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Abstract—Ambient Assisted Living (AAL) systems based on
sensor technologies are seen as key enablers to an ageing
society. However, most approaches in this space do not provide
a truly generic ambient space – one that is not only capable
of assisting people with diverse medical conditions, but can also
recognise the habits of healthy habitants, as well as those with
developing medical conditions. The recognition of Activities of
Daily Living (ADL) is key to the understanding and provisioning
of appropriate and efficient care. However, ADL recognition
is particularly difficult to achieve in multi-resident spaces;
especially with single-mode (albeit carefully crafted) solutions,
which only have limited capabilities. To address these limitations
we propose a multi-modal system architecture for AAL remote
healthcare monitoring in the home, gathering information from
multiple, diverse (sensor) data sources. In this paper we report on
developments made to-date in various technical areas with respect
to critical issues such as cost, power consumption, scalability,
interoperability and privacy.

Index Terms—Ambient Intelligence, Ambient Assisted Living,
eHealth, Internet of Things

I. INTRODUCTION

The UK, like many other countries, is facing the problem

of an ageing society. In 2010, ten million people in the UK

were over 65 years old and the projections are for 5.5 million

more in 20 years time to reach 19 million by 2050. “65%

of Department for Work and Pensions benefit expenditure

goes to those over working age, equivalent to £100 billion

in 2010/11 or one-seventh of public expenditure” [1]. The

average spending of the NHS (National Health System) for

a retired household is nearly double of what is spent for non-

retired households.

One possible solution to this problem is Ambient Assisted

Living (AAL) technologies. Advances in technology have

made sensors smaller, cheaper, and more viable for large-scale

deployment in residential environments to monitor activities

of daily living (ADL). Our vision is to develop a multi-

purpose, multi-modal platform of home sensors, which we

call SPHERE (Sensor Platform for HEalthcare in Residential

Environment). SPHERE aims not only to extend the state of

the art in a number of technology domains, but to engage with

stakeholders across disciplines and across sectors to illuminate

the applications of current technologies to known health needs

and of new technologies to emerging health needs.

This generic, multi-modal sensor-based platform, which has

been built on a cutting edge platform made up of commercial

and prototype components, will be used to test clinical and

health related hypotheses in a real life environment. For this

purpose, we have acquired a two storey, two bedroom house

from the University of Bristol’s Accommodation Office and

have converted it into a fully-instrumented living lab. In this

paper, we will refer to this instrumented house as the SPHERE

house. The remainder of this paper provides an overview of

the SPHERE infrastructure; a novel platform that integrates

multiple sensing technologies to provide an intelligent ambient

space in residential environments.

II. BACKGROUND

Existing AAL systems make use of sensor networks, wear-

able technologies and computer vision technologies. However,

they tend to provide solutions that only address specific needs.

In contrast, the SPHERE architecture attempts to combine

different sensing technologies to provide a generic platform

for ADL recognition.

A smart home uses Ambient Intelligence(AmI) technologies

to sense, monitor, and control residents’ living environment to

enable AAL in an unobtrusive manner [2]. In home environ-

ment monitoring, a variety of sensors are used to gather data

that enable various activities to be recognised and tracked.

Indoor localisation and tracking is a crucial component in AAL

applications, and it can be provided by either active or passive

sensing technologies [3]. Many other sensing technologies

have been employed to detect falls [4], monitor individual

daily activities such as sleep measures [5], monitor patients

with chronic conditions such as type 2 Diabetes [6] and

Alzheimer’s Disease [7], and mental and emotional health [8].

Video based technology has been widely used for smart

healthcare systems in home environments, as they have the

potential to address several limitations of other sensing modal-

ities [9]. However, having a general vision system is still dif-

ficult to achieve hence most systems are designed for specific

problems and have rarely been combined with other sensors.

A real-time context-aware sleeping-respiration measurement

system is proposed in [10] that accurately measures the

sleeper’s respiration information. Computer vision techniques

for monitoring and clinical evaluation of Parkinson’s disease

and stroke patients have been proposed recently in [11].

Since the use of staircases can directly reflect musculoskeletal

problems and the progress of recovery, a system has been

developed to estimate the quality of movement on stairs in



[12]. Video data is also used to detect falls, especially in the

monitoring of the elderly, as in [13].

