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Synopsis

In this study a phenomenological constitutive model is proposed to describe the finite, nonlinear,
viscoelastic behavior of glassy polymers up to the yield point. It is assumed that the deformation
behavior of a glassy polymer up to the yield point is completely determined by the linear relaxation
time spectrum and that the nonlinear effect of stress is to alter the intrinsic time scale of the material.
A quantitative three-dimensional constitutive equation for polycarbonate as a model polymer was
obtained by approximating the linear relaxation time spectrum by eighteen Leonov modes, all
exhibiting the same stress dependence. A single Leonov mode is a Maxwell model employing a
relaxation time that is dependent on an equivalent stress proportional to the Von Mises stress.
Furthermore, a Leonov mode separates the~elastic! hydrostatic and~viscoelastic! deviatoric stress
response and accounts for the geometrical complexities associated with simultaneous elastic and
plastic deformation. Using a single set of parameters, the multi-mode Leonov model is capable of
describing realistic constant strain rate experiments, including the strain rate dependent yield
behavior. It is also capable of giving a quantitative description of nonlinear stress-relaxation
experiments. ©1996 Society of Rheology.

I. INTRODUCTION

In the description of the deformation behavior of solid polymers, usually a distinction
is made between the linear viscoelastic regime at low stress, the nonlinear viscoelastic
response at moderate stress, and the yield behavior at high stress~Ward, 1990!. The linear
viscoelastic deformation is adequately described using linear response theory, which
results in the well known Boltzmann single integral representation. The nonlinear regime
has been, and still is, an active field of research, and a large number of theories have been
put forward. Most of these theories aim at a one-dimensional description of the nonlinear
behavior at moderate strain, often for a special deformation mode like, for example,
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creep. An extensive survey of these theories can be found in the monograph by Ward
~1990!. Yield of polymer materials is classically described by using yield criteria, of
which the pressure and rate-dependent Von Mises criterion seems to be most successful.
After yielding, strain hardening sets in, sometimes preceded by intrinsic strain softening.

Recently, several attempts have been made to come to a more unified approach to the
deformation behavior of polymer materials. The ‘‘BPA model’’ by Boyceet al. ~1988!
and the related ‘‘full-chain model’’ by Wu and van der Giessen~1993! combine the
elasto-viscoplastic response at small strain and the strain hardening behavior during plas-
tic deformation, into a single three-dimensional constitutive equation. The BPA model
was later refined by Arruda~1992! with respect to the strain-hardening response and by
Hasanet al. ~1993! to include the effect of aging and rejuvenation. In all these models no
explicit use is made of a yield criterion. Instead, the deformation behavior is determined
by a single relaxation time that is dependent on an equivalent stress~proportional to the
Von Mises stress!. This results in a sharp transition from solidlike to fluidlike behavior,
similar to an elasto-plastic response employing a rate-dependent Von Mises criterion.

The principle to describe yieldlike behavior by use of a stress-dependent relaxation
time dates back to Tobolsky and Eyring~1943!. It was used later by Haward and
Thackray~1968! who added a Langevin spring to account for the finite extensibility of
the entanglement network. However, the use of a single stress-dependent relaxation time
cannot account for the~non!linear viscoelastic response at small and moderate strains.
Moreover, using a single relaxation time results in an abrupt transition from elastic to
viscous behavior that is rarely seen in practice. Therefore, a description employing a
spectrum of relaxation times would be more appropriate. If the additional assumption is
made that all relaxation times depend in the same way on the total stress, one arrives at
the principle of time-stress superposition, equivalent to time-temperature superposition,
where it is assumed that all relaxation times depend in the same way on temperature.
Time-stress superposition implies that the nonlinear effect of stress is to alter the intrinsic
time scale of the material, hence it is sometimes referred to as a ‘‘stress clock’’~Bernstein
and Shokooh, 1980!.

Other choices are possible as well. Valanis~1971! assumed that strain instead of stress
accelerates relaxation processes in a material. However, using the total strain as a variable
implies that the material under consideration is a solid and since all materials ultimately
flow, it is better to use a fluid point of view~Bernstein and Shokooh, 1980!. Shay and
Caruthers~1986! considered a volume clock to describe nonlinear viscoelastic behavior
and yielding. However, in this way, they were unable to recover Von Mises like yield
behavior that is observed experimentally. Hasan and Boyce~1995! used a spectrum of
activation energies to describe the distributed nature of local plastic transformations.
However, using a spectrum of activation energies results in thermorheological complex
behavior which is not always observed in practice.

