is
up and the person is far away, the robot will ask people to come closer. When
the person’s hand is up and the person is nearby, then the robot will initiate an
interaction.

The robot uses the skeleton provided by the RGB-D camera1, as in Figure 1.
The position of the hip ĥ, head d̂ and the hand n̂ are used to determine whether
the hand is raised. If we define the hip/head vector to be v̂h→d = d̂− ĥ and the

hip/hand vector to be v̂h→n = n̂− ĥ, then the projection of the hip/hand vector
onto the hip/head vector is:

p =
v̂h→n · v̂h→d

|v̂h→d|

v̂h→d

|v̂h→d|
(1)

If the norm of p is greater than the norm of v̂h→d, then the length of the
projected vector is longer than the hip/head vector and the robot will detect the
person as raising their hand. Figure 1 shows these vectors. Because this approach
uses the relationship between the hip/hand vector and the hip/head vector, it is
able to recognize when a hand is raised even when the orientation of the body
or the RGB-D sensor not vertical.

Interactions via Proximity Another good indicator that a person would like
to speak with the robot is whether they are approaching the robot or not. If
a person is coming toward the robot or is very near to the robot, then the
interaction is started. In qualitative experiments, we found that most of the
people uninterested in the robot walk away from it. To know if someone is
walking towards the robot, the four closest people are detected and if the change
in the position of any person indicates that they are moving toward the robot,
then the robot will start interacting with them.

Concretely, we use two conditions to guarantee that a person is approaching
the robot. The first condition is that the person is moving along a line with

1 The Microsoft Kinect API was used.



Fig. 1. An illustration of the vectors used to compute when a hand is raised.

a constant angle with respect to the robot. If θ = arctan 2(x, z) (where the x

and z coordinates correspond to the ground plane) is approximately the same
between two different timesteps, then a person is moving toward the robot. The
second criteria is that the person is moving closer to the robot. This can easily
be verified by checking that dist(x2, z2) < dist(x1, z1).

Interactions via Orientation Examining if a person is facing the robot also
acts as a valid indicator of a desire to speak with the robot. In order to determine
if a person is facing the robot, we create two vectors, one from the robot to
the center of the person’s chest, and another from one shoulder to the other.
We know that the person is facing the robot if the dot product of these two
vectors is approximately zero, since this would indicate that the two vectors are
orthogonal.

If l̂ is the position of the left shoulder, r̂ is the position of the right shoulder,
k̂ is the position of the robot, and ĉ is the position of the chest of the person,
then we can compute the shoulder vector as ŝ = r̂ − l̂ and the vector from the
robot to the person as r̂ = ĉ − k̂. If the dot product is almost 0 (r̂ · ŝ < delta),
then the person is facing the robot.

Interactions when Multiple People are Present Using the above compo-
nents, we can synthesize an algorithm that decides who to speak with and when
to speak with them. First, the robot finds the four closest people, chooses people
who are facing the robot and responds to the closest person with their hand
raised. If a person is raising his or her hand, but is not close enough to speak
with the robot, it will ask the person to move closer. Otherwise, the robot will
begin processing speech.

3.2 Dialog

The robot is able to have social dialog as well as provide navigational assis-
tance in the Gates-Hillman Center. The dialog with people is centered around



inferring a question type from the natural language query, and responding with
an appropriate answer. We use the speech recognition provided by an Android
tablet (the primary interface to the robot), which does not use a fixed grammar.
Queries that the robot is able to understand include:

1. Basic Greetings (e.g., “Hello, how are you?”)
2. Queries about itself (e.g., “What can you do?”, “What is your name?”)
3. Location of people in the CS department (e.g., “Where is Joydeep Biswas’

office?”)
4. Location of landmarks (e.g., “Where is the cafe?”, “Any nearby cluster?”,

“How about the nearest bathroom?”)

