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M. Papadrakakis, E. Oñate and B. Schrefler (Eds)

A MULTI-MODEL INCREMENTAL ADAPTIVE STRATEGY
TO ACCELERATE PARTITIONED FLUID-STRUCTURE

ALGORITHMS USING SPACE-MAPPING

Thomas P. Scholcz∗, Alexander H. van Zuijlen and Hester Bijl

∗Faculty of Aerospace Engineering
Delft University of Technology

Kluyverweg 1, 2629 HS Delft, The Netherlands
e-mail: t.p.scholcz@tudelft.nl

Key words: Fluid-structure interaction, Partitioned coupling, Space-mapping, Multi-
fidelity models, Reduced Order Models

Abstract. High fidelity analysis of fluid-structure interaction systems is often too time-
consuming when a large number of model evaluations are required. The choice for a
solution procedure depends often on the efficiency of the method and the possibility of
reusing existing field solvers. Aggressive Space-Mapping, a technique originally developed
for multi-fidelity optimization, is applied to accelerate the partitioned solution procedure
of a high fidelity fluid-structure interaction model. The method supports software mod-
ularity. Aggressive Space-Mapping (ASM) is applied to an academic testcase and the
results are compared with the corresponding Incremental Quasi-Newton (IQN) method.
An efficiency metric is defined to facilitate the comparison. The ASM method is found
to be more efficient than the corresponding IQN method for the testcases considered.
The efficiency of space-mapping increases with increasing fluid-to-structure mass ratio,
indicating that the method is especially useful for strongly coupled problems.

1 INTRODUCTION

High-fidelity analysis of fluid-structure interaction systems is often too time-consuming
when a large number of model evaluations are required. Examples are found in design,
optimization and stochastic analysis of fluid-structure interaction systems [1, 2, 4].

The aim of this contribution is to efficiently obtain transient solutions of a high-fidelity
model using a partitioned procedure in combination with a technique from multi-fidelity
optimization called Aggressive Space-Mapping (ASM) [1]. Using ASM, information of a
cheap low-fidelity model is exploited to accelerate the solution procedure of an expensive
high-fidelity model. In the following the cheap low fidelity model is named “the coarse
model” and the expensive high-fidelity model “the fine model”. Coarse models can be
categorized as [2]
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1. Data-fit models: response surfaces, kriging, radial basis functions etc.

2. Reduced order models: Proper Orthogonal Decomposition, modal analysis, Volterra
series etc.

3. Hierarchical models: physics-based models of lower fidelity.

In turn, hierarchical models can be categorized as

1. Low-fidelity models that neglect some physics modeled by the high-fidelity models.

2. Low-fidelity models that are the same as the high fidelity model, but converged to
a higher residual tolerance.

3. Low-fidelity models that are the same as the high fidelity model, but discretized on
a coarser grid or using a lower order disretization method.

Using defect correction with coarse models in the latter category emanates in a wide range
of methods known as multi-grid or coarse-grid methods. The application of coarse-grid
methods on a fluid-structure interaction problem has been thoroughly investigated in [3].
The observed efficiency gains of coarse-grid methods motivates to explore the application
of other defect correction based algorithms such as space-mapping.

An important distinction can be made in the way coarse models are derived from fine
models. For the derivation of a large class of coarse models, detailed preliminary problems
need to be solved first. Examples are the classical POD and the Volterra series model
reduction methods. This is called the a posteriori approach. The a posteriori approach
is useful when the coarse model is able to capture variations in model parameters. In
that case, it can be used to replace the fine model in design, optimization or uncertainty
analysis. On the other hand, there exist the a priori approach [7] which does not assume
prior knowledge of the fine model solution but either starts from a model that was initially
derived from the fine model and/or is improved during the solution procedure of the fine
model.