The concept of time-stress superposition has been used frequently to describe nonlin-
ear viscoelastic behavior. It was incorporated in the Boltzmann integral by Schapery
~1969! using the concept of a reduced time~Leaderman, 1943!. Bernstein and Shokooh
~1980! showed that the introduction of special stress-clock functions can transform a
viscoelastic relation@in their case, the class BKZ equations~Larson, 1988!# into an
elastic-perfectly plastic constitutive equation. In this paper, time-stress superposition is
used to obtain a three-dimensional constitutive equation, which provides a unified de-
scription of compressible, finite, nonlinear viscoelastic behavior and yield. The constitu-
tive relation will be verified experimentally using polycarbonate as a model polymer.

It is well known, that the viscoelastic behavior of polymers changes with time, a
thermo-reversible process called ‘‘physical aging’’~Struik, 1978!. In the present investi-
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gation, all experiments were performed on separate samples of identical thermal history,
their age exceeding by far the longest time in the experiments. It is, therefore, assumed
that the all samples are equally affected by physical aging at the start of the experiment,
and, moreover, that aging during the experiments can be neglected. Therefore, to a first
approximation, aging will not be taken into account.

II. THEORY

A. Single mode approach

In a previous paper~Tervoortet al., 1994! an elasto-viscoplastic equation for polymer
glasses~and other materials! was introduced, the so-called ‘‘compressible Leonov
model’’ ~Leonov, 1976!. In this theory, a decoupling of the volume response and isochoric
‘‘shape’’ response was achieved, by assuming that the free energy of the system is deter-
mined by two state variables: the relative volume deformation,J 5 det~F!, whereF is
the deformation gradient and the isochoric Cauchy–Green strain tensor,B̃e@det~B̃e! 5 1,
in case of elastic behaviorB̃e 5 J22/3F•FT, see also Rubin~1994! and Baaijens~1991!#.
Using a formalism developed to derive thermodynamically consistent constitutive equa-
tions ~Jongschaapet al., 1994!, it was shown that the hydrostatic stress is coupled to the
volume deformation, whereas the deviatoric stress is determined by the isochoric~con-
stant volume! elastic strainB̃e . Furthermore, it was assumed that the volume deformation
remained elastic, whereas the accumulation of isochoric-elastic strain was reduced be-
cause of a plastic strain rateDp . At small volume deformations (J ' 1) the compress-
ible Leonov model reduces to

FT 5 K~J21!I1GB̃e
d ,

B̃
°
e 5 ~D2Dp!•B̃e1B̃e•~D2Dp!,

J̇ 5 J tr~D!.

~1!

Here,K is the bulk modulus,G the shear modulus, the superscript ‘ ‘d’ ’ denotes the

deviatoric part, andB̃
°
e is the Jaumann or corotational derivative ofB̃e

B̃
°
e 5 B̃

.

e2W•B̃e2B̃e•W ~2!

with the vorticity tensorW. The plastic strain rateDp , which reduces the accumulation
of isochoric-elastic strain, was constitutively described by the Eyring equation. The
Eyring equation for plastic flow is a semiempirical relation which describes stress-
activated flow of structural units in a material, like segments in case of a polymer. It is
depicted three dimensionally as~Tervoortet al., 1994!

3
Dp 5

Td

2h~teq!
,

h~teq! 5 At0
~teq/t0!

sinh~teq/t0!
5 h0a0~teq!,

teq5 A1
2 tr~Td•Td!.

~3!

Here,teq is an equivalent stress, proportional to the Von Mises stress. The material
constants~at constant temperature!, A andt0, are related to, respectively, the activation
energyDH, and the activation volumeV*
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A 5 A0 expSDHRTD, t0 5
RT

V*
~4!

with A0 a pre-exponential factor involving the fundamental vibration frequency,R the gas
constant, andT the absolute temperature. The productAt0 is the zero-shear viscosityh0.
The shift functionas~teq! is in fact a dimensionless viscosity, which is equal to one when
teq, t0 and rapidly decreases to zero whenteq> t0.

From Eqs.~1! and~3! it can be seen that the deviatoric stress response as described by
the compressible Leonov model~to be called: ‘‘a single Leonov mode’’! can be depicted
as a single Maxwell model employing a nonlinear relaxation timel 5 h/G ~see Fig. 1!.

In the Eyring approach, it is assumed that deformation processes are essentially always
present and that stress, like temperature, merely changes the rate of deformation. This is
reflected by the functional dependence of the relaxation time on stress@Eqs.~1! and~3!#.
At low equivalent stress~teq! t0! there is a linear region where the relaxation time is
constant,l 5 l0 5 h0 5 h0/G. At higher stress~teq> t0! the relaxation time de-
creases rapidly as described by the shift functionas~teq!. Thus, the intrinsic time scale of
the material~‘‘the internal clock’’! is changed by the application of stress, hence the name
‘‘stress-clock’’ material~Bernstein and Shokooh, 1980!. The nonlinear effect of stress can
be observed most clearly in a constant stress experiment, like the creep test. For a creep
experiment at a very low~equivalent-! stress level~teq, t0!, the compliance curve of a
single Leonov mode is determined by the linear relaxation timel0 as can be seen in Fig.
2.