With regard to on-body sensing, fashionable wearable gad-

gets, such as Fitbit and Jawbone UP, have appeared in the

consumer electronics market in recent years. However, with

little capacity for expansion and scant access to raw data,

such gadgets are of limited use in medical applications. The

research community has also proposed wearable devices for

activity monitoring. Verity [14] is an AAL platform that is

using a wearable sensor equipped with an accelerometer and

a heart rate monitor. Reference [15] proposes an AAL platform

based on a waist-worn accelerometer. These platforms use

off-the-shelf hardware and do not focus on the their power

consumption, resulting in wearable devices that need regular

charging, similarly to commercial products.

Efforts were also made to implement intelligent spaces

through the medium of multiple sensing technologies. The

activity recognition system [16] integrated with ICS-FORTH

“AmI Sandbox”[17] used a variety of ambient sensors (power

consumption monitors, pressure sensors, etc.). Unfortunately,

only few home activities have been considered in a very

controlled environment and no datasets are available. In the

CASAS project [18] a smart apartment was instrumented with

motion, ambient temperature, water, cooker, phone usage and

contact switch sensors on key objects (medicine container,

cooking pot, etc.). Some CASAS datasets are based on 20

people performing a set of activities, other experiments were

carried out with a single person occupying the apartment

for several months. The lack of rich meta-data (or video

data) to annotate these publicly available datasets limits their

usability. In [19] wireless PIDs (Presence Infrared Detectors),

wireless weight scale, door contact (in cupboards, fridge,

etc.), oxymeter and tensiometer sensors were utilised alongside

microphones and on-body worn three axis accelerometer.

However, such sensor-rich setup is not only labour- but also

money-expensive and difficult to maintain in the long run.

Other projects such as MIT’s PlaceLab smart home [20],

GER’HOME [21] by the INRIA and CSTB, and Kasteren

et al.[22] made advancements in this area and provided pub-

licly available datasets. Each of the aforementioned projects

adopted a different combination of sensor technologies, how-

ever none fully succeeded in solving the problem of reli-

ably recognising all ADLs in a natural, ‘scenario-free’ home

environment. Therefore, as pointed out in [23] there is no

perfect solution to the problem of activity recognition, as it all

depends on the type of recognised activities and application’s

requirements.

The collection of data from large-scale sensor-based dis-

tributed systems presents a significant challenge. Data streams

from diverse sources must be aggregated and linked with rele-

vant contextual data and metadata , and then transformed into a

form that is easily accessible and useable. It may be necessary

to support multiple data formats, protocols, and semantics

when developing applications that convert data streams into

information (e.g., intelligent lighting, people mobility support,

energy information, etc.). Also, rather than impose stringent

requirements on data to satisfy design and implementation

decisions, schema-less data models are increasingly being

employed by data aggregation systems, so that they can accept

any data record and adapt to data schema changes [24].

III. SPHERE SYSTEM ARCHITECTURE

The SPHERE platform is based on three sensing technolo-

gies: a Body Sensor Network made up of ultra low-power

wearable sensors; a Video Sensor Network focusing on recog-

nition of activities through video analysis of home inhabitants;

and an Environment Sensor Network made up of hardware

sensing the home ambience. Fig. 1 provides a high-level view

of the SPHERE hub and data sharing system, which aims to:

a) collect, organise, and store data captured by environment,

video, and on-body sensors installed in the SPHERE house;

b) enable data owners to view and manage the access to their

data, which is necessary to enhance trust in the SPHERE

monitoring system; c) provide end-users (e.g. clinicians) with

catalogue-based services for searching and retrieving sensor

information and sensor-generated data at different levels of

granularity (ranging from raw data to detected activities and

events) in a form that is easily accessible and usable by domain

experts and end-users; d) enable dynamic management of

intermediate processing of data, to create value-added streams

of data.

The SPHERE platform is made up of three basic architec-

tural layers: sensing networks, in-home data aggregation, and

central data aggregation with data analytics. Data captured

from the sensing networks are collected by their respective

sensor gateways, either in raw form or as detected activities

and events, and provided to the SPHERE Home Gateway

(SHG) using secure communications. Sensor gateways may

also accept commands from the SHG, allowing the system

to query the sensing environment for additional data, or to

configure settings on sensor nodes.

