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A multi-model assessment of food security implications of 1 

climate change mitigation 2 

 3 
 4 
Abstract (approximately 150 words unreferenced) 5 
Attaining well below 2°C climate change goal affirmed by the Paris Agreement is one of the 6 
societal challenges. Meanwhile, food security is another high-priority areas in the UN 7 
Sustainable Development Goals that could potentially be adversely affected by stringent 8 
climate mitigation. Here we show the potential negative trade-offs between food security and 9 
climate mitigation using a multi-model comparison exercise. We find that carelessly designed 10 
climate mitigation policies could increase the number of people at risk of hunger by 110 11 
million people in 2050. Avoiding these adverse side effects would entail a cost of about 12 
0.18% of global GDP in 2050. It should be noted that direct impacts of climate change on 13 
yields were not assessed and that the direct benefits from mitigation in terms of avoided yield 14 
losses could be significant further lessening the above cost. While results vary across models 15 
and model implementations, the qualitative implications are robust and call for a careful 16 
design of climate mitigation policies taking into account agriculture and land prices. 17 

 18 
 19 
Main text (<3500 words, Section headings should be used and subheadings may appear 20 
in 'Results'. Avoid 'Introduction' as a heading. 6 display items) 21 
 22 

Food security is considered as one of the areas in Sustainable Development Goals 23 
(SDGs), in particular SDG2 is aiming at “zero-hunger” by 2030. The global number of 24 
people at risk of hunger has declined over the past decades and was estimated at 795 million1 25 
for the year 2015, which is 184 million fewer than 1990-1992, despite a steady population 26 
growth notably in low-income countries2. Steady income growth and a relatively stable 27 
political situation helped this trend. The food security issue has been intensively investigated 28 
in the context of climate change impacts over the last few decades3, 4, 5, 6, and more recent 29 
studies explored the effect of climate change mitigation effect on agricultural markets7, 8, 9, 10, 30 
11, 12. Despite differing scenario assumptions, metrics, and quantitative outcomes, these 31 
studies more or less agree that single minded mitigation policies could adversely impact food 32 
security in developing countries. Although some studies propose partial solutions of how to 33 
mitigate these side-effects13, 14, most of them do not directly quantify the number of people at 34 
risk of hunger. Furthermore, since the assumptions behind these studies are not harmonized, 35 
the reason for the differences in the results across the studies is hard to be identified. 36 

The Paris Agreement15 defines a long-term temperature goal for international climate 37 
policy: “holding the increase in the global average temperature to well below 2°C above pre-38 
industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-39 
industrial levels”. Accordingly, many studies exploring the stringent climate change 40 
mitigation policies required by the Paris objectives have identified a potential need for large-41 
scale land based measures like afforestation and bioenergy production, which in turn raises 42 
concerns about potential implications for food security16, 17, 18, 19, 20. These low emissions 43 
scenarios are making the connection between SDG2 and SDG13 increasingly crucial. 44 

Integrated Assessment Models (IAMs) have been used for climate mitigation 45 
analysis, with many climate mitigation studies conducted under Multi-model Inter-46 
comparisons Projects (MIPs) that have a major role to understand the robustness of the 47 
implications and uncertainty21. The model behavior responding to the climate mitigation goal 48 



typically finds agreement across models in some variable, such as emissions trajectories or 49 
carbon budgets, while other variables vary largely across models, such as carbon prices. 50 

Here we explore how food security could be affected by the climate mitigation 51 
policies implemented by multi-IAMs. The primary goal of this paper is to understand the 52 
relationship between food security and climate mitigation, and to identify cost estimates of 53 
possible solutions to the trade-off between food security and climate mitigation, with 54 
consideration of the “uncertainty” represented by an ensemble of IAMs. We consider four 55 
scenarios differentiated by the stringency of mitigation levels related to the Paris Agreement: 56 
no climate policy that includes currently implemented policies (Baseline), greenhouse gas 57 
(GHG) emissions reductions by 2030 in line with the Nationally Determined Contributions 58 
(NDC), and scenarios that limit global mean temperature in 2100 to below 2°C and 1.5°C, 59 
where the emission reduction starts from 2020. Global cumulative CO2 emissions are targeted 60 
for these scenarios and more detailed assumptions of these scenarios are described in the 61 
method section. To explore the uncertainty range, we employ six state-of-the-art IAMs that 62 
represent energy, agriculture, land-use systems and their emissions. The six models are 63 
AIM22, IMAGE23, MESSAGE-GLOBIOM24, REMIND-MAgPIE25, POLES26 and WITCH27. 64 
The description of each model is provided in the method section. All models apply a uniform 65 
carbon price, where the agricultural sector is included in the carbon pricing scheme. Besides 66 
IMAGE, all models assume land use competition among food, bioenergy crops and 67 
afforestation. IMAGE assumes avoided deforestation policy in competition with the food 68 
system, while bio-energy does not compete with food production following a food-first 69 
policy. Since REMIND-MAgPIE in turn assumes no demand-reaction to food prices shocks 70 
and is therefore only included for the baseline scenarios. The representation of the interaction 71 
among energy, agriculture and land use varies across IAMs, as shown in Supplementary 72 
Table 1. There are three major factors by which climate change mitigation influences food 73 
security: increases in land rent or production costs associated with bioenergy crops; non-CO2 74 
emissions abatement costs; and the equivalent carbon price cost of the residual non-CO2 75 
emissions that are emitted even after reduction measures are implemented, as depicted in 76 
Supplementary Figure 1. The carbon price on GHG emissions from agricultural sectors is 77 
assumed to be capped at $200/tCO2. This avoids a situation in which further reduction in non-78 
CO2 emissions requires a decrease in demand for agricultural products. MESSAGE, POLES, 79 
and WITCH implemented this cap for all GHG emissions related to agriculture and land use 80 
(e.g. forestry and land-use change)28. In any case, this capping of the carbon price implies 81 
that at most our results can be as a lower bound of the potential impact of mitigation policies 82 
on food security. Note that direct impacts of climate change on yields are not assessed in this 83 
study and the direct benefits of mitigation to avoided yield losses may well be significant (see 84 
more discussion in Supplementary Notes 1.3). 85 

