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Abstract— We present an identification framework for bio-
chemical systems that allows multiple candidate models to be
compared. This framework is designed to select a model that
fits the data while maintaining model simplicity. The model
identification task is divided into a parameter estimation stage
and a model comparison stage. Model selection is based on cal-
culating Akaike’s Information Criterion, which is a systematic
method for determining the model that best represents a set of
experimental data. Two case studies are presented: a simulated
transcriptional control circuit and a system of oscillators that
has been built and characterized in vitro. In both examples the
multi-model framework is able to discriminate between model
candidates to select the one that best describes the data.

I. INTRODUCTION AND BACKGROUND

Biochemical pathways are complex systems, often affected

by high levels of uncertainty in both reaction rates and

pathway connectivity. Reaction rates are model parameters,

which may be unknown or difficult to measure. Pathway

connectivity determines model structure and describes how

reaction components interact with each other. Model struc-

ture may be uncertain if chemical species react in unintended

ways. Obtaining a reliable mathematical representation is

important when trying to characterize or re-design a bio-

logical network, as is often the case in synthetic biology

applications.

In this paper we present a general architecture for model

selection in biological systems. The framework uses ex-

perimental data to estimate the parameters of each model,

then Akaike’s Information Criterion (AIC) is used to select

the best model from a set of candidates by processing the

residual error between estimated and experimental data.

In the recent literature, several studies have focused on

identification and estimation architectures for finding param-

eters of biochemical pathways. The suitability of different

optimization algorithms for biochemical kinetic parameters

estimation is discussed in [22], [10], [23]. Identifiability is

closely linked to parameter estimation and is of particular

importance for complex nonlinear systems. A global algo-

rithm based on differential algebra is proposed in [3], while

local identifiability is discussed in [16]; a local sufficient

condition is also given in [9]. An iterative scheme to optimize

identifiability of biochemical networks is offered in [11],

which is an extension of a method introduced in [27].

The AIC has been used successfully for biological model

identification in previous studies such as [26] and [12] where
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the authors focus on identification and reconstruction of

gene networks using linear models; [4] uses the AIC as a

statistical measure when determining network connectivity

from analysis of proteomic and genomic data, but does not

develop a mathematical model for the system.

The main contribution of this paper is a method for

choosing the best model from a set of candidates that

describe a set of experimental data. We discuss parameter

estimation in a biological context and summarize the main

results associated with Akaike’s Information Criterion.

A. Parameter Estimation

Parameter estimation is an important subclass of system

identification problems [21]. The goal is to identify a set of

parameters θ ∈ R
P that cause the model

y = F (θ)

to best fit the measured data y. Biological systems are

typically modeled with sets of ordinary differential equations,

so the parameter estimation problem becomes finding θ given

ẋ = f(x, θ)

y = h(x),

where x is the system state, usually concentrations of DNA,

mRNA, and proteins.

Parameter estimation problems are generally approached

by posing them as optimization problems, where the goal is

to minimize the difference between estimated and experimen-

tal data with respect to the model parameters, θ. Biological

parameter estimation problems are generally not suitable for

gradient-based approaches because they are non-convex and

solutions can easily fall into local-minima. In this context,

global search algorithms have often proved more successful

[23].

Simulated annealing is a well-studied global optimization

method for nonlinear cost functions. First introduced in [20]

and [8], the method is an analogy to the thermodynamic

process of annealing. The cost function’s value in parameter

space is treated as an energy landscape, where the goal is to

find the lowest energy state. At each step of the algorithm

a move is made in the parameter space. If this results

in a decrease in energy (∆E ≤ 0), the new parameters

are accepted. If energy increases, a probabilistic rule is

applied to decide whether the new parameters are accepted

or not. The probability that an energy-increasing move is

accepted, P (∆E) = exp(−∆E/kBT ), is a function of a

T , a temperature-like variable. T starts high to allow wide

exploration of the energy landscape, and decreases as the
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optimization proceeds to allow for fine tuning. Allowance

of occasional energy-increasing moves is what keeps the

optimization from getting stuck in local minima.

Simulated annealing has been used successfully in [6] and

[22] to estimate the parameters of ODE based models of

biochemical systems.

