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Abstract— The airline crew rostering problem (CRP) is
significant for balancing the workload of crew and for improving
the satisfaction rate of crew’s preferences, which is related to the
fairness and satisfaction of crew. However, most existing work
considers only one objective on fairness or satisfaction. In this
study, we propose a new practical model for CRP that takes both
fairness and satisfaction into account simultaneously. To solve
the multi-objective CRP efficiently, we develop an ant colony
system (ACS) algorithm based on the multiple populations for
multiple objectives (MPMO) framework, termed multi-objective
ACS (MOACS). The main contributions of MOACS lie in three
aspects. Firstly, two ant colonies are utilized to optimize fairness
and satisfaction objectives, respectively. Secondly, a new hybrid
complementary heuristic strategy with three kinds of heuristic
information schemes is proposed to avoid ant colonies focusing
only on their own objectives. Ant colonies randomly choose
one of the three schemes to help explore the Pareto front (PF)
sufficiently. Thirdly, a local search strategy with two types of
local search respectively for fairness and satisfaction is designed
to further approach the global PF. The MOACS is applied
to seven real-world monthly CRPs with different sizes from a
major North-American airline. Experimental results show that
MOACS generally outperforms the greedy algorithm and some
other popular multi-objective optimization algorithms, especially
on large-scale instances.
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I. INTRODUCTION

A
IRLINE crew scheduling is of great significance to
airlines, which mainly consists of two stages: crew

pairing and crew rostering. In the crew pairing problem (CPP),
several flights are organized into a pairing that starts from
one base and eventually returns to the same base. Then the
crew rostering problem (CRP) aims at assigning each pairing
to the crew under a set of constraints. The crew scheduling
problem is divided into these two stages mainly for two
reasons [1]. For one thing, the integrated problem is too large
to be handled simultaneously for large-scale instances, and for
another, the objectives and constraints of CPP and CRP are
different. Some surveys [2], [3] have introduced the related
topic. In this study, we concentrate on the CRP due to its
direct impact on the fair assignment of workload and the
improvement of crew satisfaction.

To better deal with the CRP, the problem model should
be firstly formulated and then the methods are designed to
solve the model. For the problem model of CRP, there are
different kinds of considerations. Many CRP models focus on
minimizing the cost from the perspective of airlines. Zeghal
and Minoux [4] considered minimizing the total number of
additional flight credits for all crew members, and they also
took the cost of overnights into account. Santosa et al. [5]
regarded the variable cost of roster paid by airlines as one of
the objective functions, which was represented by actual flying
hours. Ezzinbi et al. [6] considered minimizing the total cost
as the main objective of the crew scheduling problem, and the
cost was calculated by the sum of different crew pairing costs.

Different from most existing models that consider the cost
from the perspective of airlines, we focus on fairness and
satisfaction from the perspective of crew members, which
directly affects their motivation. Herein, fairness refers to the
balanced allocation of pairings among all the crew members,
and many studies have studied the evaluation metrics of the
fairness. Doi et al. [7] adopted the sum of deviations from
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standard working hours for each crew member as a measure
of fairness, and the deviation is calculated by the linear
penalty. De Armas et al. [8] also used the working time as the
measure of work-balancing, and they proposed three criteria
to describe the deviation as well, which were the standard
deviation, interquartile range, and maximum-minimum range.
Lučić and Teodorović [9] measured fairness using the
weighted sum of average deviations between the real val-
ues and their respective ideal numbers, including monthly
flight time, allowances, and the number of weekend days.
Boufaied et al. [10] proposed balancing three objectives,
i.e., the number of flight hours, layovers, and destinations’
occurrences.

As for satisfaction, some researchers proposed considering
crew preferences. In the modern work environment, taking
employee preferences into account in workload scheduling has
an important effect on service quality [11]. Gamache et al. [12]
considered a series of weighted bids that reflected the crew
preferences and the assignment had to be completed under
strict qualifications. Dawid et al. [13] suggested generating a
set of work lines for each crew member based on their requests
like days off and preferred flights, and only one of them can
be selected. Maenhout and Vanhoucke [14] considered that the
crew could convey their preferences for certain attributes of
rosters, such as specific pairings, reserve duties, and even the
time when they wanted to be scheduled. Kasirzadeh et al. [15]
proposed using constraint functions to limit the minimum
number of preferred flights and preferred vacations to be
satisfied.