FIG. 1. Graphical representation of the deviatoric stress response of a single Leonov mode.

FIG. 2. Compliance curves for a single Leonov mode at various stress levels.
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For creep tests performed at higher stress levels~teq> t0!, the relaxation time is
reduced by a factoras~teq!. On a logarithmic time axis, this results in a horizontal shift
of the compliance curve~hence the name ‘‘shift function’’!. A single Leonov mode is not
capable of predicting a realistic compliance curve, since it is dominated by a single
relaxation time.

A typical set of tensile curves calculated from a single Leonov mode is depicted in
Fig. 3. As with the creep test, a single Leonov mode is not able to offer a realistic
description of the experimental curve. Comparing an experimental tensile curve with the
model predictions, a single Leonov mode only accounts correctly for the initial modulus
and the~strain-rate dependent! ‘‘yield stress’’. This is not surprising, since these are
essentially the material parameters which are supplied to the model. However, there is a
serious discrepancy between the calculated and experimental curve before and after the
experimental yield point~maximum in the tensile curve!. An experimental curve has a
more gradual transition from elastic to yield behavior, and the yield point is, therefore,
found at a higher strain. Inhomogeneous deformation and possible strain softening ac-
count for the discrepancy after the ‘‘yield point.’’ In contrast, before the yield point the
deformation is fairly homogeneous and the deviation between model prediction and the
experimental curve must be due to something else. In this article it will be shown that a
quantitative description of the tensile test and in fact the complete three-dimensional
nonlinear viscoelastic behavior of polymer glasses can be obtained by using a spectrum
of stress-dependent relaxation times rather than one.

It is to be noted that the inability of a single Leonov mode to describe accurately the
nonlinear viscoelastic response of a polymer glass is inherent to all models which employ
only one stress-dependent relaxation time~Boyceet al., 1988; Wu and van der Giessen,
1993!.

B. Multi-mode approach

From polymer physics it is well known that time-dependent behavior of amorphous
polymers can result from a wide variety of molecular transitions. The most important of
these is the glass transition~a transition! which is associated with main chain segmental

FIG. 3. Calculated tensile curves for a single Leonov mode at various rates of strain.
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motion. Many polymers also exhibit so-called secondary transitions~b transitions! origi-
nating from the motions of side groups, end groups, or restricted motion of the main
chain ~Ward, 1990!.

The time dependence resulting from a specific molecular transition is mathematically
represented by a spectrum of relaxation times. In contrast, it is normally assumed that the
activation of a molecular transition by temperature is determined by a single parameter,
the activation energyDH. This implies that all the relaxation times due to a specific
molecular transition dependent in the same way on temperature, resulting in the well
known time-temperature superposition principle~thermo-rheological simple behavior!.
According to this principle, the influence of temperature on viscoelastic properties, whose
time dependence is determined by~a set of! relaxation time~s!, can be described by a
so-called reduced timet* ~Leaderman, 1943!:

t* 5 E
0

t dt8

aT
. ~5!

On a logarithmic time axis, dividing the real timet by a shift factoraT , results in a
horizontal shift by a factor log(aT), whereaT is the ratio of the relaxation times at
temperaturesT andT0 .

In practice, experimental verification of the applicability of time-temperature superpo-
sition consists of two parts~Ferry, 1980!: first it is attempted to construct a smooth master
curve of a viscoelastic quantity like the creep compliance at a certain reference tempera-
ture. This is done by shifting curves measured at different temperatures horizontally
along the logarithmic time axis. Secondly, if a smooth master curve is obtained, a plot of
the resulting shift factors as a function of temperature must obey a ‘‘familiar’’ relation,
e.g., the Arrhenius equation or the WLF equation.

According to the Eyring approach, besides activation by temperature, a molecular
transition can also be activated by stress~to be more precise: by the equivalent stressteq!.
Again, it is normally assumed that stress activation is described by a single parameter, the
activation volumeV* . Indeed, determination of the activation energy and volume is often
used for the identification of certain molecular transitions~Ward, 1990!. It is therefore
logical to assume that, as in the case of activation by temperature, all relaxation times are
the same function of thetotal equivalent stress.This leads to the principle of time-stress
superposition, which states that the nonlinear effect of stress can be described by using a
reduced time, as in the case of temperature. It implies that, if a discrete spectrum of
Leonov modes is used as an approximation of the relaxation time spectrum, all the modes
will be shifted by the same factoras~teq!, where teq is the total equivalent stress.
Furthermore, it implies that the experimental verification of the applicability of time-
temperature superposition, as described above, could also be used to justify time-stress
superposition. Data obtained for constant stress levels must shifts to a smooth master
curve, and the resulting shift factors as a function of equivalent stress must obey a
familiar relation, like the Eyring Eq.~3!. In essence, for polymer glasses, time-stress
superposition implies that yielding can be regarded as a stress induced glass transition.