The SPHERE Home Gateway (SHG) brings together sensor

data outputs from home environment sensors, video sensors,

and on-body sensors (via sensor gateways) and manages data

access using suitable secure communications to the SPHERE

Data Hub (SDH). Sensor data collection is done using MQTT

and HTTP protocols, either directly with the sensors or with

the corresponding cluster gateway. The SHG can also per-

form additional processing on data (on top of that already

managed by sensor gateways) and provide sensor networks

with integrated data streams (across different sensor networks

within the same home, e.g. to cross-correlate data, aid activ-

ity detection, conflict resolution, handle uncertainty, improve

accuracy, etc.). Multiple home residents can be differentiated

between by correlating data from multiple sensor networks

e.g. using location information from wearable sensors and/or

face recognition in video sensors. The SHG also provides a

management console for home owners to view, control, and

manage data collection, as well as access to collected data. The

favoured data management device identified by target users (in

multiple consultation sessions) is a dedicated tablet, which is

also preferred for issuing alerts and reminders.
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Fig. 1. An overview of the SPHERE system architecture.

The SPHERE Data Hub (SDH) receives sensor data from

participating homes (via SHGs), stores them in a data ware-

house, and enables easy and secure access to the data through

appropriate graphical and programmatic interfaces for various

stakeholders e.g. clinicians, carers, family. The types of ser-

vices that the SDH offer users depend on privacy constraints

and levels of access granted by the data owner, which deter-

mine what data is available and where data can be moved.

The sensing task in the presented architecture is distributed

across the three sensing networks with a single point for data

storage and processing. The processing involves automatic

recognition of home activities and data mining techniques to

learn habits and daily routines of home occupants. The infras-

tructure does not only provide a complete AAL environment in

which various longitudinal studies can be undertaken but more

importantly, it can also connect people with various medical

conditions to care providers.

A. Home Environment Sensing

Home environment monitoring in SPHERE, enabled by pas-

sive ambient sensing, utilises an assortment of data dedicated

to describing the characteristics of surrounding ambiance. It

establishes linked data sets and builds profiles of ADL that

enable further data applications (i.e., data mining / fusion)

as well as clinical or non-clinical studies, investigating links

between environmental variables to health needs. An envi-

ronment sensing platform has been designed and developed

to provide real-time ambient sensing data acquisition, pro-

cessing, transmission and distribution over wireless sensor

networks (WSN). As part of the SPHERE architecture, this

platform collects structured data from multi-cluster sensors,

monitoring temperature, humidity, luminosity, noise level, air

Fig. 2. Ambient sensor nodes (left), and a wearable device with patch antenna
(right).

quality, room occupancy, door contact, cold and hot water

consumption, as well as electricity metering.

Our environment sensing platform employs WSN-enabled

off-the-shelf products and development kits. In particular,

we use the Internet of Things (IoT) development kits from

LibeliumTM to build a ZigBee-based WSN and collect multi-

cluster environment sensor data – prototype in Fig. 2 (left).

The Libelium sensor nodes are the basic units for collecting

information from the physical world. Integrated in a credit card

sized platform, they consist of three main modules: a main

processing board, a sensor board and a wireless module. We

have developed three different variations of the sensor nodes,

each equipped with different sensors and their respective

analogue signal conditioning circuits. The main processing

board receives these pre-processed signals and digitises them

as sensor data. These data are structured into a pre-defined

data format for wireless transmission over the WSN. The

wireless module uses ZigBee for communications. These

sensor nodes are of several fundamental capabilities, provid-

ing multi-channel sensor data acquisition, signal processing

as well as wireless transmission in an energy-constrained

mechanism. Additionally, a set of smart metering products

by CurrentCostTM are used to gather electricity consumption

information from different household electrical appliances.

Sensed data are processed and aggregated into a single

message and then wirelessly transmitted to the SEG. Messages

are either event-driven or periodic notifications. Event-driven

messages are generated from the door contact sensors, the

occupancy sensors, and the water metering sensors; and are

sent immediately when either the sensors detect certain events,

or the status of the sensor reading reaches thresholds. Periodic

data are generated by the other sensors (i.e. temperature,

humidity, luminosity, air quality, noise level and power con-

sumption sensors) in a selected reading frequency.

The environment sensor data are described in a predefined

name schema to format the data and identify the context of

the data, where the name schema describes which, when,

where the sensor readings are taken, as well as their unit

of measurement. Moreover, a time-stamp is generated at the

time the sensor readings are collected and attached to the

messages. When the SEG receives the data it parses it into the

JSON (Javascript Object Notation) format for further distribu-

tion using a publish-subscribe model. Time synchronisation

is required for providing temporal relationship between the

sensor data. When a new sensor node joins the network, the



mechanism of time synchronisation is applied during setup.