The advantage of improving the coarse model and solving the fine model simultaneously
is that coarse model information can be used to accelerate the solution procedure of the
fine model. Examples of such hybrid strategies are found in [5, 6]. Here, a reduced order
model is built up during the coupling iterations of a partitioned (implicit) fluid-structure
algorithm. The reduced order model is subsequently used to enhance the convergence of
fixed point iterations. Model adaptation is performed by enriching the ROM basis from
input-output information of the fine model.

Other techniques use reduced order models to provide a better initial guess for the
iterative process at the next time step in an implicit time-integration scheme. Examples
are found in [8, 9] . Here, a POD-based ROM is built up during the integration of the
fine model. Model adaptation is performed by changing the ROM basis using a so-called
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incremental eigenspace algorithm. Typically a ROM-prediction is followed by a fine model
correction, if necessary.

In this contribution we aim to explore the application of space-mapping to accelerate
the solution procedure of the fine model. Model adaptation is performed via an adaptively
improved inverse space-mapping function during the coupling iterations at each time
step in a partitioned fluid-structure algorithm. Defect correction on the fluid-structure
interface is employed to find the new iterate. Using this strategy, any coarse model could
be used that shares the interface degrees of freedom with the fine model. The fine and
coarse models are considered “black-boxes“ in the space-mapping approach. Similar to
the method in [9], the solution of the coarse model can be interpreted as a ”shadow” that
runs parallel with the solution of the fine model.

First, the general fluid-structure problem is formulated followed by a short discussion
of the most common coupling techniques. The concept of space-mapping is explained and
the resulting algorithm is applied to a 1-D testcase. Only physics-based models of lower
fidelity are used as coarse models in the space-mapping algorithm. Other coarse model
types can be used but are not considered in this contribution. Finally, the results are
presented and conclusions are drawn.

2 Partitioned coupling techniques

Implicit time integration is often used to ensure a stable numerical scheme. Since
implicit schemes require matching conditions at the new time instant tn+1, these schemes
lead to coupled problems at each time step in the simulation. Let the vector v denote
the flow variables and vector u the structure variables at the new time level tn+1. Hiding
the dependency on the solution of previous time levels, the coupled problem at time step
tn+1 is formulated as

f(v,u) = 0, (1)

s(v,u) = 0, (2)

where f represents the discrete fluid equations and s the discrete structure equations.
Solving the discrete fluid equations is often much more expensive than solving the discrete
structure equations due to the large range of important scales present in the fluid.

2.1 Problem formulation

The problem can be formulated as a problem in the degrees of freedom of the fluid-
structure interface only, with the flow variables v and structure variables u treated as
internal variables of the residual operator [5, 6]. A Dirichlet-Neumann decomposition is
normally employed to solve the system in a partitioned fashion. Introducing the fluid
operator F () and structure operator S():

3
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y = F (x)

1. Apply the interface displacement x
to the boundary of the fluid domain.

2. Deform the grid in the fluid domain
to the displacement of the boundary.

3. Calculate the flow variables v in the
fluid domain.

4. Obtain the stress y on the boundary

x = S(y)

1. Apply the stress y on the boundary
of the structure.

2. Calculate the structural variables u
in the domain of the structure.

3. Obtain the displacement x on the
boundary of the structure,

It follows by substitution of y = F (x) in x = S(y) that

S ◦ F (x) − x
︸ ︷︷ ︸

R(x)

= 0. (3)

Strong coupling algorithms aim to minimize residual R as far as possible using a mini-
mal number of residual evaluations at each time step in the sequential time integration
process. The kinematic and dynamic interface conditions at the fluid-structure interface
are satisfied when equation (3) holds. For an overview of strong coupling procedures, see
[10, 11]. As mentioned in [11], the choice of partitioned approach often depends on the
possibility of reusing existing field solvers. The strategy presented in this work supports
software modularity and is in addition modular with respect to the coarse models used
to accelerate the solution procedure of the fine model.