III. EXPERIMENT

Experiments were carried out on test specimens produced according to ASTM D 638
from extruded sheets of Makrolon~bisphenol A polycarbonate, Bayer! 2 mm thick. Poly-
carbonate was selected as a model polymer since, at room temperature, it exhibits only
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one active relaxation mechanism of interest—the glass transition. At room temperature
the b transition, which is situated at2100 to 250 °C, is only relevant for very fast
processes.

Stress relaxation experiments were performed on a Frank 81565 tensile tester, whereas
creep and constant strain rate experiments were performed on a Zwick Rel servo hydrau-
lic tensile tester~20 kN!. In all cases the extension was measured using an Instron
~2020-602! strain gauge extensometer with a measure length of 50 mm and a range of
62.5 mm. The radial strain was measured using an Instron~2640-008! transverse exten-
someter. The relative accuracy in the force and strain measurements was 1%.

Stress relaxation experiments with loading times not exceeding 104 s were performed
at strains of 0.5%–3%. Creep experiments with loading times not exceeding 103 s were
performed in dead weight loading at loads of 10–55 MPa. The strains and loads in the
stress relaxation and creep experiments were applied within 1 s. Tensile test experiments
were performed at constant strain rates up to 1022 s21. Each experiment was performed
on a new sample at room temperature. All test samples had the same age, which exceeded
by far the longest time in the experiments.

IV. RESULTS

In Sec. II it was argued that the deformation behavior of a glassy polymer is deter-
mined by the linear relaxation time spectrum, which is shifted to shorter times when
stress is applied. In this section, the admissibility of this time-stress superposition prin-
ciple will be verified experimentally, using polycarbonate as a model polymer. Subse-
quently, the linear relaxation time spectrum will be determined in order to complete the
multi-mode Leonov model for polycarbonate. Finally, the model will be verified using
constant strain rate experiments and stress relaxation experiments~in tensile deforma-
tion!.

A. Admissibility of time-stress superposition

In order to verify experimentally the admissibility of time-stress superposition for
polycarbonate, it was first attempted to construct a smooth master curve from a number
of creep tests at different stress levels, as described in Sec. II B. The results of the creep
tests are depicted in Fig. 4.

FIG. 4. Creep compliance of polycarbonate at various loads at 20 °C.
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These creep curves were shifted horizontally along the logarithmic time axis with
respect to the 10 MPa reference curve. The resulting master curve is depicted in Fig. 5.

From Fig. 5, it is clear that a smooth compliance master curve can be constructed by
horizontal shifting of the creep tests at different stresses. It must be emphasized that the
compliance master curve at 10 MPa is a ‘‘virtual’’ curve that will strongly deviate from
an experimental creep test on the same time scale, due to aging effects.

The logarithm of the shift factors log(a10) necessary to construct the master compli-
ance curve at 10 MPa~see Fig. 5!, are tabulated in Table I as a function of the creep load.

The second part of the experimental verification of time-stress superposition consists
of fitting the shift data from Table I with the Eyring Eq.~3!. A plot of all the shift factors
with respect to the 10 MPa creep curve is depicted in Fig. 6.

The solid line is a fit using the Eyring expression for the shift function~3!. It is clear
that the creep data are determined by one Eyring shift function. Therefore, the second
condition is also met, and we may assume that time-stress superposition may be applied.

B. Material parameters

In the previous section it was verified experimentally that time-stress superposition
applies to polycarbonate. To complete the multi-mode Leonov model for polycarbonate,
the material parameters have to be determined.

1. The Eyring parameters

The Eyring viscosity function~3! which describes the nonlinearity in the stress re-
sponse is determined by two parameters, the zero-shear viscosityh0 and the nonlinearity
parametert0. These material constants may be determined by fitting a plot of the vis-
cosity as a function of equivalent stress. Therefore, we need to extract viscosity data from
the creep tests at different stress levels~Fig. 4!. In principle, this should be done by
measuring the plateau-creep rate~«̇pl! of each creep experiment. The plateau-creep rate is

FIG. 5. Construction of the master curve of the creep compliance at a reference stress of 10 MPa.

TABLE I. Shift factors resulting from the construction of the 10 MPa master compliance curve.

s0 @MPa# 10 15 20 25 30 35 40 45 50 52.5 55
log(as 10) @2# 0 21.5 22.6 23.9 25 26.5 27.4 28.6 210 211.4 212.2
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determined by constancy of the creep rate at an imposed~constant! creep loads0 and
therefore defines a viscosityhpl

e
5 s0 / «̇pl . Note that this is an extensional viscosity~as

denoted by the superscript ‘‘e’’ !, since the creep data were obtained from tensile experi-
ments. In terms of the Leonov model, the plateau-creep viscosityhpl

e is equal to the sum

of the viscosityh i
e 5 h 0i

e as of all the Leonov modes separately

hpl
e

5
s0

«̇pl
5 (

i
h0i
e as~teq

pl !, ~6!

whereteq
pl is the equivalent stress associated with the creep loads0. The plateau-creep

rate is normally obtained from aSherby–Dorn plot, which is a graph of the creep rate
versus creep strain.