Afterwards, periodic messages containing the time reference

are sent to all the nodes in the WSN to synchronise regularly.

Thirty sensor nodes are deployed in the SPHERE house,

providing 90 environmental and ambient data items.

B. Video Monitoring

The video monitoring component of the SPHERE architec-

ture is tasked with developing a real-time multi-camera system

for activity and health monitoring within the home environ-

ment. Multi-camera architectures have been used for activity

monitoring in indoor and outdoor environments [25][9]. Two

main different architecture schemes have been presented so

far: centralized and distributed networks. In the SPHERE

platform, integration with other sensing modalities, user ac-

ceptance and deployment budget are key factors. In fact, in

order to make deployment into the local community financially

feasible, it has been necessary to limit hardware selection to

low cost consumer RGB-D cameras and web cams such as

the Asus Xtion, Microsoft Kinect (v2), and Genius WideCam

1050. We believe it is vital that any algorithms developed

are based on the actual hardware to be deployed in people’s

homes. All of these cameras require USB 2.0 or 3.0 con-

nections (on a dedicated bus) and, in case of the Kinect v2,

a high-performance computer running Windows 8 or higher.

The use of these USB based devices, and the relatively high

computational burden of the computer vision techniques used

to track and assess movement within the home lead us to

develop a centralized network where a central node (see SVG

module in Fig. 1) collects and locally processes the data

provided by the cameras. The number of video devices is

limited (between five and ten in a typical house scenarios),

hence the lack of scalability that generally affect centralized

architectures is not an issue for the SPHERE sensing platform.

In particular, video devices will be positioned in relevant areas

where important activity and actions take place: kitchen, living

room, corridor, stairs, etc., while blind areas will be covered

by integrating other sensors, such as on-body or environmental

sensors. Currently, four Asus Xtions and one Kinect v2 are

deployed in the SPHERE house.

Tracking individuals moving around home environments

feeds into a number of research work flows. For example,

when combined with prior knowledge of the environment,

such as the location of white goods activities, activities like

washing up, cooking and watching television can be readily

identified. Furthermore, general activity levels including the

amount of time spent sedentary can be extracted. Tracking is

based on the state-of-the-art people trackers such as [26]. From

the silhouette provided, a bounding box can be fit to a tracked

person, to obtain a 3D trajectory over time that acts as a coarse

shape descriptor for subsequent analysis. For example, a near-

square bounding box indicates a sitting individual, whereas a

tall thin bounding box suggests a person standing.

In our different application scenarios, tight camera syn-

chronization is not required, and we use a time-stamping

system based on the recording device clock and on the central

node acquisition time. This software based synchronization is

affected only by the USB latency. Also, since the cameras

will be positioned with non-overlapping views (to maximize

the house coverage), a weak synchronization is sufficient to

manage tracking hand-over or higher level tasks, such as

activity labeling or high level feature fusions.

The SPHERE platform allows us to obtain an accurate 3D

description of both human motion and environment. The main

shortcomings of the depth sensors, such as limited range and

depth of view and interference with natural light, are limited

in the SPHERE indoor scenario. One of the main advantages

of depth sensors is that they allow us to employ detailed,

but anonymous, data thus guaranteeing that these systems

are accepted by the users and regulatory committees, and

hence enabling the system’s deployment in large scales. To aid

privacy, only results of video analysis and no video footages

are allowed to leave the home boundaries.

Much of our recent work has focused on developing al-

gorithms, based on depth data analysis, for assessing the

quality of particular activities as opposed to identifying which

activities are taking place. We argue that identifying the actions

comprising functional mobility, such as walking, sitting to

standing and ascending the stairs are best determined via con-

text as opposed to low level analysis incorporating computer

vision algorithms. Currently, we are particularly interested in

determining the quality of stair climbing and sitting to standing

within the SPHERE house.

Movement quality assessment is based on the skeletons

provided by the PrimeSense middleware and the Kinect SDK.

We normalise these skeletons for global positioning and ori-

entation of the camera and height variation. The normalised

skeletons are of high dimensionality (60D) and often contain

outliers. Thus, their dimensionality is reduced using a modified

version of Diffusion Maps [27], where Gerber’s [28] method

for addressing outliers in Laplacian Eigenmaps is exploited.