We use the number of people at risk of hunger as a primary indicator, which 86 
represents the food security prevalence. Two out of six models (AIM and IMAGE) represent 87 
the number of people at risk of hunger within their modeling framework, whereas the other 88 
models do not. Therefore, we use a “hunger estimation tool”, which has been used in 89 
previous studies29, 30, 31 for the four models that do not have a representation of the risk of 90 
hunger. This tool assumes log-normal food consumption distribution function for each 91 
country, which uses mean calorie consumption, minimum energy requirement and the 92 
coefficient of variation (CV) of the food distribution of the dietary energy consumption 93 
within countries. Each IAM provides mean calorie consumption for aggregated regions and 94 
this tool downscales such geographically aggregated information on a country basis based on 95 
the relative change in calorie consumption. For the possible solutions to the potential risk of 96 
trade-off between food security and climate mitigation, we show the first-order cost estimates 97 
using a back-of-the-envelope calculation, the details of which are explained in the results 98 



section and Supporting text. Note that These represent the costs of achieving baseline levels 99 
of food security rather than the costs associated with meeting the SDG2 target to eradicate 100 
hunger by 2030. 101 

We acknowledge that food security comprises a broad concept that includes four key 102 
dimensions: food availability, stability, access, and utilisation. The metric used in this study, 103 
risk of hunger, is associated with food availability32. In addition, complementary measures, 104 
depending on how they are implemented, may influence other aspects of food security, such 105 
as the rate of self-sufficiency14. However, these additional effects do not fall within the scope 106 
of this study.  107 

 108 
Results 109 
Risk of hunger projection under the Baseline scenario 110 

The population at risk of hunger in our Baseline scenario is projected to decline over 111 
time and decreases by more than two thirds (to 210-250 million; 2.3-2.7% of total population) 112 
in 2050 compared to the current level (795 million; 12% of total population) (Figure 1a). This 113 
declining trend has been observed already over the past two decades. Asia is currently the 114 
region that has the largest number of people at risk of hunger, with around 75% of the global 115 
population at risk of hunger; however, this share declines fast during the century (Figure 1c 116 
and Supplementary Figure  2). The other regions show a similar trend except for Africa and 117 
the Middle East (dominated by Sub-Sahara). Africa and the Middle East are projected to 118 
experience lower income growth and continuous population increases, which puts them under 119 
the pressure of risk of food shortage. In 2050, Africa and the Middle East account for more 120 
than 45% of the population at risk of hunger (median value across models, Figure 1b). The 121 
global model uncertainty range in 2050 is large due to this region. Importantly, no model 122 
achieves zero hunger (SDG2) by 2030. For the achievement of this goal, either a higher 123 
income growth or notably a more equal food consumption distribution within countries is 124 
needed.  125 

The per-capita food consumption evolutions vary widely across models, but they tend to 126 
increase steadily over time (Figure 1d), driven mainly by income growth (See Supplementary 127 
Figure 3). This trend is the key driver of the decrease in the number of people at risk of 128 
hunger. All models project a continuous increase in food consumption at the global level. In 129 
developing regions, growth is stable, while in the OECD a relatively modest increase is 130 
observed. IMAGE shows slightly different pathways from other models: the food 131 
consumption trend also explains why IMAGE presented a slightly higher risk of hunger in the 132 
second half of the century (Figure 1ac). The highest increase in calorie consumption can be 133 
observed in the Africa and Middle East region where current food consumption level is low 134 
(2330 to 2430 kcal/cap/day) and becomes 2690 to 2970 kcal/cap/day in 2050. Asia would 135 
also have large food demand increase, by about 400 kcal/cap/day during the earlier part of 136 
this century.  137 
 138 
   139 
Figure 1Number of the population at risk of hunger under the Baseline scenario and food consumption by 2050. Panel a and 140 
b represents global and regional trends and panel c illustrates regional share of the population at risk of hunger in 2050 141 
(model median value). Panel d is Food consumption under the Baseline scenario time-series data for total calorie 142 
consumption across models. The grey lines in panels a and b are historical values. The century scale figure is presented in 143 
Supplementary Figure 2. 144 

 145 
Climate change mitigation effect on food security  146 

Climate change mitigation exclusively aimed at attaining the climate goals could 147 
generate a risk of negatively impacting food security, and the response of the number of 148 
people at risk of hunger to mitigation policies are remarkably amplified by the stringency of 149 



mitigation policies (Figure 2): under the 2°C and 1.5°C scenarios, the risk of hunger 150 
drastically changes compared to the Baseline and NDC scenarios. The population at risk of 151 
hunger under the 2°C and 1.5°C scenarios in 2050 are 280-500 (median: 350; 3.8% of total 152 
population) and 310-540 (median: 410; 4.5% of total population) respectively with a large 153 
inter-model variation. For example, AIM shows around 290 million at risk of hunger in the 154 
Baseline, while 360 and 410 million people are at risk of hunger in the 2°C and 1.5°C 155 
scenarios respectively (3.1, 3.9 and 4.5% of total population respectively). MESSAGE-156 
GLOBIOM behaves similarly. WITCH and POLES are the most sensitive models to the 157 
mitigation policy, where an additional 250 million people are at risk of hunger under the 2°C 158 
and 1.5°C scenarios after 2030. Under both the 2°C and 1.5°C scenarios in almost all models, 159 
the carbon price is reached to the carbon price cap for the agricultural sector by 2050. 160 
Moreover, the large inter-model variation in carbon prices33, generates large model 161 
uncertainty and substantial overlaps in the output from the 2°C and 1.5°C scenarios  (Figure 162 
3c).  163 

The spikes in the risk of hunger for the mitigation scenarios occur in 2030-2040 when 164 
the carbon price required by the climate targets drastically increases. After that, the declining 165 
trends similar to the Baseline trajectories are observed. Yet, the adverse side-effect of climate 166 
change mitigation is large and persistent over time (Figure 3 d). Asia, Africa and the Middle 167 
East show large side-effects.  The projections by WITCH and POLES show that the adverse 168 
side effect is prominent in Asia (Figure 2c).  169 