2.2 Classical coupling algorithms

Classical algorithms aim to reduce residual R directly without the use of a coarse model
space. The most common coupling algorithms in this category that support software
modularity are found in [10, 11]. These are: the fixed-point iteration method, fixed-
point iteration method with Aitken acceleration and Incremental Quasi-Newton (IQN)
methods. Space-mapping is introduced in section 2.3. It is shown in section 2.3.2 that the
resulting ASM algorithm is related to the IQN algorithm, which motivates a comparison
between the two algorithms. This is done by performing numerical experiments in section
3.

2.3 Space-mapping

Space-mapping relies on the availability of an expensive fine model and a cheap coarse
model that model the same physical phenomena. The use of the fluid operator is the
most expensive operation in most fluid-structure interaction problems. For this reason
we assume the availability of a fine and coarse fluid operator, resulting in the definition
of the fine and coarse residual R and R̃:
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Fine fluid model :

1. Evaluation of F () expensive.

2. Fine residual: R(x) = S ◦ F (x) − x

3. Solution: x∗ = arg min ||R(x)||
4. Accurate solution.

Coarse fluid model :

1. Evaluation of F̃ () cheap.

2. Coarse residual R̃(z) = S ◦ F̃ (z) − z

3. Solution z∗ = arg min ||R̃(z)||
4. Inaccurate solution.

The solution of the fine and coarse model at tn+1 are denoted by x∗ and z∗.

2.3.1 Space-mapping function

Let X be the space of all interface displacements that can be reached by the fine model
and let Z be all interface displacements that can be reached by the coarse model. The
concept of space-mapping is shown in figure 1.

Coarse model space

p−1
k (z∗)

xk+1

xk

x∗ X Z
z∗

zk

Fine model space
p(xk)

Figure 1: Concept of space-mapping

A choice for the space-mapping function could be

z = p(x) = arg min
z∈Z

||R̃(z) − R(x)||, (4)

which can be evaluated using coupling iterations with the coarse model, e.g by fixed-point
iterations

zq+1 = S ◦ F̃ (zq) − R(x). (5)

The space-mapping function has the following property:

p(x∗) = z∗, (6)

5
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which states that the mapping function p is perfect [1]. In words: the space-mapping
function maps the fine model solution x∗ to the solution of the coarse model, z∗. The
inverse of the space-mapping function is given by

x = p−1(z) = arg min
x∈X

||R(x) − R̃(z)||. (7)

Evaluation of the inverse space-mapping function in (7) is as hard as solving the fine
model directly. Therefore, an approximation is used at iterate number k:

xk+1 = p−1
k (z∗) (8)

Due to the fact that p−1
k ≈ p−1 we have xk+1 �= x∗ but as pk → p−1 for increasing k

it holds that xk+1 → x∗ upon convergence. When a Taylor series approximation is used
for the inverse space-mapping function, the ASM method results. This is the topic of the
next section.

2.3.2 Aggressive Space-Mapping method

The space-mapping function is expanded in a Taylor series

pk(x) ≈ p(xk) + ∇k
xp(x − xk). (9)

Using the relations zk = p(xk) and z ≈ pk(x), the approximation of the inverse space-
mapping function is found from equation (9)

p−1
k (z) ≈ xk + (∇k

xp)−1(z − zk). (10)

The new iterate is found by substitution of the approximated inverse space-mapping
function from equation (10) in equation (8)

xk+1 = xk + (∇k
xp)−1(z∗ − zk). (11)

The ASM method is summarized in algorithm 1 and compared with the IQN method in
algorithm 2. Both algorithms use Broyden’s first method to update the Jacobian. Other
Jacobian approximations could be used as long as input/output information is sufficient
in order to obtain the approximation, e.g. the method of Vierendeels and Degroote [5].
Line number 4 and 15 are left blank in algorithm 2 to emphasize that additional work
is performed by the ASM algorithm compared to the IQN algorithm. In addition to the
work performed to evaluate the space-mapping functions on line 4 and 15, work need to
be performed to obtain the coarse model solution z∗. From the comparison of algorithm 1
and 2 it becomes clear that there is a strong connection between the ASM method and the
IQN method. The ASM method reduces to the IQN method when the Taylor expansion
of the fine model is taken as the coarse model R̃(z) = Rk + ∇k

xR(z − xk) in the space
mapping procedure. The IQN algorithm is therefore a special case of the ASM algorithm.