The resulting high level feature vector, obtained from the

normalised skeleton at one frame, represents individual poses

and is used to build a statistical model of normal movement.

The camera system does not require a calibration (in terms

of relative camera positions etc.) as the camera views are

not overlapping. For this reason bounding box positions for

tracked individuals are provided relative to each individual

camera position. However, the cameras have been positioned

to maximise the potential for obtaining useful skeleton data

from the OpenNI/Primesense middleware. Skeleton data is

then normalised using Procrustes analysis.

Our statistical model [12] is made up of two components

that describe normal poses and the normal dynamics of the

movement, respectively. The first pose model is in the form

of the probability density function (PDF) of the poses, and

it is learnt from normal movement frames. The quality of a

new pose at each frame is then assessed as the log-likelihood

of being described by the pose model. The dynamics model

is represented as the PDF that describes the likelihood of a

pose at a new frame given the poses at the previous frames.

The dynamics quality is then assessed as the log-likelihood



Fig. 3. Analysis of gait on stairs. From top left: raw skeleton data, high level
description of the gait, pose and dynamics quality measures.

of the model describing a sequence of poses within a fixed

size window. Each frame is classified as normal or abnormal

using an empirically determined threshold on the likelihood

output from the dynamics model. An example of the quality

assessment pipeline is shown in Fig. 3. In the example, a

person is simulating an abnormal gait pattern where she only

climbs using her left leg leading as opposed to a normal

reciprocal motion pattern. The top-left image shows the raw

skeleton output and the top-right shows the periodic nature

of the high level descriptor derived from the dimensionality

reduction method described above. Note how in the dynamic

quality measure graph (bottom-right), the quality of movement

drops below the threshold. This is where the subject fails to

lead with their right leg. For further details, please see [12].

C. Body-Area Sensing

On-body sensing in the SPHERE architecture is realised

through a wrist-worn wearable device. The wrist is selected

as the most user-acceptable and least invasive body position.

The core component of the wearable device is the nRF51822

radio by Nordic Semiconductor. nRF51822 is an ultra low-

power Bluetooth Low Energy (BLE) [29] solution for wireless

applications. We selected BLE primarily for its high energy

efficiency; that is less than half of ZigBee [30]. nRF51822

is interfaced with two ADXL362 3-axis accelerometers by

Analog Devices. A low-profile directional patch antenna on

RT/Duroid 6010 substrate (dimensions: 18.5 × 19 mm; mea-

sured radiation efficiency: 55%) was designed to enable the

wireless communication of the wearable device with a nearby

receiver unit. Measurements reported in [31] have shown that

a directional antenna is the best choice for the on-body node of

an off-body communication system. The wearable system was

prototyped as shown in Fig. 2 (right). Using an 100Ω shunt

resistor on the power supply, we measured the idle current

drain of nRF51822 at 5µA. Each ADXL362 accelerometer

contributes an additional 2µA when sampling at 50Hz.

For communication, we use the connectionless mode of

BLE, in which the wearable device periodically broadcasts

advertisements of 26 bytes of payload. Fig. 4 (top) shows the

peak current drain of an advertisement transmission at different

transmission power levels, ranging from −20 to +4dBm. We

can see that for transmit powers higher than −4dBm the

energy consumption increases considerably. This highlights a

challenging trade-off between energy efficiency and wireless

coverage. Using the connectionless BLE for communication,

the firmware operates as follows. Before going into sleep

mode, the micro-controller unit (MCU) sets the accelerometer

to sense at 50Hz. Once the accelerometer buffer is full, the

MCU gets into active mode to transfer the raw data into

its memory and process them into histograms, i.e. empirical

probability density functions [32]. The cycle continues until

enough data is collected to fill up an advertisement. The

transmission follows and the cycle restarts. We measure the

overall consumption using a charged 18mF capacitor to power

the wearable device. By measuring the capacitor’s charge

difference over a period of 1 minute, we derive to a long-term

average power consumption of 60µW. Assuming a 210mAh

coin cell battery, this consumption level translates to an ap-

proximate lifetime of 10 months without battery replacement.