To understand natural language questions, we take the top 10 results from the
speech recognizer and infer the most likely interpretation using a probabilistic
graphical model. If q is a multinomial distribution over the question type and s

is the input sentence, then the goal is to compute:

argmax
q

p(q|s) (2)

By breaking down a sentence into words wi and using Bayes rule, we can
rewrite this probability distribution as:

p(q|w1, . . . wn) =
[
∏n

i=1
p(wi|q)] p(q)

p(w1, . . . , wn)
(3)

The words are assumed to be independent of each other since our goal is to
retrieve the overall meaning for a sentence. Thus, we can compute the above
terms as:

(1) Computing p(wj |q)
If wj is a word and cj is the count of word j for the category q which has
|w| total word occurrences, then this term is computed as:

p(wj |q) =
cj + 1

[

∑

j cj

]

+ |w|
(4)

(2) Computing p(q)
If cq is the number of times question i was asked and |q| is the number of
question types, then this term is computed as:

p(q) =
cq + 1

[
∑

i ci] + |q|
(5)

In order to handle cases where there exists a word in the input that was not
present in the training corpus, we have employed additive (Laplace) smoothing
and add one occurrence of all words and questions. The resulting model is a
Naive Bayes Classifier with additive smoothing [12]. To train the model, we
collected query/category pairs by asking people what questions they would ask



Fig. 2. The interface has eyes that follow the closest tracked person.

(a) Listening (b) Thinking (c) Confused (d) Bored

Fig. 3. Different expressions modeled for the roboceptionist

the receptionist. We formulated seven different situations (e.g., greeting, status,
capabilities, directions) and asked 26 people to write down how they would
interact with the robot via natural language, resulting in 182 training sentences.
These sentences were as short at one word (e.g., “hello”) or as long as 14 words.
Each sentence was annotated with a corresponding query type.

When a query type is a greeting, a question about the robot’s capabilities
or status, or goodbye, the robot responds to the person using a set of fixed
responses. When the query type is about the location of a person, the robot
will look up the location of this person by accessing a database of people in
the School of Computer Science, including name, email and office number. The
language understanding system matches names from the natural language query
to this database by string matching. If any of the names exactly match a full
name in the database, then the robot responds with the office location (e.g.,
”Joydeep Biswas is in room 7707.”). If not, the system tries to match all the last
names to the query. If there are no matches to the last name, then it will try to
match first names. The speech recognition typically finds the requested person
in one of the top two results. When there are multiple people that a name could
refer to, the robot informs the person of the top candidate office locations.

3.3 Robot Interface

As a part of the roboceptionist, we have created an approachable interface that
displays some realistic characteristics and an easily recognizable appearance.
Specifically, the interface consists of two eyes that are able to track the closest
human to the robot. Figure 2 shows the eyes tracking a person moving from left to
right. The eyes take on a cartoonish appearance to emphasize approachability,
recognizing that face-to-face contact between the robot and humans is a key



(a) Setup (b) Raise hand (c) Begin interaction

(d) Talk to roboceptionist (e) The robot responds

Fig. 4. A typical interaction. (a) contains the basic setup of the roboceptionist, in-
cluding a Microsoft Kinect and an Android tablet. (b) shows an example interaction
where the person raises their hand to catch the attention of roboceptionist. If user is
too far away, the roboceptionist will ask the person to come closer. In (c), when user
is close enough, he/she can raise their hand to begin talking to roboceptionist. In (d)
the person talks to roboceptionist. In (e), the roboceptionist responds. . We would like
to thank Lydia Utkin and Feiyang Feng for their help designing the user interface.

factor in creating natural human-robot interaction. Some example expressions,
which depend on the state of the robot, can be seen in Figure 3.

3.4 System Overview

The overall interaction with the roboceptionist can be seen in Figure 4. In Fig-
ure 4(a), the roboceptionist finds and tracks the person. The eyes will follow
the person as they move to the right and left of the robot. In Figure 4(c), the
robot responds to a person if he or she is facing the robot and raising his or
her hand to demonstrate a desire to initiate a conversation. In Figure 4(d), the
roboceptionist will listen for input from a person, compare the speech to the
current set of questions and then respond accordingly. Free-form speech recog-
nition is performed using a cloud-based service on the Android tablet. The user
indicates a desire to leave by saying some phrase equivalent to “good bye.” The
interaction with a mobile service robot proceeds in the same way but does not
use gestures as a part of the interaction.

4 Illustrative Results

We have performed an analysis of both the roboceptionist and the mobile service
robot. Specifically, the roboceptionist’s performance at recognizing gestures and



understanding language was evaluated when a single person was present. To test
the recognition of gestures on the roboceptionist, we recorded 76 interactions
from 10 different individuals. These people varied in height, ranging from 5
feet to 6 feet tall. We observed these interactions in two separate modes. In the
first mode, people initiated interactions with the roboceptionist in whatever way
was natural for them. In this mode, the roboceptionist would fail to recognize
gestures only when it failed to detect the person. The system failed to detect a
person 12.5% of the time, primarily when a person was closer than 1 meter to
the RGB-D sensor. When testing the RGB-D sensor with people approaching
the robot between 4 to 6 feet away, it failed to detect a person only when they
were partially out of view of the of the camera (this happened very infrequently).
The primary failure mode was to miss a hand-raising gesture. Another failure
mode happened when a person raised their hand, but would speak before the
roboceptionist started listening. Since people would repeat their earlier request,
this failure mode would generally resolve itself.