The risk of hunger response to the mitigation policies are dependent on three factors:  170 
the price elasticities of food demand, the carbon price effect on the food price, and the level 171 
of the carbon price, which together push the food consumption down (Figure 4a and see also 172 
Supplementary Figure 1 as an illustration of the logical chain of the mitigation effect on food 173 
security). The price elasticity of food demand is quite heterogeneous across models (Figure 174 
4b). REMIND-MAgPIE is the extreme case where a zero price elasticity is assumed. 175 
MESSAGE-GLOBIOM, POLES, and WITCH show relatively high elasticities leading to a 176 
decrease in food demand of up to 20%. The similarity across these three models is partly 177 
explained due to the fact that these models use GLOBIOM based input data for their land-use 178 
and agricultural representation, which is a simplified version of the full GLOBIOM 179 
representation. AIM shows an intermediate food demand elasticity. Regionally, food 180 
consumption in high-income countries tends to be relatively inelastic compared to that in 181 
low-income countries. This is because wealthier people generally can spend money on 182 
expensive food and because of a lower income-effect of the price-shock (Supplementary 183 
Figure 4). The agricultural price changes are triggered by carbon prices (Figure 4c), which is 184 
why we can see a clear correlation between food consumption reduction and carbon prices 185 
(Figure 4d). However, carbon prices in 2050 diverge across models (Figure 3d). AIM, 186 
WITCH, IMAGE and POLES show relatively high carbon prices compared to the other 187 
models. 188 

The model diversity in the hunger response can be explained by the combination of the 189 
price elasticities and carbon prices, which are primary drivers of the hunger response. For 190 
example, AIM, which has a modest food price elasticity, but high carbon price, shows an 191 
intermediate increase in the risk of hunger (Figure 4c). MESSAGE-GLOBIOM’s population 192 
at risk of hunger is similar to AIM (Figure 2a), but the carbon prices is lower and the price 193 
elasticities are higher than AIM (Figure 4c). WITCH and POLES are cases where both price 194 
elasticity and carbon prices are high, and as a result, the largest negative hunger effect occurs 195 
in the mitigation scenarios (Figure 4a).  196 

 The drivers of agricultural price changes differ across models, but one common 197 
characteristic is the non-CO2 emissions reduction measure and its carbon price penalty. The 198 
non-CO2 emissions can be mitigated when carbon prices are implemented in the agricultural 199 



sector, but cannot be entirely removed (Figure 3bc). So, in addition to cost of mitigation 200 
measures, the price burden of the residual emissions is passed through to the consumers. This 201 
carbon price penalty effect drastically changes food price under particularly stringent 202 
mitigation scenarios. 203 

The other possible driver of price changes is the land use competition between food, 204 
bioenergy crops and afforestation (Supplementary Figure 7 and 8). Although we cannot 205 
identify numerically the magnitude of their contributions, there is a literature that finds that 206 
the land rent and non-CO2 emissions effect are of similar magnitude7. We can illustrate the 207 
magnitude of this effect in the example from AIM (Supplementary Figure 9). The multi-208 
sector Computable General Equilibrium (CGE) model AIM incorporates other goods, service 209 
prices, and wage change effects, but those factors are not large (Supplementary Figure 9). 210 
AIM also identifies an income loss effect that accounts for around 20% of food demand 211 
decreases. 212 
 213 

     214 
Figure 2 Number of the population at risk of hunger under the Baseline and mitigation scenarios a) time series and b) in 215 
2050. The solid line in panel a) indicates median value across the models and the shaded area represents upper and lower 216 
ranges of the model estimates for each scenario. c) indicates the regional risk of hunger across models and scenarios in 217 
2050.  218 

   219 
Figure 3 Global CO2,CH4and N2Oemissions across scenarios (a, b, and c) and carbon price d until 2050 (full century figure 220 
is shown in Supplementary Figure 5).  221 

     222 
 223 
Figure 4 Food consumption, agricultural price, and carbon price relationships. Panel a presents food consumption 224 
reduction rates compared to the Baseline scenarios in 2050. Panel b, c, and d illustrate the relationship between food 225 
consumption reduction rates compared to the Baseline scenarios, agricultural price increase relative to the base year and 226 
carbon prices across models and mitigation scenarios. The dots in Panel b, c, and d represent each ten year’s value. Food 227 
demand reduction is accounted for as calorie basis. The lines in panel b indicate 0.1 and 0.2 price elasticities of agricultural 228 
demand.  229 

 230 
Cost estimates to avoid the adverse side effects  231 

This section examine the cost estimates that could potentially avoid the adverse side-232 
effects to food security due to climate change mitigation. We compute three cost metrics that 233 
can be interpreted as : 1) an agricultural subsidy to keep the agricultural price during 234 
mitigation at the same price as the Baseline scenario, 2) food-aid to supplement the reduction 235 
of agricultural demand, and 3) food-aid to supplement the reduction of agricultural demand 236 
“only” for those at risk of hunger. The agricultural subsidy cost is computed by the 237 
agricultural price index in mitigation scenarios difference compared to baseline scenario 238 
multiplied by the agricultural demand. The food-aid cost is calculated by the agricultural 239 
demand decrease in the mitigation scenarios compared to the Baseline scenario multiplied by 240 
its price (Supplementary Figure 10). The third metric is direct food-aid cost only for those 241 
who are at risk of hunger under the climate mitigation scenario, which is shown in 242 
Supplementary Figure 11. All complementary costs were derived by a back-of-the-envelope 243 
calculation based on the model outputs. These are the amounts of gross subsidies or food-aid 244 
payments that need to be delivered by the public sector. 245 