To ensure full-house reliable coverage, multiple Access

Point (AP) units need to be deployed around the house. An

AP is a Raspberry Pi B+ micro-computer interfaced with two

nRF51822 BLE receivers, which employ antennas in orthogo-

nal polarisations (a horizontal and a vertical dipole). In contrast

to the wearable device, the AP does not have power constraints

as it is mains-powered. Using two orthogonal polarisations at

the AP, we minimise the impact of the polarisation change of

the on-body antenna due to random orientation of the arm.

Fig. 4 (bottom) shows as an example the measured received

signal strength indication (RSSI) in the SPHERE house. In this

scenario, the wearable device was mounted on the wrist of a

user and it was separated from the receiver by two concrete

walls. We also considered a number of body rotations through

360o and two different arm positions. The transmission power

was set to 0dBm. The RSSI is shown as cumulative distribution

function (CDF) for the best and the worst of the two receiver

antennas (the horizontal dipole was the best antenna in 63%

of the cases in this scenario). We can notice an approximately

15dB dynamic range on the received signal strength that

solely depends on the body orientation and arm position with

respect to the receiver. We can also see a difference of up to

approximately 7dB (with an average of 3dB) between the two

receiver antennas. To translate the RSSI levels to packet error

rate (PER) and provide more intuition on the practical benefits

of the two orthogonal antenna polarisations at the receiver

and on the impact of body orientation, Fig. 4 (bottom) also

shows the respective measured PER at different RSSI levels.

We notice that errors begin to occur at −80dBm, while at

−102dBm the reception is completely lost.

Early prototyping suggests that our energy-conscious wear-

able sensor design offers a battery lifetime of several months

facilitating the use of energy harvesting, while with the use of

multiple receivers and with careful antenna design we provide

reliable and robust full-house coverage.
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D. Integration and Monitoring

The environment and wearable sensors are integrated as

follows. The environment sensor network, as described in

Sec.III-A, is functional with a Raspberry Pi model B consti-

tuting the SEG (running an MQTT client). Since the on-body

sensing system requires multiple APs for maximum coverage,

multiple Raspberry Pi APs have been deployed in the SPHERE

house with a distributed middleware for capturing data from

the on-body sensors. APs cooperatively negotiate the collected

data packets in order to reduce redundancy and optimise

data gathering. The middleware on the APs is based on

SENSOMAX [33], which is an agent-based distributed RTOS

(Real Time Operating System) supporting multiple concurrent

applications. The concurrency feature on the APs allows them

to integrate and apply distributed computational algorithms

for various purposes such as error correction of the received

packets. Over-The-Air (OTA) updating and reprogramming of

the on-body sensors is another important features of APs, by

which the firmware and systematic configuration of devices

can be modified dynamically. The APs act as the SBG,

being responsible for conveying data and carrying out required

functionalities in a reliable manner. The agent-based nature of

SENSOMAX can be utilised for fault-detection, by sending

smart agents around the network, looking for anomalies in the

access points. Such a fault-detection feature promotes reflec-

tivity in the network, whereby the performance of the APs

can be optimised proactively with regards to their occupied

memory and processing. The same physical Raspberry Pies

implement the distinct logical roles of both SEG and SBG.

The House’s ambient data and on-body data are streamed

over an MQTT stream to the Next Unit of Computing (NUC)

Intel computer serving as the SHG. The SPHERE Home

Gateway is a Linux server hosting a number of software

components, including an ActiveMQ open source messaging

and integration patterns server (supporting MQTT v3.1 broker)

and an Apache web server.

Fig. 5. Dashboard prototype showing the status and readings from sensors
in different areas of the SPHERE living lab.

We have developed a prototype dashboard (shown in Fig.5)

to display live sensor data using a range of different visu-

alisation techniques. These include simple images (for room

occupancy, door contact, water flow), gauges (electricity con-

sumption), thermometer-like meters (temperature and humid-

ity) and graphs (electricity consumption, noise and light levels)

representing the current state of sensors deployed in the

SPHERE house. In addition to displaying the live state of

sensors in the SPHERE house, the dashboard also allows for

raw sensor data to be viewed and exported in JSON format.

The dashboard has been implemented using the Bootstrap

framework making it well suited not only for computers and

laptops, but also for mobile devices. Graphical components

have been developed based on open source public Javascript

(JS) libraries, such as Dygraphs. MQTT data is supplied to

the JS MQTT client over Websockets – natively supported by

the ActiveMQ. The dashboard’s evolution involves integration

of wearable devices’ (Sec.III-C) and video sensors’ (Sec.III-B)

data. Another suit of visual interface will be designed for home

owners to view, control and manage access to the collected

data. Subsequently, visual tools for doctors, carers and family

members are to be provided to enable remote care and in-depth

analysis of home habitant’s activities.