Due to the limited experimental time window, a plateau-creep rate was observed only
at the highest creep load of 55 MPa. From a Sherby–Dorn plot the value of the plateau-
creep rate was estimated to be«̇pl 5 1025 s21 leading to a plateau-creep viscosity of:
hpl
e

5 553 105 MPa s~see Fig. 7!. For all the other creep tests, a constant creep rate
could not be established experimentally. However, according to Eq.~6!, the ratio of the
plateau-creep viscosities at two different stress levelsteq

1 andteq
2 , is equal to the ratio of

the shift factors at these stress levels

hpl
e ~teq

1 !

hpl
e ~teq

2 !
5

as~teq
1 !

as~teq
2 !

. ~7!

Therefore, the value of the plateau-creep viscosity at 55 MPa may be used to convert the
plot of shift factors~Fig. 6! to a graph of viscosity as a function of equivalent stress~Fig.
8!.

In order to obtain an accurate estimation of both the activation volume~t0! and the
zero-shear viscosityh0, it is necessary to have viscosity data up to the~equivalent! yield
stress. Therefore, yield data obtained by tensile testing at different strain rates were
included in Fig. 8. Note that a yield point also defines a viscosity since it is determined
by the moment the stress becomes constant at an imposed constant strain rate. Since it is

FIG. 6. Logarithm of the shift factors with respect to 10 MPa, obtained from the creep tests, as a function of
equivalent stress.
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irrelevant whether this steady-state situation is achieved at imposed stress or imposed
strain rate, the ‘‘yield viscosity’’ is also equal to the sum of the viscosities of all the
Leonov modes separately

hy
e

5 (
i

h0i
e as~teq

y !, ~8!

whereteq
y is the equivalent yield stress.

The results of the tensile tests at different strain rates are tabulated in Table II. A plot
of all the viscosity data is depicted in Fig. 8. In contrast to Fig. 6, a logarithmic stress axis
is used to show more clearly the linear region characterized by the zero-shear viscosity
h0. The solid line is a best fit using a single Eyring viscosity function. From Fig. 8 it is

FIG. 7. Sherby–Dorn plot for the determination of the plateau-creep rate at 55 MPa.

FIG. 8. A plot of the elongational viscosity as a function of equivalent stress, obtained from creep data~,! and
yield data~s!. The solid line is a fit using a single Eyring function.
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clear that both yield and creep are determined by the same Eyring process. The best fit
resulted in a value fort0 5 0.89 MPa and forh0 5 4.656131020 MPa s.

2. Linear viscoelastic parameters

In the limit of small stress and strain, the multi-mode Leonov model reduces to a
generalized Maxwell model~in shear!. Therefore, in order to find the linear Leonov
parameters, the linear relaxation time spectrum needs to be determined. In Sec. IV A the
10 MPa compliance master curve was obtained through application of the time-stress
superposition principle. This compliance curve is complete towards the long time limit,
since the plateau-creep regime was estimated. However, the 10 MPa compliance master
curve does not constitute the linear compliance curve. The value of the nonlinearity
parametert0 indicates that above an equivalent stress of 0.89 MPa polycarbonate already
behaves in a nonlinear way. Therefore, the linear compliance curve could only be ob-
tained indirectly by shifting the 10 MPa master curve horizontally by a factor
as(teq

10 MPa). The resulting linear compliance curve is depicted in Fig. 9. Again, this is a
virtual curve, since aging has not been taken into account. Only the first part of this
virtual curve is equal to the experimental linear compliance curve for polycarbonate of
this particular age and grade. At longer times, the experimental curve will deviate from
the virtual linear compliance curve~Fig. 9! due to aging.

Also plotted in Fig. 9 is the single model approximation of the linear compliance
curve, which is obtained by only taking into account the initial ‘‘glassy’’ response and the
final ‘‘fluid’’ response ~characterized by the glassy complianceDg and the total zero-
shear viscosityh0

e!.
The solid line in Fig. 9 is a fit using a generalized Kelvin–Voigt model

TABLE II. Viscosities from yield points at different rates of strain as a function of equivalent stress.