To the price increase, the required agricultural subsidy is found to be around 0.63 (0.19 246 
to 2.0) % of global GDP for 1.5°C scenario in the year 2050 (Figure 5a). At 2°C, the cost 247 
decreases to 0.51 (0.00 to 1.3)%. REMIND-MAgPIE shows the largest cost which is 248 
comparable with the mitigation policy cost (Figure 5d). REMIND-MAgPIE assumes a zero 249 
food demand elasticity and the price change is therefore the only mechanism to adjust the 250 



market. The cost computed by the other models is not as large as the mitigation policy cost. 251 
WITCH has a remarkably high climate change mitigation costs and a relatively low food 252 
policy costs. 253 

The alternative measure to a subsidy is direct food aid to supplement the food deficit. In 254 
contrast to the agricultural subsidy, food-aid is much smaller in cost and the differences 255 
between 2 and 1.5°C are small in absolute term (Figure 5be). About 0.19 (0.00-0.46)% of 256 
GDP is needed in the 1.5°C scenario in 2050 compared to 0.12 (0.00-0.39)% of GDP in the 257 
2°C scenario. These results show that direct food-aid could be much cheaper than subsidizing 258 
agricultural goods to reduce the price impacts. This can be explained by the price elasticity of 259 
agricultural demand which is much less than -1 (around -0.2 in Figure 4b) and therefore 260 
direct aid would be much more efficient than relying on a subsidy (as illustrated in 261 
Supplementary Figure 10). Furthermore, if only people who are at risk of hunger are aided, 262 
the cost is only 0.01% of GDP with an inter-model variation of 0.00-0.03%, which is even 263 
smaller. However, it should also be noted that food-aid for only those at risk of hunger would 264 
require a potentially sophisticated mechanism for implementation, such that the government 265 
could identify who is at risk of hunger. In that sense, the food-aid cost should be interpreted 266 
as a minimum cost and an additional opportunity and implementation cost would be required. 267 
Moreover, the net social cost of these policy interventions is not as large as reported here, 268 
with the deadweight loss illustrated in Supplementary Figure 12. To understand the order of 269 
magnitude of differences between welfare changes and these policy costs, we ran an 270 
additional scenario in AIM to obtain the point marked deadweight loss in Supplementary 271 
Figure 12. Consequently, the welfare changes in 1.5 and 2 °C scenarios were 20% and 4% of 272 
the food-aid respectively or 3.1% and 0.5% of the food subsidy respectively, which are 273 
roughly 0.04% and 0.006% of GDP. 274 

To explore the robustness of this finding to the key mode assumptions, we carried out a 275 
sensitivity analysis by changing the food demand parametrization of each model including 276 
food price and income elasticities (see Supplementary Notes). The people at risk of hunger 277 
and food policy costs show similar trends to the original default scenarios (as is shown in 278 
Supplementary Figure 13), which indicates that our qualitative findings are robust to the food 279 
demand related parameters.  280 

 281 
   282 
Figure 5 Complementary food policy cost compared to the mitigation cost. Panel a and d show an additional agricultural 283 
subsidy in the mitigation scenarios. The 2050 plots are highlighted by big markers. Panels b and e illustrate food-aid which 284 
is derived from the agricultural demand decrease in the mitigation scenarios compared to the baseline scenario multiplied 285 
by the agricultural price. Panel c and f illustrate the cost of food aid targeted at the population at risk of hunger. The x-axis 286 
in panels d, e, and f are the policy cost variable, which depends on the model (GDP loss is used for AIM, MESSAGE-287 
GLOBIOM, REMIND-MAgPIE and WITCH. The area under MAC curve is used for IMAGE and POLES). The solid line 288 
indicates a 45° line where the food policy cost is equal to the mitigation cost. The dashed lines have 0.1 and 0.2 gradients. 289 

 290 
Discussion and conclusion 291 
We find that climate mitigation could potentially have adverse side-effects on food security. 292 
The magnitude of this adverse side-effect is amplified by the stringency of the mitigation 293 
level. These phenomena are robustly observed by multiple IAMs. Moreover, we identified 294 
the cost of alternative illustrative complementary policy that simultaneously meet the climate 295 
goal and, at the same time, ensuring food security. Such policy, in the form of a subsidy or 296 
food-aid program in addition to the climate change mitigation effort by developed countries, 297 
would target the decrease in the number of people at risk of hunger in developing regions.  298 
    When it comes to the relationship of multi-SDG concerning with climate change 299 
mitigation, goals related to air pollution34 and energy security35 seem to have a synergy 300 
effects with climate mitigation. The reduction of fossil fuel consumption to mitigate climate 301 



change also lowers air pollution36, 37. Shifting from fossil fuels to renewable energy decreases 302 
the reliance on oil and gas imports, which also benefits energy security35, 37. However, food 303 
security, similarly to energy access38, would have trade-off relationship.  304 

There can be several discussion points with respect to the interpretation of the results. 305 
1) Currently, the total (not only food) Official Development Assistance (ODA) is 0.32% of 306 

Gross National Income from the developed world39.  This amount is in the order of 307 
magnitude of what would be necessary as food aid subsidy to alleviate the implications 308 
of a climate policy. However, one should keep in mind that the subsidy would come on 309 
top of current ODA. Notably, ear-marking parts of the carbon tax revenues could provide 310 
a measure to raise the required public funds. 311 

2) An increase in food prices may, in some instances, translate into higher wages for low-312 
income households or farmers40. However, when increases in food prices are caused by a 313 
carbon tax10, the increased production costs are due to carbon pricing and land rent, and 314 
income from increased spending tends not to be distributed to low-income farmers41. 315 
Additionally, Sub-Saharan countries, which have large populations at risk of hunger, rely 316 
heavily on food imports, particularly of staple foods43, 44. These populations would suffer 317 
if food prices increase. 318 

3) In some simulations, we imposed a price cap on GHG emissions from the agricultural 319 
sector. We then explored the sensitivity of our results to changes in price caps. The 320 
population at risk of hunger is sensitive to GHG pricing during the implementation of 321 
mitigation policies (Supplementary Figure 15). The cost of reducing the adverse effects 322 
of mitigation policies on food security was also sensitive to the price cap assumptions 323 
(Supplementary Figure 16).  324 