Second, we evaluated the roboceptionist by having 10 people interact with
it. For example, the interaction in Figure 4 consists of the following turns:

– User approaches the roboceptionist and raises hand.

– Roboceptionist: You must come closer.
– User walks closer to the roboceptionist and raises hand again.

– Roboceptionist: Hello, speak to the Kinect.
– User: Hello.
– Roboceptionist: Hi, How are you today?
– User: Fine.
– Roboceptionist: That’s good. Ask a question.
– User: Where is Stephanie Rosenthal?
– Roboceptionist: Stephanie Rosenthal has an office in room 7505.
– User: How about Joydeep Biswas?
– Roboceptionist: Not too sure what you said, please repeat.
– User: Joydeep Biswas.
– Roboceptionist: Joydeep Biswas has an office in room 7707.
– User: Goodbye
– Roboceptionist: Bye Bye
– User walks away.

The interactions were evaluated in two different modes. In one, people were
primed by telling them they could use one of 10 question types (e.g., directions to
a person’s office). In a second mode people were able to interact as they wanted.
In both of these modes we set no restrictions on how the queries were phrased
to determine how robustly the robot understood its meaning. We performed
trials with 10 different people for a total of 76 queries (e.g., “hello” in the above
conversation); 54 of the queries occurred in the non-primed mode and 22 occurred
in the primed mode. A successful query was one where the robot inferred the
correct meaning or correctly inferred that it wasn’t able to answer the query. We
found that priming significantly helped the performance of the roboceptionist,
as can be seen in Table 1. When it did fail, the speech recognition generally
did not interpret the user’s request correctly or the user’s request was not yet
supported.



w/o priming with priming

Performance 56.86% 77.27%

Table 1. Performance of the roboceptionist as measured by the percentage of interac-
tions that were successful from start to end.

In order to further evaluate our work we also deployed the interface on
CoBot [1], an indoor service robot. The model from Section 3.2 was trained
on a corpus collected during interactions with ten faculty and staff members in
our building. During those meetings, a person queried the robot and a researcher
responded with answers to their queries. Each entry in the log was labeled with
one of ten different labels: hello, greeting, what can you do, task information,
task physical, person information, yes, no, thanks or goodbye.

The performance of the model was evaluated using three held-out logs con-
sisting of 37 queries. We found that 72.97% of the test queries were categorized
correctly. Table 2 shows the mistakes that the system makes during evaluation.

capabilities no person thanks yes task

capabilities 4 0 0 0 0 0
no 0 3 1 0 1 0
person 0 0 3 0 0 0
thanks 1 0 0 3 0 0
yes 0 0 0 0 5 0
task 1 0 0 0 0 5

Table 2. A subset of the test queries for the service robot. The rows correspond
to different ground-truth categories and the columns are the predicted categories. For
example, one query that should have been “thanks” was mis-classified as “capabilities.”
Capabilities queries are questions about the robot’s capabilities, yes/no are responses
to a yes/no question, person are queries for a person in the building and thanks usually
involves thanking the robot for doing something.

5 Conclusions and Future Work

In this paper, we have presented a multi-modal approach to human-robot in-
teraction. We have demonstrated our approach on a robot receptionist and a
mobile service robot. The roboceptionist is able to recognize and respond to
certain gestures and natural language questions in a flexible and intuitive way.
Using an RGB-D sensor, the robot is able to detect when a hand is raised to ini-
tiate a conversation, detect when a person is moving toward the robot and detect
when a person is facing the robot. Our approach uses a probabilistic graphical
model to connect language to an underlying meaning. We have shown that the
roboceptionist interacts appropriately with people 77% of the time and that the
service robot performs interacts appropriately 73% of the time.



In future work, we anticipate performing a deeper semantic analysis of a
natural language query to understand multi-modal input involving speech and
gesture and jointly handling uncertainty in the speech recognition, the parser,
and the gesture recognition. We also anticipate multi-robot coordination to en-
able our mobile service robot to work in unison with the robot receptionist.
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