B. The Akaike Information Criterion

AIC is a method for model selection that trades off fitting

the data well and maintaining model simplicity. Given a

set of experimental data y, and a set of candidate models

M = {M1, ..., Mm} to fit the data, each characterized by

a parameter vector θi of size Pi, AIC [1] is a systematic

procedure for solving the model selection problem. This

method bridges the gap between information and likelihood

theory by offering an estimate of the Kullback-Leibler (KL)

distance [19] based on a maximized log likelihood value.

Suppose the true process (which has no parameters) is

described by y = G(z), where z is a random variable and y
is our measurement set. If G(z) is approximated by model

candidate M(z|θ), which depends on a parameter vector θ,

then the loss of information introduced by the approximation

can be measured with the KL distance

I(G, M) =

∫

G(z) log

(

G(z)

M(z|θ)

)

dz. (1)

This distance does not satisfy all the properties of a metric,

but represents a well-defined concept of “distance” between

the model and reality. If the model parameters need to be

estimated and the true process is unknown, (1) cannot be

directly computed. Rewriting it as

I(G, M) =

∫

G(z) log(G(z))dz

−

∫

G(z) log(M(z|θ)dz,

(2)

the first term is constant across models, so an estimate of (1)

is based only on the second term, which is a relative KL

distance. Denoting the parameter estimates as θ̂, given model

M and a set of data y, Akaike [1] found that this relative

KL distance is approximated by a biased function of the log

likelihood of the estimation process:

AIC(G, M) = −2 log(L(θ̂|y)) + 2P, (3)

where L denotes the log likelihood function (the factor 2
was introduced for historical reasons). The term 2P is the

estimated bias.

If M(z|θ) is a candidate Mi(z|θi) ∈ M, the model

selection process can be stated as

min
Mi ∈M

AIC(G, Mi) = −2 log(L(θ̂i|y)) + 2Pi. (4)

The above criterion can be enhanced depending on the

size N of the data set y and of the number of parameters.

In particular, if N/ maxi Pi > 40, a second-order bias

correction can be used [13]. For large sample sizes, an

improvement to AIC was obtained with Takeuchi’s TIC [25]

that eliminates the bias-adjustment term.

Based on AIC weighting, there are several ways to proceed

to multi-model inference [7], including ranking and scaled

relative plausibility of the available models, model-averaged

parameter estimates, and estimates of sampling variances not

conditioned on any particular model.

It is very important to notice that the AIC value associated

with each model does not have an absolute meaning: it is

rather its size relative to the minimum AIC in the set of

candidates that allows model ranking. For each model, the

quantity ∆i = AIC(G, Mi) − min
i

AIC(G, Mi) will be

examined.

The relative likelihood L(θ̂i|y) of a model Mi, given the

data, is proportional to exp (−∆i/2); normalization over all

sets of models yields the so-called Akaike weights:

wi =
exp (−∆i/2)

∑m
j=1

exp (−∆j/2)
. (5)

Each wi weights the evidence in favor of model i being the

actual KL best model for the situation.

II. METHODS

We integrate parameter estimation and Akaike’s model se-

lection criterion. For a given set of data, parameter estimation

is performed for each candidate model Mi. Next, the AIC is

calculated for all candidate models M1, ..., Mm. The model

with the lowest AIC value is the one that best describes the

experimental data, in the KL sense, according to (4). Fig. 1a

shows the multi-model identification method.

Parameter estimation is performed by using Adaptive

Simulated Annealing [14] to solve the optimization problem

max
θ̃

∑

i

‖yest
i (θ̃) − yexp

i ‖2 (6)

subject to θL ≤ θ̃ ≤ θU .

yexp
i ∈ R

N is a vector of experimental data at N time points

associated with output i. The optimization variables for the

simulated annealing algorithm are the estimated parameters

θ̃, which are constrained to physically realistic values by

lower bounds θL ∈ R
P and upper bounds θU ∈ R

P . The

estimated data yest
i are found by numerically integrating the

model ODEs with the estimated parameters. The algorithm

is described in Fig. 1b.