4) Agricultural prices increase not only because of emissions pricing, but also because of 325 
other factors such as bioenergy expansion. These other factors play important roles and 326 
should be considered when designing policies. It is possible to achieve the 1.5°C goal 327 
even under scenarios that are less dependent on reducing bioenergy use42, 43. These 328 
alternative measures can complement the use of emission price caps to alleviate risks to 329 
food security stemming from climate change mitigation action. However, alternative 330 
measures that rely on societal changes, such as switching diets and using advanced 331 
technologies, have their own challenges. Therefore, a suite of complementary measures 332 
needs to be applied to completely alleviate the side effects of climate change mitigation. 333 
If the agricultural sector were exempted from carbon pricing, greater and more costly 334 
reductions in CO2 emissions will be needed to achieve climate goals. 335 

5) The cost estimates for avoiding the trade-offs between climate change mitigation and 336 
food security in this study were not based on a comprehensive assessment of policy 337 
options, but rather on simple global carbon-pricing schemes. Food security is a multi-338 
faceted concept that cannot be adequately represented by a single indicator. Local 339 
circumstances and other societal aspects should also be considered when designing 340 
climate policies. Nevertheless, our modelling analysis provides first-order cost estimates 341 
of reducing risks to food security from climate change mitigation policies, and furthers 342 
understanding of the uncertainties surrounding such estimates44. In that sense, our 343 
modeling exercise contributes to show the first order policy cost and an understanding of 344 
the magnitude of the surrounding uncertainty, and to better understand the relationship 345 
between climate change and one of the other societal challenges (in this case food 346 
security), which is also highlighted in IPCC special report on 1.5°C44.  347 

6) Previous studies have revealed that different climate change mitigation policies can lead to 348 
varying effects on the consumption of agricultural goods and land use. For example, if carbon 349 
pricing is only applied to fossil fuels and not emissions from land-use changes, natural forests 350 
would be replaced by short-rotation plantations or large fields of bioenergy crops45. The carbon 351 



price applied to agricultural non-CO2 emissions can change food consumption amounts46; thus, 352 
how mitigation policies are implemented in the agricultural sector can impact food security.  353 

 354 
There are some caveats and limitations of this study. The model uncertainty shown in 355 

this article sheds light on the drivers of uncertainty in the assessment of the population at risk 356 
of hunger.  This uncertainty is generated by two main factors: carbon prices and food demand 357 
price elasticity. There have been some studies of agricultural economic MIPs to see the 358 
uncertainty among the models47, 48, 49, 50. Notably, it might be necessary to focus more 359 
attention on the price and income elasticities of food demand since this study is the first study 360 
focusing on the multi-model agricultural outcomes with the extremely high carbon prices. In 361 
the analysis, we did not include the effect of climate change impacts, but they should be 362 
explored with the consideration of extreme events. We believe that this study would be a 363 
milestone for further studies (Supplementary Note 4) 364 
 365 
 366 
 367 



Method 368 
Overall methodology 369 

We use six IAMs which sufficiently represent energy, emissions, land use and 370 
agriculture to assess the interaction between climate mitigation and food security. Note that to 371 
investigate the agriculture and food security implications associated with climate change 372 
mitigation targets, we need models that are somehow consistently able to capture the 373 
interaction of energy, agriculture and land-use markets, which means the IAMs used in this 374 
study are suitable for our purposes. Importantly, each model has its own strengths and 375 
weaknesses, although the agricultural representations in some models are not very detailed. 376 
However, the hunger estimation tool bridges this gap, which enables us to deal with the 377 
model uncertainty and derive robust conclusions. Four representative scenarios are examined 378 
which differentiate the stringency of climate mitigation. As a metric of food security, a 379 
number of people at risk of hunger is implemented, which is calculated either within IAMs 380 
(AIM and IMAGE) or a hunger estimation tool. Here we describe 1) a brief model overview 381 
for each IAM (a summary is in Supporting Information Supplementary Table 2 and model 382 
scope is in Supplementary Table 3), 2) scenario definition, and 3) hunger tool description. 383 

The relationship between model inputs and outputs is illustrated in Supplementary 384 
Figure 1 (similar to Hall et al.51 for global circulation models). Model structures and 385 
assumptions strongly influence predictions of increases and decreases in non-CO2 emissions 386 
associated with bioenergy use Supplementary Figure 1. The amount of bioenergy depends on 387 
the energy system, particularly those in which technological costs (e.g. cost of biomass-388 
power generation) and model types (e.g. linear least-cost optimisation, non-linear substitution 389 
functions)52 are the main factors. The emission of non-CO2 gases depends on the marginal 390 
abatement cost curves used in each IAM28, 46. Finally, food demand responses to price 391 
changes are determined by price elasticity (Figure 4). 392 
 393 
Model description 394 
AIM/CGE

22 is a one-year-step recursive-type dynamic general equilibrium model that covers 395 
all regions of the world. The AIM/CGE model includes 17 regions and 42 industrial 396 
classifications. For appropriate assessment of bioenergy and land use competition, 397 
agricultural sectors are also highly disaggregated53. Details of the model structure and 398 
mathematical formulae are described by Fujimori, Masui 54. The production sectors are 399 
assumed to maximize profits under multi-nested constant elasticity substitution (CES) 400 
functions and each input price. Energy transformation sectors input energy and value-added 401 
are fixed coefficients of output. They are treated in this manner to deal with energy 402 
conversion efficiency appropriately in the energy transformation sectors. Power generation 403 
values from several energy sources are combined with a Logit function. This functional form 404 
was used to ensure energy balance because the CES function does not guarantee an energy 405 
balance. Household expenditures on each commodity are described by a linear expenditure 406 
system function. The parameters adopted in the linear expenditure system function are 407 
recursively updated by income elasticity assumptions29. Land use is determined by Logit 408 
selection55. In addition to energy-related CO2, CO2 from other sources, CH4, N2O, and 409 
fluorinated gases (F-gases) are treated as GHGs in the model. Energy-related emissions are 410 
associated with fossil fuel feedstock use. The non-energy-related CO2 emissions consist of 411 
land use change and industrial processes. Land use change emissions are derived from the 412 
forest area change relative to the previous year multiplied by the carbon stock density, which 413 
is differentiated by AEZs (Global Agro-Ecological Zones). Non-energy-related emissions 414 
other than land use change emissions are assumed to be in proportion to the level of each 415 
activity (such as output). CH4 has a range of sources, mainly the rice production, livestock, 416 
fossil fuel mining, and waste management sectors. N2O is emitted as a result of fertilizer 417 