«̇ @s21# 1.431024 1.531024 1.431023 1.431023 1.431023 1.631022 1.431022

syield @MPa# 61.7 59.9 63.6 63.1 63.1 65.3 66.6
hyield @MPa s# 4.53105 4.13105 4.63104 4.53104 4.53104 4.23103 4.73103

teq
yield 35.6 34.6 36.7 36.4 36.4 37.7 38.5

FIG. 9. The linear compliance curveD(t) ~s!. The solid line is a fit using a generalized Kelvin–Voigt model;
for comparison the single mode approximation is added~dashed line!.

789NONLINEAR VISCOELASTICITY OF POLYMER GLASSES



D~t! 5 Dg1 (
i 5 1

n

Di~12e2t/li!1
t

h0
e ~9!

with Dg 5 1/Eg , where the initial ~glassy! Young’s modulus was measured to be
Eg 5 2335 MPa. The fit was obtained usingCONTIN, a constrained regularization pro-
gram developed to invert ill-posed linear integral equations~Provencher, 1982a, 1982b!
~see appendix!. Using an equidistant grid of relaxation times, eighteen modes were nec-
essary to obtain an accurate description of the linear compliance curve. At this stage of
the research, no further attempts were made to reduce the number of modes.

In order to obtain the linear Leonov parameters, the linear tensile compliance curve
D(t) must be converted to the linear shear relaxation modulus curveG(t). This was done
by invoking the correspondence principle~Tschoegl, 1989!, assuming a constant bulk
modulusK 5 4300 MPa~which corresponds to the experimentally determined initial
Poisson ratio of polycarbonaten 5 0.41 @2#, see appendix!. The resulting shear relax-
ation modulus is depicted in Fig. 10; the eighteen shear moduli and relaxation times are
tabulated in Table III. It must be emphasized that these linear parameters bear no physical
meaning, only the relaxation modulusG(t) itself is a material function.

C. Model verification

In Sec. II B it was argued that the finite nonlinear viscoelastic behavior of polymer
glasses is determined by the linear relaxation time spectrum which is shifted to shorter
times when stress is applied. In the previous Sec. IV B, the linear relaxation time spec-
trum for a model polymer, polycarbonate, was approximated using eighteen Leonov
modes, all subdued to the same stress dependence. In this section, this multi-mode
Leonov constitutive equation of polycarbonate will be verified by constant strain rate
experiments~homogeneous uniaxial tensile tests! and stress-relaxation experiments.

1. Uniaxial tensile test

The first verification experiment considered is a standard uniaxial tensile test at vari-
ous constant strain rates~constant cross head speed!. Figure 11 shows a comparison
between the experimental data~open symbols! and the numerical predictions~solid line!.

FIG. 10. The linear shear relaxation modulusG(t) calculated from the linear tensile compliance curveD(t) as
described in the appendix.
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It is clear that, in contrast to a single mode Leonov model~see Fig. 3!, the multi-mode
Leonov model provides an quantitative description of the strain rate dependent ‘‘yield
behavior’’ of polycarbonate.

In the multi-mode Leonov model, polycarbonate is essentially regarded as a highly
nonlinear fluid. It is, therefore, instructive to divide both stress and strain data in Fig. 12
by the constant applied strain rates and make a plot of the extensional viscosity versus
time, as is common practice in rheology.

During the tensile test the lateral contraction was also measured. Figure 13 shows a
comparison between the experimental data~open symbols! and the numerical predictions
~solid line!. The dashed line is the prediction for an elastic solid with a~constant! Poisson
ratio equal to the initial Poisson ratio of polycarbonaten 5 0.41.

TABLE III. Linear Leonov parameters obtained by fitting the linear relaxation modulus.

i l i @s# Gi @MPa# h i 5 l i•Ei @MPa s#

1 0.7080e104 0.2254e102 0.1596e106
2 0.3548e106 0.9810e101 0.3481e107
3 0.2512e107 0.1096e102 0.2753e108
4 0.1778e108 0.1354e102 0.2407e109
5 0.1259e109 0.1633e102 0.2056e110
6 0.8913e109 0.1687e102 0.1503e111
7 0.6310e110 0.2125e102 0.1341e112
8 0.4467e111 0.2331e102 0.1041e113
9 0.3162e112 0.3336e102 0.1055e114
10 0.2239e113 0.3642e102 0.8153e114
11 0.1585e114 0.4226e102 0.6698e115
12 0.1122e115 0.4532e102 0.5085e116
13 0.7943e115 0.5148e102 0.4089e117
14 0.5623e116 0.7140e102 0.4015e118
15 0.3981e117 0.5088e101 0.2026e118
16 0.2818e118 0.3992e103 0.1125e121
17 0.1995e119 0.6563e101 0.1310e120
18 0.1413e120 0.2049e101 0.2894e120

FIG. 11. Standard uniaxial tensile experiments at various strain rates~open symbols!, compared to model
predictions~solid lines!.
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From Fig. 13 it is clear that the multi-mode Leonov model also provides a quantitative
description of the strain-rate dependent volume behavior during tensile testing of poly-
carbonate up to the yield point.