The calculation of AIC for a certain model Mi is in

general straightforward [21], [7]. If the estimated parameter

vector resulting from the optimization problem (6) is θ̂i, and

the associated error ǫi = yest
i (θ̂) − yexp

i is assumed to be

Gaussian with constant variance, AIC is given by:

AICi =
1

2
log





N
∑

j=1

ǫi(j)
T ǫi(j)



 +
1

2

+
1

2
log 2π +

Pi

N
.

Different expressions for AIC can be found when the error

is assumed to have other probability distributions. This is an

important consideration for biological noise sources, which
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Fig. 1. Overview of the Multi-Model Approach. a) Experimental data is
compared with the results of the parameter estimation for each of the m
models. The error between the estimated and experimental data is used to
calculate the AIC for each model. The model with the smallest AIC value
is the best of the candidate models. b) Parameter estimation is performed
by minimizing the error between estimated and experimental data.

may not be accurately represented by Gaussian distributions.

For example, it was found in [24] that cellular processes

are best modeled with log-normal noise. The AIC method

can be used not only for model structure selection, but also

for determining which stochastic properties best describe the

system.

III. RESULTS

The multi-model identification method is applied to two

example problems, both involving discrimination between

different types of network connectivity. The first example

is a simulated transcriptional regulatory network, the second

example uses data from a set of oscillators that have been

constructed in vitro.

A. Three Types of Transcriptional Control

Three types of transcriptional control are possible in

genetic regulation: activation, repression, and no regulation.

If A is a transcription factor, a protein that can regulate

expression of B, then the following equations can be used

to describe these three cases:

Ȧ = α0 − βA

Ḃ =







α0 − βB no regulation

α0 + αAn

1+An − βB activation

α0 + α
1+An − βB repression

α0 is the basal transcription rate, α is the transcription rate

that is regulated by the transcription factor A, n is the Hill

coefficient, and β is the protein degradation rate [2]. A and

B are protein concentrations. The model states are x1 = A,

x2 = B and we assume that both states are measurable.

The parameters are θ = [α, β, n] and we set α0 = 0.001.

The “experimental” data for this example are simu-

lated numerically for the three types of network con-

nections. Gaussian white noise with covariance V =
diag([0.052 0.052]) is added to both states to simulate mea-

surement noise. For each set of experimental data we evaluate

the three models M1 = no regulation, M2 = activator,

and M3 = repressor with the multi-model identification

algorithm. The number of parameters associated with each

model is P1 = 2, P2 = 3, and P3 = 3.

Fig. 2 shows an example of how the parameter estimates

change. Although the estimates tend towards the actual

parameter values, there are large variations as the parameter

space is explored. These data are from the beginning of the

parameter search process.

0 1000 2000
0

50

100

α

0 1000 2000
0

50

100

# of Cost Function Evaluations

β

0 1000 2000
0

50

100

n

Fig. 2. Example of parameter estimation. The blue line is the parameter
estimate at each cost function evaluation. The red line is the actual parameter
value used to simulate the experimental data. The three parameters α, β,
and n are estimated. Only the first 7% of the cost function evaluations are
shown. θL = [0, 0, 0], θU = [100, 100, 100].

Fig. 3 compares experimental and estimated data after

parameter estimation is complete. These data are used to

calculate the ∆ AIC values, which are listed in Table I. The

associated weights are given in Table II.

None Act Rep

M1 = None 0.0 0.88 3.91

M2 = Act 0.0 0.0 2.39

M3 = Rep 0.0 0.85 0.0

TABLE I

∆ AIC VALUES FOR 3 CIRCUIT NETWORK DISCRIMINATION

None Act Rep

M1 = None 0.334 0.281 0.099

M2 = Act 0.333 0.435 0.210

M3 = Rep 0.333 0.284 0.692

TABLE II

WEIGHT VALUES (wi) FOR 3 CIRCUIT NETWORK DISCRIMINATION

For the activation and repression experimental data, the

respective models are identified as being the most likely

candidates based on their weight values wi. The no regulation
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Fig. 3. Estimated and experimental data for 3-circuit network discrimi-
nation. Plots shows protein concentration versus time for the two states, A
and B, versus time. Each column uses different experimental data. Each
row tests a different model.

data can be fit well by all the models. This is because the

model M1 is a subset of models M2 and M3 if α = 0.