application and livestock manure management and by the chemical industry. F-gases are 418 
emitted mainly from refrigerants used in air conditioners and cooling devices in the industry. 419 
Air pollutant gases (BC, CO, NH3, NMVOC, NOX, OC, SO2) are also associated with fuel 420 
combustion and activity levels. Emissions factors change over time with the implementation 421 
of air pollutant removal technologies and relevant legislation.  422 
 423 
IMAGE 3.0 is a comprehensive integrated assessment framework, modelling interacting 424 
human and natural systems56. The framework comprises a number of sub-models describing 425 
land use, agricultural economy, the energy system, natural vegetation, hydrology, and the 426 
climate system. The sub-models operate at different spatial resolutions. The socio-economic 427 
components work at the level of 26 regions while the environmental components work at the 428 
grid level to take into account heterogeneities in environmental circumstances. Interaction 429 
between the models takes place through upscaling and downscaling algorithms. 430 
Land use and crop production are spatially explicitly modelled on a 5 minute grid in the 431 
IMAGE-LandManagement model using an empirical land-use allocation algorithm. 432 
Livestock systems are modelled on 26 regions for intensive and extensive systems. Data on 433 
demand for agricultural production and intensification/extensification of the agricultural 434 
sector is provided by the agricultural economy model MAGNET: a multi-regional, multi-435 
sectoral, applied general equilibrium model 57 based on neo-classical microeconomic theory 436 
which is an extension of the standard GTAP model. The core of MAGNET is an input–output 437 
model, which links industries in value added chains from primary goods to final goods and 438 
services for consumption. Input and output prices are endogenously determined by the 439 
markets to achieve supply and demand equilibrium. The agricultural sector is represented in 440 
high detail compared to standard CGE models. Developments in productivity are driven by a 441 
combination of assumptions on autonomous technological change provided by IMAGE-442 
LandManagement and by economic processes as modelled by MAGNET (i.e. substitution 443 
between production factors). Land is modelled as an explicit production factor described by a 444 
land supply curve, constructed with land availability data provided by IMAGE-445 
LandManagement.  446 
The energy system is modelled for 12 primary energy carriers by the energy simulation 447 
model TIMER. The TIMER model determines demand for bioenergy production which is 448 
implemented in IMAGE-LandManagement following a food-first policy preventing 449 
competition with food production. The dynamic global vegetation model LPJmL is 450 
dynamically coupled to IMAGE-LandManagement to model the carbon and hydrological 451 
cycles and provides spatial explicit information on potential crop yields. An implementation 452 
of the simple climate model MAGICC is used to calculate climate change based on GHG 453 
emissions calculated by IMAGE-LandManagement and TIMER. 454 
Climate change mitigation policy is modelled by the FAIR-SimCAP model which uses 455 
carbon prices and marginal abatement cost curves (MACs) representing costs of mitigation 456 
actions to determine a cost optimal emission pathway. Technical mitigation of non-CO2 GHG 457 
emissions from agricultural is based on Lucas et al58. The residual emissions are taxed in 458 
MAGNET. The costs of technical mitigation are also implemented as part of the tax. Avoided 459 
deforestation policy (e.g. REDD) is calibrated to the carbon tax of FAIR-SimCAP and 460 
implemented in MAGNET through reduced land availability. 461 
 462 
 463 
MESSAGEix-GLOBIOM integrates the energy engineering model MESSAGE with the 464 
land-use model GLOBIOM via soft-linkage into a global integrated assessment modeling 465 
framework24.  466 



MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental 467 
Impact) is a linear programming (LP) energy engineering model with global coverage. As a 468 
systems engineering optimization model, MESSAGE is primarily used for medium- to long-469 
term energy system planning, energy policy analysis, and scenario development. The model 470 
provides a framework for representing an energy system with all its interdependencies from 471 
resource extraction, imports and exports, conversion, transport, and distribution, to the 472 
provision of energy end-use services such as light, space conditioning, industrial production 473 
processes, and transportation. To assess economic implications and to capture economic 474 
feedbacks of climate and energy policies, MESSAGE is linked to the aggregated macro-475 
economic model MACRO59. 476 
Land-use dynamics are modelled with the GLOBIOM (GLobal BIOsphere Management) 477 
model, which is a partial-equilibrium model12. GLOBIOM represents the competition 478 
between different land-use based activities. It includes a detailed representation of the 479 
agricultural, forestry and bio-energy sector, which allows for the inclusion of detailed grid-480 
cell information on biophysical constraints and technological costs, as well as a rich set of 481 
environmental parameters, incl. comprehensive AFOLU (agriculture, forestry and other land 482 
use) GHG emission accounts and irrigation water use. For spatially explicit projections of the 483 
change in afforestation, deforestation, forest management, and their related CO2 emissions, 484 
GLOBIOM is coupled with the G4M (Global FORest Model) model60. As outputs, G4M 485 
provides estimates of forest area change, carbon uptake and release by forests, and supply of 486 
biomass for bioenergy and timber.  487 
MESSAGE-GLOBIOM covers all greenhouse gas (GHG)-emitting sectors, including energy, 488 
industrial processes as well as agriculture and forestry. The emissions of the full basket of 489 
greenhouse gases including CO2, CH4, N2O and F-gases (CF4, C2F6, HFC125, HFC134a, 490 
HFC143a, HFC227ea, HFC245ca and SF6) as well as other radiatively active substances, 491 
such as NOx, volatile organic compounds (VOCs), CO, SO2, and BC/OC is represented in the 492 
model. MESSAGE-GLOBIOM is used in conjunction with MAGICC (Model for Greenhouse 493 
gas Induced Climate Change) version 6.8 (Ref.61)  for calculating atmospheric concentrations, 494 
radiative forcing, and annual-mean global surface air temperature increase.  495 
 496 
The POLES (Prospective Outlook on Long-term Energy System) model is a global partial 497 
equilibrium simulation model of the energy sector with an annual step, covering 38 regions 498 
world-wide (G20, OECD, principal energy consumers) plus the EU. The model covers 15 499 
fuel supply branches, 30 technologies in power production, 6 in transformation, 15 final 500 
demand sectors and corresponding greenhouse gas emissions. GDP is an exogenous input of 501 
the model, while endogenous resource prices, endogenous global technological progress in 502 
electricity generation technologies and price induced lagged adjustments of energy supply 503 
and demand are important features of the model. Mitigation policies are implemented by 504 
introducing carbon prices up to the level where emission reduction targets are met: carbon 505 
prices affect the average energy prices, inducing energy efficiency responses on the demand 506 
side, and the relative prices of different fuels and technologies, leading to adjustments on 507 
both the demand side (e.g. fuel switch) and the supply side (e.g. investments in renewables). 508 
Non-CO2 emissions in energy and industry are endogenously modelled with potentials 509 
derived from literature (marginal abatement cost curves). Projections for agriculture, 510 
LULUCF emissions and food indicators are derived from the GLOBIOM model (dynamic 511 
look-up of emissions depending on climate policy and biomass-energy use), calibrated on 512 
historical emissions and food demand (from UNFCCC, EDGAR and FAO). A full 513 
documentation of POLES is available at http://ec.europa.eu/jrc/poles and report62.  514 
 515 