2. Stress relaxation

In order to verify the description of the nonlinear viscoelastic behavior of polycarbon-
ate offered by the multi-mode Leonov model, nonlinear relaxation experiments were
considered. The results of experimental data and numerical calculations at various strain
levels are depicted in Fig. 14.

Note that all the stress relaxation experiments displayed in Fig. 14 are essentially
nonlinear, since the equivalent stress levels are well above the value of the nonlinearity
parametert0 5 0.89 MPa. In contrast, visually, the response up to 1% strain appears to
be quite linear, which illustrates that conclusions about true linear behavior can only be
drawn with great precaution. This becomes evident when describing these nonlinear

FIG. 12. Extensional viscosity buildup measured at various~Hencky! strain rates~symbols!, compared to
model predictions~solid lines!.

FIG. 13. Calculated radial strain during a constant strain rate tensile test~solid line, «̇ 5 1023 s21!, compared
to experimental data.
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stress-relaxation experiments. In an ideal stress relaxation experiment, it is assumed that
loading takes place instantaneously. In practice, however, loading always occurs over a
finite time. In case of true linear behavior, the difference in response between instanta-
neous and ramplike loading is negligible after ten times the loading time~Struik, 1978!.
In contrast, due to the nonlinear behavior, it was found that, in order to obtain a good
agreement between experimental data and calculations as displayed in Fig. 15, it was
necessary to take into account the exact loading program as used in the experiment.
Assuming an instantaneous loading program in the calculations resulted in differences
with the experiments which persisted much longer than ten times the experimental load-
ing time. This kind of ‘‘hidden’’ nonlinear behavior could be of importance when con-
sidering the influence of a short stress pulse on creep behavior~Struik, 1978!, as was also
mentioned by McKennaet al. ~1994!.

FIG. 14. Stress-relaxation experiments measured at various strain levels~open symbols!, compared to model
predictions~solid lines!.

FIG. 15. Calculated plane-stress shear test experiments, at various shear strain rates. The left axis is the shear
stress and the right axis is the normal stress in they direction.
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3. Shear test

Another possible verification experiment would be a plane-stress shear test also called
‘‘laboratory shear’’@see Fig. 14, the shear straing 5 tan~f!#. The predicted shear stress
t versus shear straing data is depicted in Fig. 15. Note that the yield points in tensile and
in shear deformation compare very well to a~strain rate dependent! Von Mises criterion.
This is due to the fact that the equivalent stressteq, which determines the nonlinear
response, is proportional to the Von Mises equivalent stress. Unfortunately, at the moment
we are not able to measure the shear stress response experimentally, nor could we find
accurate data in literature having the same thermal history as our samples.

D. CONCLUSIONS

A phenomenological constitutive model has been developed to describe the finite,
nonlinear viscoelastic behavior of polycarbonate, including yielding. The model is based
on stress-clock models used in the past, and seems a promising approach, within the
range of experiments performed. The basic model assumption is that the finite, three-
dimensional, nonlinear viscoelastic behavior~including yielding! of polycarbonate is de-
termined by the~in good approximation constant! bulk modulus, the linear shear relax-
ation time spectrum, and one nonlinearity parameter, which describes how the spectrum
is shifted to shorter times upon loading. The nonlinearity parameter~related to the acti-
vation volume! and the linear relaxation time spectrum can be determined on the basis of
creep experiments and constant strain rate experiments using time-stress superposition.
Polycarbonate was selected as a model system, since it exhibits only one relaxation
mechanism of interest at room temperature~the glass transition!. A quantitative three-
dimensional constitutive equation for polycarbonate as a model polymer was obtained by
approximating the relaxation time spectrum by eighteen Leonov modes. A single Leonov
mode is a Maxwell model, employing a relaxation time which is dependent on an equiva-
lent stress proportional to the Von Mises equivalent stress. Furthermore, a Leonov mode
separates the hydrostatic and deviatoric stress response, and accounts for the geometrical
complexities associated with simultaneous~large! elastic and plastic deformations.

The present research establishes the linear shear relaxation time spectrum as the key
quantity determining the nonlinear viscoelastic behavior of glassy polymers. Deviatoric
stress~and temperature! merely distort the time scale. It should be noted that mechanical
properties in general and viscoelastic behavior especially are also profoundly influenced
by physical aging~Struik, 1978!. It is now well established that under the influence of
aging the creep compliance curve shifts toward longer times, which can be quantified by
an aging-time shift factor as defined by Struik~1978!. However, all samples used in this
study had the same age, which by far exceeded the longest time in the experiment.
Therefore, to a first approximation, aging was not taken into account~which will cause
the model to be less accurate for differently aged samples!. As opposed to aging, it has
also been observed that plastic deformation beyond the yield point can result in a de-
crease of the viscosity, leading to intrinsic strain softening and a decrease of the yield
stress. This phenomenon is called ‘‘rejuvenation’’ and is thought to be the result of
mechanically ‘‘de-aging’’ the sample by plastic deformation~Hasanet al., 1993; Struik,
1978!. The good agreement between experiments and predictions for the stress-relaxation
experiments, as well as the applicability of time-stress superposition, suggest that for
monotone loading paths up to the yield stress, rejuvenation effects are not important.