Indeed, in the parameter estimation stage the value of α is

estimated to be very small.

B. In vitro Oscillators

In vitro circuits are a subclass of synthetic circuits that

arose from the need to better understand the regulatory

capabilities that nucleic acids have within a cell [17], [18],

[15]. Biological parts, such as DNA, RNA, and enzymes are

combined in a biochemical reaction that is similar to what

happens within a cell, but without the added complexity of

interactions with other cellular components. In vitro versions

of transcriptional circuits can be built by designing short (30-

100 base pair) DNA template strands that can interact with

their RNA products and with other short DNA molecules.

In this example we consider two versions of a transcrip-

tional oscillator developed by Kim [17]: a basic two node

oscillator and a two node oscillator with positive feedback,

shown in Fig. 4a and b. The genetic components of the basic

two node oscillator are graphically described in Fig. 4c: two

DNA templates, denoted x1 and x8, are partially incomplete

in the promoter region. In order for RNAP to bind and initiate

transcription of the two mRNA strands, x4 and x10, the

single stranded DNA activators x2 and x9 need to bind and

complete the templates. Oscillations arise because x2 also

binds to its complementary molecule x3. When x10 is in

excess, x3 and x10 form a hybrid double stranded complex,

freeing x2, which binds to x1 and allows for transcription of

x4. On the other hand, when x4 is in excess, the activator

x9 is stripped off of x8, decreasing the amount of x10 in

solution. The hybridization reactions (x3 and x10, x4 and

x9) are favored in competitive binding. RNaseH is an enzyme

that degrades the hybrid complexes, breaking down the RNA

and releasing the single stranded DNA.

The oscillations are measured with fluorescent molecules

that are integrated within the strands of interest. If a quencher

is not in their proximity, the fluorophores emit light in a know

emission/absorption spectrum. Fluorescence measurements

corresponding to the concentration of the incomplete DNA

templates x1 and x8 are measured (y = [x1, x8]).

The two node oscillator can be modeled with the set of

ODEs and algebraic equations (7)–(9). The state variables are

concentrations of the DNA and RNA molecules. Mass ac-

tion (hybridization) and Michaelis-Menten (RNAP, RNaseH

activity) reactions are present; the kinetic rates are denoted

pi, and are the parameters to be estimated.

dx1

dt
= −p7x1x2 + p11x5x3

dx2

dt
= −p7x2(x1 + x16) − p10x2x3 + p9x6x4

dx3

dt
=

p6

p5

Hx7 − p10x2x3 − p8x4x3 − p11x3(x5 + x17)

dx4

dt
=

p13

p12

R(x11 + x15) +
p15

p14

Rx8 +
p29

p28

Rx17

+
p31

p30

Rx16 − p8x4x3 − p9x6x4

dx8

dt
= −p18x8(x9 + x14) + p20x11x10

dx9

dt
= −p19x9(x10 + x13) − p18x8x9 + p23x14

dx10

dt
=

p2

p1

Rx5 +
p4

p3

Rx1 − p19x10(x9 + x14)

− p20x11x10

dx13

dt
= −p32x13(x9 + x11) + p23(x14 + x15)

+ p19x14x10

dx14

dt
=

p17

p16

H x12 + p32x9x13 − p23x14 − p19x14x10

− p18x8x14

dx15

dt
= p32x11x13 − p23x15 + p18x8x14

dx16

dt
= −p21x16x2 + p22x17x3

(7)

R = RNAPtot/(1 +
x5

p1

+
x1

p3

+
(x11 + x15)

p12

+
x8

p14

+
x17

p28

+
x16

p30

)

H = RNaseHtot/(1 +
x7

p5

+
x12

p16

)

(8)
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0 = x16 + x17

0 = x1 + x5

0 = x2 + x5 + x6 + x17

0 = x3 + x6 + x7

0 = x8 + x11 + x15

0 = x9 + x11 + x12 + x14 + x15

(9)

The reactions are started by adding x1, x2, x3, x8, and x9

for the basic oscillator. For the self activating oscillator x16

is also added initially. These equations describe both basic

and self activating oscillators. The basic oscillator model is

a subset of the self activating oscillator model where the

reaction terms associated with parameters p21, p22, p28, p29,

p30, and p31 are eliminated. The basic oscillator has 22 model

parameters and the self activating version has 28.