IV. CONCLUSIONS AND FUTURE WORK

Many systems in the area of AAL focus on specific med-

ical conditions, and can only recognise and act on specific

activities. Medication intake, fall detection, and activity level

monitoring, for example, are just a few of the applications

often tackled in separation. To meet the healthcare challenges

posed by an ageing society, SPHERE aims to create a compre-

hensive, multi-modal, system that uses complimentary sensing

technologies to provide a more complete view of users’ ADL.

The goal is to connect doctors, carers, and family members



with people suffering from various medical conditions, allow-

ing them to live their lives independently in the comfort of

their own homes, and at the same time significantly reducing

the costs associated with healthcare provision.

In this paper, we presented an overview of the SPHERE

architecture and described developments made in various

technical areas using off-the-shelf and prototype sensing tech-

nologies. Through the mixture of these technologies the entire

system is envisaged to be affordable for a typical household,

costing no more than few thousands GBP. The work in

SPHERE is addressing critical issues such as cost, power con-

sumption, scalability, interoperability, and privacy to enable

large-scale deployment of the system for healthcare studies and

real-life AAL applications. We believe that sharing research

data can help accelerate the progress of research and its

application for the public good. As such, we aim to make data

collected from studies carried out in the SPHERE living lab

publicly available (subject to appropriate safeguards), together

with rich metadata and contextual information to enable data

mining and activity recognition algorithms to be developed.
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activity recognition in a home setting,” in Proc. 10th Int Conf. on

Ubiquitous Computing. ACM, 2008, pp. 1–9.
[23] L. Chen and I. Khalil, “Activity recognition: Approaches, practices

and trends,” in Activity Recognition in Pervasive Intell. Environments.
Springer, 2011, pp. 1–31.

[24] I. Gorton and J. Klein, “Distribution, data, deployment: Software archi-
tecture convergence in big data systems,” IEEE Software, vol. PP, no. 99,
pp. 1–1, 2014.

[25] S. Soro and W. Heinzelman, “A survey of visual sensor
networks,” Advances in Multimedia, 2009. [Online]. Available:
http://dx.doi.org/10.1155/2009/640386

[26] M. Munaro and E. Menegatti, “Fast RGB-D people tracking for service
robots,” Autonomous Robots, pp. 1–16, 2014.

[27] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computa-

tional Harmonic Analysis, vol. 21, no. 1, pp. 5–30, 2006.
[28] S. Gerber, T. Tasdizen, and R. Whitaker, “Robust non-linear dimension-

ality reduction using successive 1-dimensional laplacian eigenmaps,” in
Proc. 24th Int. Conf. on Machine learning. ACM, 2007, pp. 281–288.

[29] Bluetooth SIG, “Specification of the Bluetooth System -
Covered Core Package version: 4.0,” [Online] Available at:
https://www.bluetooth.org/en-us/specification/adopted-specifications,
2010.

[30] M. Siekkinen, M. Hiienkari, J. Nurminen, and J. Nieminen, “How low
energy is bluetooth low energy? Comparative measurements with Zig-
Bee/802.15.4,” in Proc. IEEE Wireless Communications and Networking

Conference Workshops (WCNCW), 2012, pp. 232–237.
[31] E. Mellios, A. Goulianos, S. Dumanli, G. Hilton, R. Piechocki, and

I. Craddock, “Off-body channel measurements at 2.4 ghz and 868 mhz in
an indoor environment,” in Proc. 9th Int. Conf. on Body Area Networks

(BODYNETS), 2014.
[32] N. Y. Hammerla, R. Kirkham, P. Andras, and T. Ploetz, “On preserving

statistical characteristics of accelerometry data using their empirical
cumulative distribution,” in Proc. Int. Symp. on Wearable Computers

(ISWC), 2013, pp. 65–68.
[33] M. Haghighi, M. Bocian, O. Oddbjornsson, J. H. Macdonald, and J. F.

Burn, “Synchronous data acquisition from large-scale clustered wireless
sensor networks,” in 10th IEEE Vehicular Technology Society APWCS,
August 2013.