6
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On the other hand, we can think of the ASM method as a quasi-Newton method applied
to the (nonlinear) system of equations p(x) − z∗ = 0 instead of R(x) = 0.

Algorithm 1 Aggressive Space-Mapping

1: k = 0
2: ∇0

xp = I
3: R0 = S ◦ F (x0) − x0

4: z0 = argminz∈Z||R̃(z) − R0||
5: while ||Rk|| > ε do
6: if k = 0 then
7: xk+1 = xk + (∇k

xp)−1(z∗ − zk)
8: else
9: ∆x = xk − xk−1

10: ∇k
xp = ∇k−1

x p + zk−zk−1−∇k−1
x p∆x

∆xT ∆x
∆xT

11: xk+1 = xk + (∇k
xp)−1(z∗ − zk)

12: end if
13: k = k + 1
14: Rk = S ◦ F (xk) − xk

15: zk = argminz∈Z||R̃(z) − Rk||
16: end while

Algorithm 2 Incremental Quasi-Newton

1: k = 0
2: ∇0

xR = −I
3: R0 = S ◦ F (x0) − x0

4:
5: while ||Rk|| > ε do
6: if k = 0 then
7: xk+1 = xk − (∇k

xR)−1Rk

8: else
9: ∆x = xk − xk−1

10: ∇k
xR = ∇k−1

x R+ Rk−Rk−1−∇k−1
x R

∆xT ∆x
∆xT

11: xk+1 = xk − (∇k
xR)−1Rk

12: end if
13: k = k + 1
14: Rk = S ◦ F (xk) − xk

15:
16: end while

More computational work per fine model evaluation is performed in the ASM algorithm
than in the IQN algorithm. The number of fine residual evaluations should therefore
decrease significantly to gain efficiency with respect to the IQN method. The efficiency of
the ASM method depends on the kind of coarse model used, the alignment of the coarse
and fine model in time and model parameters. For a certain choice of coarse model, the
efficiency should be determined by performing numerical experiments. To ease comparison
of different techniques, an efficiency metric is defined in the following section.

2.4 Aggressive Space-Mapping versus Incremental Quasi-Newton method

The efficiency of the ASM method and the IQN method is determined by the cost per
time step for a fixed tolerance ε in algorithm 1 and 2. Let W k,n

f and W k,n
c be the cost

(flops or CPU time) of the kth fine and coarse model iteration respectively at the nth time
step in the sequential time integration process.

W k,n
f = CPU time S ◦ F (xk) − xk, (12)

W k,n
c = CPU time S ◦ F̃ (zk) − zk. (13)

The average cost per time step tn of a fine and coarse model residual evaluation is then
found from

7
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W̄f(t
n) =

1

Nf

k=Nf
∑

k=1

W k,n
f and W̄c(t

n) =
1

Nc

k=Nc
∑

k=1

W k,n
c (14)

The total cost per time step tn of the ASM method and the IQN method is then estimated
by

W sm(tn) = W̄ sm
f N sm

f + W̄ sm
c N sm

c and W qn(tn) = W̄ qn
f Nqn

f , (15)

where W̄ sm
f and W̄ qn

f are the average work of fine model residual evaluations per time step
in the ASM and IQN method respectively. The time dependent efficiency of the ASM
algorithm relative to the IQN algorithm is subsequently found from the ratio of work per
time step

η(tn) = 1 − W sm(tn)

W qn(tn)
= 1 − N sm

f

Nqn
f

︸︷︷︸

κf

− W̄ sm
c

W̄ qn
f

︸ ︷︷ ︸

γc

N sp
c

N qn
f

︸︷︷︸

κc

. (16)

Equation (16) is valid since W̄ sm
f ≈ W̄ qn

f . The relative efficiency at tn depends on three
ratios: the ratio of fine model residual evaluations κf , the ratio of coarse to fine work γc and
the ratio of the coarse to fine residual evaluations κc. The ASM method is more efficient
than the IQN method if η > 0. From (16) it becomes clear that the success of space-
mapping is not only determined by the reduction of fine model evaluations but also by the
cost to achieve this reduction. For a constant κf , the product γcκc determines the effect
on the relative efficiency. It follows that a large number of coarse model evaluations with
a very cheap coarse model can be as successful as a few iterations with a more expensive
coarse model as long as the same reduction in the number of fine model evaluations is
achieved.