It is also known that during plastic flow of a~glassy! polymer, the covalent bonded
chains give rise to steric hindrance, resulting in a rubberlike strain hardening behavior
~Arruda and Boyce, 1993!. In this study, however, only the response up to the yield point
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is considered~relative small deformations! and strain hardening is not taken into account.
Some aspects of strain hardening, like the state of deformation dependence and the issue
of finite extensibility will be discussed in a forthcoming paper.
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APPENDIX: INTERCONVERSION OF LINEAR VISCOELASTIC RESPONSE
FUNCTIONS

Interconversion of linear viscoelastic response functions in various modes of defor-
mation is most readily done by invoking the correspondence principle. According to this
principle, the appropriate Laplace transform of an elastic solution to a stress analysis
problem corresponds to the viscoelastic solution in the transform plane. The time-
dependent solution is then obtained by inverting the transform. The principle can only be
applied if the boundaries themselves do not change with time~Tschoegl, 1989!.

In case of step response functions the appropriate Laplace transform is the Carson
transform ~s-multipled Laplace transform!. As an example, substitution of the Carson
transformssĒ andsD̄ in the elastic relationE 5 1/D results in

Ē~s!D̄~s! 5
1

s2
.

Here, s is the transform variable and the overbar denotes the Laplace transform. Re-
transforming then yields the relation between the creep compliance and the relaxation
modulus, Eq.~A1!

E
0

t
D~t2t8!E~t8!dt8 5 t. ~A1!

Conversion of the creep compliance in tensile mode to the shear relaxation modulus can
be realized in a similar way. From Hooke’s law for isotropic elastic materials the relation
between the shear modulusG, the tensile complianceD, and the bulk modulusK reads

G 5
3K

9KD21
.

The Carson transform relation therefore becomes

sḠ~s! 5
3sK̄~s!

9sK̄~s!sD̄~s!21
.

Since it is assumed that the volume response remains elastic, the Laplace transform of the
bulk modulusK̄ equalsK0/s and the transform equation becomes

sḠ~s! 5
3K0

9K0sD̄~s!21
. ~A2!

This relation can be used to transform the experimental tensile compliance functionD(t)
@Fig. 9# to the shear relaxation modulusG(t) by collocation. To this extend, the experi-
mental compliance function was first fitted to a generalized Kelvin–Voigt model
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D~t! 5 Dg1 (
i 5 1

n

Di~12e2t/li!1
t

h0
e

with the Carson transform

sD̄~s! 5 Dg1 (
i 5 1

n
Di

11lis
1

1

sh0
e .

The fit was obtained usingCONTIN, a constrained regularization program developed to
invert ill-posed linear integral equations~Provencher, 1982a, 1982b!. The key feature
makingCONTIN particularly suitable for fitting ill-posed problems is the ability to incor-
poratea priori knowledge of the solution structure, like non-negativity of the Kelvin–
Voigt parameters, into the numerical algorithm~Mead, 1994!. A satisfactory fit was ob-
tained using a log-equidistant grid of eighteen relaxation times~see Fig. 9!. The next step
consisted of calculating for a range ofs values the Carson transform of the shear relax-
ation modulus,sḠ(s), by substitution of the Carson transform of the Kelvin–Voigt
representation ofD(t) into Eq. ~A2!. The resulting curve was fitted to a generalized
Maxwell model

sḠ~s! 5 (
i 5 1

n
Gilis

11lis
.

Again, the fit was obtained usingCONTIN, imposing non-negativity of the Maxwell pa-
rameters and constraining the zeroth and the first moment of the distribution to thea
priori known values of the glassy shear modulusGg and the zero-shear viscosityh0

Gg 5 (
i 5 1

n

Gi 5
3K0

9K0Dg21
,

h0 5 (
i 5 1

n

hi 5 (
i 5 1

n

Gili 5
h0
e

3
.

The first relation follows from Hooke’s law, whereas the second relation reflects the
Trouton ratio between extensional and shear viscosity. An excellent fit was obtained using
a log-equidistant grid of eighteen relaxation times. The resulting shear relaxation modu-
lus is depicted in Fig. 10 and the eighteen shear moduli and relaxation times are tabulated
in Table III. A check of the conversion procedure was provided by comparing the original
fit of the Carson transform ofD(t) with the generalized Maxwell fit of~the Carson
transform of! G(t), again using Eq.~A2!. A good agreement was obtained.
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