REMIND-MAgPIE models the global energy-economy-climate system for 11 world regions 516 
and for the time horizon until 2100. For the present study, REMIND in its version 1.7 was 517 
used. REMIND represents five individual countries and six aggregated regions formed by the 518 
remaining countries. For each region, intertemporal welfare is optimized based on a Ramsey-519 
type macro-economic growth model. The model explicitly represents trade in final goods, 520 
primary energy carriers, and in the case of climate policy, emission allowances and computes 521 
simultaneous and intertemporal market equilibria based on an iterative procedure. Macro-522 
economic production factors are capital, labor, and final energy. REMIND uses economic 523 
output for investments in the macro-economic capital stock as well as consumption, trade, 524 
and energy system expenditures. 525 
MAgPIE (Model of Agricultural Production and Its Impacts on the Environment) 17, 63 is a 526 
global partial equilibrium agro−economic model that operates on a spatially explicit scale, 527 
where local biophysical conditions (crop yield, water availability, and terrestrial carbon 528 
content) influence decision making for optimal agricultural production patterns. The 529 
objective function is the costs of global agricultural supply, which are minimized such that 530 
the demand for agricultural products is fulfilled. Agricultural demand is aggregated at the 531 
level of ten MAgPIE defined geo-economic regions. Food demand is exogenously calculated, 532 
based on an econometric regression model that projects per capita caloric consumption on a 533 
national level, considering historical patterns and socio−economic assumption of future 534 
growth in population and income64. The demand implementation accounts for the long-term 535 
income effect on agricultural consumption, but the model is limited with respect to 536 
representing short-term demand adjustments to changes in prices. Material demand is 537 
assumed to be proportional to total food demand. Agricultural demand in addition comprises 538 
demand for animal feed (feed crops, fodder, grazed biomass) calculated based on feed 539 
baskets content. Regional agricultural supply is endogenously determined based on costs of 540 
production and spatially explicit agricultural productivity levels. The costs account for input 541 
factors of production, transport, and investment costs for conversion of other land types into 542 
arable land, irrigation infrastructure, and yield-increasing technological progress 65(Input of 543 
local biophysical conditions (land, water, terrestrial carbon) and crop yields is provided on 544 
the gridded resolution (0.5° × 0.5° geographic longitude−latitude) from the global crop model 545 
LPJmL (Lund−Potsdam−Jena model with managed Land). MAgPIE estimates flows of CO2, 546 
CH4, and nitrogen (N) related emissions66. CO2 emissions are computed from land-use 547 
change dynamics, i.e. from conversion of different biomes into agricultural land and 548 
consequent loss of terrestrial carbon stocks. Land conversion into cropland can occur from 549 
pasture, forest (pristine and unmanaged), and other natural vegetation (e.g., savannahs, 550 
shrublands) land pools. The reduction of GHGs is incentivized by an imposed price (tax). In 551 
the case of CO2 emissions, the price serves as an incentive to restrain land-use conversion and 552 
consequent carbon release. Reduction of CH4 and N emissions is possible by applying 553 
technical mitigation at additional cost, also triggered by an emission price.  554 
 555 
WITCH-GLOBIOM (World Induced Technical Change Hybrid) is an integrated assessment 556 
model designed to assess climate change mitigation and adaptation policies. It is developed 557 
and maintained at the Fondazione Eni Enrico Mattei and the Centro Euro-Mediterraneo sui 558 
Cambiamenti Climatici. WITCH-GLOBIOM is of a global dynamic model that integrates 559 
into a unified framework the most important drivers of climate change. An inter-temporal 560 
optimal growth model captures the long-term economic growth dynamics. A compact 561 
representation of the energy sector is fully integrated (hard linked) with the rest of the 562 
economy so that energy investments and resources are chosen optimally, together with the 563 
other macroeconomic variables. 564 