3 1-D test case: Piston problem

m

k

c0, ρ0

x

xp, zp

L0

Figure 2: 1D testcase: Conceptual domain

x1 x2 xNv
xNv−1xi

q1 q2 qNvqi qNv−1

xp, zp

Figure 3: 1D testcase: Computational domain
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3.1 Fine fluid model

The fluid in the piston is governed by the Euler equations of gas dynamics [3, 12]

∂tq + ∂xf(q) = 0. (17)

Since a one-dimensional compressible inviscid fluid is assumed with p = p0

ργ
0
ργ, the energy

equation in (17) becomes redundant and only the mass and momentum balance are nec-
essary to describe the physics of the fluid. The state and flux vector are therefore given
by

q = (ρ ρu)T and f(q) = (ρu ρu2 + p)T , (18)

with ρ the fluid density and u the horizontal fluid velocity. The Finite Volume technique
is used to transform the integral form of equation (17) to a semi-discrete nonlinear system
of equations

∂twf + A(wf )wf + Afsws = 0. (19)

Here, wf = (qT
1 qT

2 ...qT
Nv

)T is the discrete state vector of the fluid, Afs is the structure-
to-fluid coupling matrix and ws = [xp ẋp]

T the state vector of the structure. The compu-
tational domain is shown in figure 3. To perform the coupling, a transpiration boundary
condition is used on the fluid-structure interface, see [3]. From (19) it becomes clear that
a fine model residual evaluation requires the solution of a nonlinear system of equations.
The nonlinear system of equations is solved using simple Picard-iterations.

3.2 Coarse fluid model

If the flux vector f in (18) is linearized around the equilibrium state of the fluid: q =
(ρ0 0)T we obtain

∂tq
′
+ ∂qf |q=q0 ∂xq

′
= 0, (20)

with ∂qf the Jacobian of the nonlinear flux f as found in [3, 12] and q
′

a perturbation
with respect to the equilibrium state vector q0. If the Finite Volume method is applied
to the integral form of (20), a discrete linear system of equations results

∂tw
′

f + Aw
′

f + Afsw̃s = 0. (21)

Here, the state vector is denoted w̃s = [zp żp]
T . A coarse residual evaluation requires only

the solution of a linear system of equations.

3.3 Testcases

The fluid-to-structure mass ratio ζ and ratio of characteristic time-scales λ are defined by

ζ = ρ0L/m and λ = Lω/c0, (22)

9
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with ω =
√

k
m

the natural frequency of the mass-spring system. It is well known that the

convergence of fixed-point iterations depends on the ratio ζ/λ = ρ0c0√
km

and the time step

used in the sequential integration process, see [12]. In order to study the performance of
the ASM-algorithm for various levels of coupling strength, we fix the ratio of characteristic
time scales and increase the fluid-to-structure mass ratio.

Similarity parameters Structural parameters Fluid parameters

ζ [−] λ [−] m[kg] k [ kg
ms2 ] L[m] ρ0[

kg
m3 ] c0[

m
s
]

FSI-1 1/2 0.85 4 64300 2 1 300
FSI-2 2/3 0.85 3 48225 2 1 300
FSI-3 2 0.85 1 16075 2 1 300

Table 1: Physical parameters and similarity parameters of the 1-D FSI test cases

The testcases are collected in table 1. For each testcase we are interested in the relative
time-dependent efficiency η as defined in section 2.4. The coarse fluid-structure model
has a (non-dimensional) coupled period of P1 = 6.19, P2 = 5.96 and P3 = 5.04 for the
testcases FSI-1, FSI-2 and FSI-3 respectively. Time steps in the simulation are given with
respect to the coarse coupled period as will become clear in section 3.4.