Because of the large number of model parameters and

small number of measured outputs, it is important to consider

different perturbations to the experiment when determining

system parameters. Single data sets will not be sufficient to

identify all the parameters in the model. Model parameters

are fit to 45 experimental data sets in [17]: 38 data sets for

the basic oscillator and 7 for the self activating oscillator.

Both experimental data sets are used to fit the 22 parameters

common to both switch models, and the self activating switch

data is used to fit the final 6 parameters specific to the self

activating model. We use these estimated parameters when

calculating the AIC.

If the simulated annealing parameter estimation method is

applied to individual experimental data sets, the optimization

has many parameters to adjust and only two outputs to fit.

Consequently, the estimated data match experimental data

well in all cases. Since several perturbation experiments

exist, it is more realistic to estimate the parameters using all

the available data at once, as in [17], since the parameters

governing the process remain the same. Determining the

experimental perturbations necessary to accurately predict

parameters, and not just outputs, is closely linked to identi-

fiabilty of parameters and is discussed further in the Future

Work section.

The two models considered are M1 = basic oscillator and

M2 = self activating oscillator. We use two data sets for

each of the oscillators and compute the AIC and correspond-

ing weights for each of the candidate models.

Fig. 5 compares the estimated and experimental data

for the two models (rows) and four experimental data sets

(columns). Tables III and IV report the ∆AIC and weight

values for the four sets of experimental data. The multi-

model method successfully determines which type of oscil-

lator generated the data. The weight values suggest that the

differences between the two models are not as clear as in

the previous example, but these data are from a significantly

more complex biological system.

IV. CONCLUSION AND FUTURE WORK

A method for model selection that utilizes Akaike’s In-

formation Criterion has been presented in this paper. We

apply the framework to two problems of identification and

Fig. 4. a) Basic two node oscillator: T21 corresponds to the template x1,
while T12 corresponds to template x8. b) Self activating two node oscillator.
c) Graphical sketch of the basic two node oscillator mechanism.

Basic 1 Basic 2 SA 1 SA 2

M1 = Basic 0.0 0.0 0.18 0.42

M2 = SA 0.23 0.40 0.0 0.0

TABLE III

∆ AIC VALUES FOR OSCILLATOR NETWORKS (SA = SELF ACTIVATING)

parameter estimation in biochemical networks. These net-

work models are typically complex and nonlinear making

identification a challenging problem. We present a method

that works in two steps: parameter estimation and model

selection with AIC. Given several candidate models that may

describe experimental data, the multi-model identification

framework uses a systematic method based on information

and likelihood theory to determine which model best de-

scribes the data. Two application examples were considered:

a transcriptional control circuit and a pair of in vitro oscil-

lators.

In the future it will be important to integrate identifia-

bility tests into the multi-model framework. Although it is

often possible to fit model outputs to experimental data,

for accurate parameter estimation it is important that the

system be sufficiently perturbed. Identifiability tests using

the Fisher Information Matrix have proved successful for

biological estimation problems [11] and are good candidates

for integration into the multi-model framework.

A particularly useful aspect of AIC is that it allows

not only for model structure selection, but also for model

Basic 1 Basic 2 SA 1 SA 2

M1 = Basic 0.529 0.550 0.477 0.447

M2 = SA 0.471 0.450 0.523 0.553

TABLE IV

WEIGHT VALUES (wi) FOR OSCILLATOR NETWORKS (SA = SELF

ACTIVATING)
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Fig. 5. Estimated and experimental data for the in vitro oscillators: a) state
x1, b) state x8. Both figures show protein concentration (nM) versus time
(minutes). Different experimental data sets are shown in each column; rows
show different model candidates.

statistical selection. Characterizing the stochastic properties

of biological noise is an important area of study where the

AIC may be able to extend current understanding.
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