WITCH-GLOBIOM represents the world in a set of a varying number of macro regions – for 565 
the present study, the version with thirteen representative native regions has been used; for 566 
each, it generates the optimal mitigation strategy for the long-term (from 2005 to 2100) as a 567 
response to external constraints on emissions. A modelling mechanism aggregates the 568 
national policies on emission reduction or the energy mix into the WITCH regions. Finally, a 569 
distinguishing feature of WITCH is the endogenous representation of R&D diffusion and 570 
innovation processes that allows a description of how R&D investments in energy efficiency 571 
and carbon-free technologies integrate the mitigation options currently available. Non-CO2 572 
emissions in energy and industry are endogenously modelled with potentials derived from 573 
literature (marginal abatement cost curves). Projections for agriculture, LULUCF emissions 574 
and food indicators are derived from the GLOBIOM model (dynamic look-up of emissions 575 
depending on climate policy and biomass-energy use), calibrated on historical emissions and 576 
food demand (from UNFCCC, FAO and EDGAR). 577 
For this study, WITCH 2016 has been used; key publications describing the model are 578 
Refs.27, 67, and a full documentation is available at http://doc.witchmodel.org/. 579 
 580 
Scenario definition 581 

We employed four scenarios in this study as listed below: 582 
(1) Baseline 583 

It does not include climate policy but currently planned non-climate policy such as 584 
energy policies. 585 

(2) NDC 586 
Currently planned policies + NDCs are reflected. Thus, the emissions meet the NDC 587 
targets for 2025 and 2030. After 2030, the same emissions reduction effort by 2030 is 588 
assumed. 589 

(3) 2°C 590 
Currently planned policies + Cost effective mitigation pathway with global 591 
cumulative CO2 emissions constraint as 1000 GtCO2 from 2011 to 2100 is adopted. 592 
This level of mitigation efforts likely (>66% change) enables the global mean 593 
temperature staying below 2 °C. The emission reduction starts from 2020. 594 

(4) 1.5°C 595 
Currently planned policies + Cost effective mitigation pathway with global 596 
cumulative CO2 emissions constraint as 400GtCO2 from 2011 to 2100 is adopted. 597 
This level of mitigation efforts enables the global mean temperature staying below 598 
2 °C by roughly 50%. The emission reduction starts from 2020. 599 

 600 
The estimation method of number of people at risk of hunger  601 

In principle, the risk of hunger can be calculated by referring to the mean calorie 602 
consumption, which is the same approach as in AIM and IMAGE. Moreover, GLOBIOM 603 
recently released a publication quantifying the number of people at risk of hunger13, with its 604 
emulator now used by three IAMs (MESSAGE-GLOBIOM, POLES and WITCH-605 
GLOBIOM). MAgPIE is also well known among the agricultural economic models that have 606 
been applied in this research field. Therefore, the combination of the IAMs and the hunger 607 
estimation tool were sufficient for our purposes, i.e. to represent agricultural and land use 608 
changes.  609 

The narrow definition of undernourishment or hunger is a state of energy (calorie) 610 
deprivation lasting over one year; this does not include the short-lived effects of temporary 611 
crises 68, 69. Furthermore, this does not include inadequate intake of other essential nutrients 612 
68. The population at risk of hunger is a proportion of the total population and is calculated 613 
using Eq. 1. 614 
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 617 
According to the Food and Agriculture Organization (FAO) methodology 70, the proportion 618 

of the population at risk of hunger is defined using Eqs. 2 to 4. With the FAO methodology, 619 
the proportion is calculated using three parameters: the mean food calorie consumption per 620 
person per day (cal), the mean minimum dietary energy requirement (M), and the coefficient 621 
of variation of the food distribution of the dietary energy consumption in a country (CV). The 622 
food distribution within a country is assumed to follow a log normal distribution. The 623 
proportion of the population under the mean minimum dietary energy requirement (M) is 624 
defined as the proportion of the population at risk of hunger. The log normal distribution has 625 
two parameters, the mean μt and the variance σt, as in Eq. 2. The parameters μt, and σt can be 626 
represented using the mean food calorie consumption per person per day (cal) and the 627 
coefficient of variation of the domestic distribution of dietary energy consumption (CV) as 628 
Eqs. 3 and 4. 629 

Each IAM reports the mean food calorie consumption per person per day (cal). We 630 
standardize the base year calorie consumption to what FAO reports and take the change ratio 631 
of each year to the base year for IAMs. We then compute the standardized calorie 632 
consumption to make a consistent number for those at risk of hunger. In this process, since 633 
the IAM’s are regionally aggregated values, they are downscaled to the individual country 634 
level by taking the base year value reported FAO and future change ratio from IAMs. The CV 635 
is an indicator of food security observed in a household survey conducted by the FAO. It 636 
ranges from 0 to 1. FAO country data for CV are weighted on the basis of population data in 637 
the base year and aggregated to regional classification to obtain the CV of aggregated 638 
regions. The CV is changed over time with the consideration of income growth dynamics as 639 
presented in Hasegawa et al.29. Note that there is an assumption that the future CV changes of 640 
each region are based on the current regional values. 641 
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 647 
The mean minimum dietary energy requirement (M) is calculated for each year and 648 

country by using the mean minimum dietary energy requirement in the base year at the 649 
country level 71, 72, 73 and an adjustment coefficient for the minimum energy requirements per 650 



person in different age and sex groups 72 and the population of each age and sex group in 651 
each year 73, as in Eqs. 5 and 6. 652 

t
t

MER
M Mbase

MERbase
= ⋅

 (Eq. 5) 653 

, , ,

,

, ,

,

i j i j t

i j

t

i j t

i j

RMER Pclass

MER
Pclass

⋅

=




 (Eq. 6) 654 
where, 655 
i: age group; 656 
j: sex; 657 
Mbase: mean minimum dietary energy requirement per person in the base year; 658 
MERt: Mean adjustment coefficient of minimum energy requirements per person in year t; 659 
MERbase: Mean adjustment coefficient of the minimum energy requirements per person in the 660 
base year; 661 
RMERi,j: Adjustment coefficient for the minimum energy requirements per person of age i 662 
and sex j; 663 
Pclassi.j,t: population of age i and sex j in year t. 664 
 665 
Data Availability 666 
 667 
Scenario data is accessible online via the CDLINKS Database portal 668 
https://db1.ene.iiasa.ac.at/CDLINKSDB. 669 
The data which is derived from the original scenario database shown as figures but not in the 670 
above database is available upon requests. 671 
 672 
  673 
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