3.4 Numerical experiments

The initial conditions and numerical parameters are collected in table 2. The piston is
released from an initial displacement. For the nondimensionalization the same convention
is used as in [3]. The coarse and fine model use the same discretization.

Description fine model coarse model

Initial piston displacement x̄0
p 0.5 z̄0

p 0.5

Initial fluid density ρ̄0 2
3

ρ̄
′0 −1

3

Number of finite volume cells Nv 64 Nv 64
Number of time steps Nt 500 Nt 500
Time step ∆t P/500 ∆t P/500

Table 2: Nondimensional initial conditions and numerical parameters

The BDF2 time-integration scheme is used to integrate the semi-discrete coupled system in
a partitioned way. The tolerance in algorithm 1 and 2 is set to a small value: ε = 1×10−12,
resulting in a strongly coupled solution. The fine and coarse model fluid density as a
function of (nondimensional) space and time is given in figure 4 and 5 respectively for
testcase FSI-2. A pressure wave is present in the fine model density response, hitting the
piston at t̄/P2 ≈ 0.4 and t̄/P2 ≈ 0.7. The effect of the pressure wave is also present in

10
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the solution of the piston in figure 6. There is no pressure wave present in the solution of
the linear coarse model as can be seen in figure 5 and 7 respectively.

x̄

t̄/P2 ρ̄

Figure 4: Fine density response of FSI-2

ρ̄

x̄

t̄/P2

Figure 5: Coarse density response of FSI-2
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Figure 6: Fine piston response of FSI-2
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Figure 7: Coarse piston response of FSI-2

The number of fine model iterations used in the ASM method, the IQN method and
the fixed-point iteration method as a function of time are plotted in figure 8. As expected,
both ASM and IQN are more efficient than the fixed-point iteration method. The time
dependent efficiency of the ASM algorithm relative to the IQN algorithm is shown in
figure 9. It can be seen from figure 9 that the efficiency of ASM and IQN are comparable
(η ≈ 0), except at the moments when the pressure wave hits the piston. The ASM method
is more efficient than the IQN method at these instances. This indicates that the efficiency
of ASM increases when a strong interaction between the structure and the fluid is present.
The efficiency η is equal to a small negative number −γcκc (O(10−3)) when N sm

f = N qn
f .

Hence, the coarse model work is negligible for this particular problem. The total relative
efficiency of a single period is given by η̂ = 1 −

P
W sm(tn)P
W qn(tn)

. The total efficiencies are

11
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η̂1 = 6.1%, η̂2 = 6.2% and η̂3 = 8.3% for FSI-1, FSI-2 and FSI-3 respectively. Hence,
the relative efficiency increases when the algorithm is applied to strongly coupled fluid-
structure interaction problems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
Space−mapping
Quasi−Newton
Fixed−point

Nf

t̄/P2

Figure 8: Fine model iterations Nf for FSI-2
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−0.05

0
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0.1

0.15

0.2
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0.3

η

t̄/P2

Figure 9: Efficiency η for FSI-2

4 Conclusions

- Aggressive Space-Mapping is successfully applied to obtain the transient solution of
an academic fluid-structure problem in a partitioned way.

- Aggressive Space-Mapping is found to be more efficient (η̂ = 6% to 8%) than the
corresponding Incremental Quasi-Newton method for the considered testcases and
time intervals. The time-dependent efficiency is high at the moments of strong
interaction (η = 20% to 25%), e.g. when a pressure wave hits the structure.

- The efficiency of Aggressive Space-Mapping increases with increasing fluid-to-structure
mass ratio, keeping the ratio of characteristic time scales fixed. The efficiency is
therefore higher for strongly coupled problems with large fluid densities and/or flex-
ible and light structures.
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