However, there are still some defects in the above works.
Firstly, some works only optimized a single objective on
fairness or satisfaction. In this case, the solution may be
good at one objective but extremely poor at the other one,
which may lack comprehensiveness and cannot meet the
actual needs of the industry [16]. Secondly, many studies only
used flight time as the evaluation metric of fairness, which
was not comprehensive enough. Thirdly, most researches that
considered crew preferences only took it as part of the single
objective function. This weighted-sum method for multiple
objectives is difficult to determine the weights and only one
solution can be obtained.

Based on the considerations mentioned above, we propose
a new CRP model from the perspective of crew members,
which takes both fairness and satisfaction of crew into account
simultaneously. The multi-objective model is solved to get
a group of non-dominated solutions so that decision-makers
can balance all objectives in different situations. A solution
is non-dominated if the other obtained solutions cannot be
better than it on both objectives. Specifically, this study uses
three attributes to measure fairness comprehensively, including
monthly flight time, duty time, and overnight time away from
home. Herein, the flight time is the real working time, which
is usually regarded as the only measure of fairness in most
studies. However, the duty time for the crew to stay in the
airport may be also long if the paring is loosely scheduled.
Therefore, it is also necessary to consider duty time as another
measure of fairness. Moreover, crew members prefer to rest
at their own bases rather than in hotels away from home.

Therefore, overnight time away from home (i.e., the rest time
in hotels) is also used as a measure of fairness. In terms
of satisfaction, our proposed model takes crew satisfaction
with the preferences for flights and vacations directly as
an objective, rather than as an item in a single objective
function.

The formulated multi-objective CRP is an NP-hard prob-
lem [7] with many practical constraints, including daily restric-
tions, weekly restrictions, and monthly restrictions. Different
countries or airlines may require different constraints to ensure
the adequate rest of crew members. The constraints in our
model are based on the latest government document [17] from
the ministry of transport in China. These constraints involve
the limits on the connection between pairings, accumulative
flight time for one calendar month, duty time for seven
consecutive days and one calendar month, and an additional
requirement for the rest time. These complex constraints make
it difficult to find feasible solutions in CRP.

Since our proposed CRP model is a challenging discrete
combinatorial optimization problem with complex constraints,
it is important to choose a suitable optimizer to solve it.
Traditional mathematical methods are inappropriate to such
an NP-hard problem or cannot obtain the optimal solution in
polynomial time. Ant colony optimization (ACO) [18], [19]
is a kind of swarm intelligence approach that has been
widely used to obtain the optimal or near-optimal solution
in discrete combinational optimization problems [20]–[24].
In particular, the ant colony system (ACS) [18] is an effi-
cient and widely used variant of ACO. Hence, we study
the ACS-based algorithm for CRP in this paper. The ACS
optimizer constructs a solution step by step, i.e., the pairings
are assigned in turn. Each pairing is assigned to a crew member
satisfying a set of constraints in each step, thus the feasibility
of the final solution can be guaranteed. Therefore, the ACS-
based algorithm can find feasible solutions easily, even on a
large-scale instance. As the original ACS is a single objective
optimization algorithm, we combine the ACS optimizer with
the multiple populations for multiple objectives (MPMO)
framework [25], [26] to handle the multi-objective CRP.

Therefore, based on the MPMO framework, we develop a
multi-objective ACS (MOACS) algorithm to solve the multi-
objective CRP. MOACS uses two ant colonies to optimize
fairness and satisfaction objectives, respectively. As each ant
colony only focuses on its own objective, it may reduce
population diversity to explore the central part of the Pareto
front (PF). Hence, a hybrid complementary heuristic (HCH)
strategy with three kinds of heuristic information schemes is
put forward to improve the search ability of ant colonies.
Ant colonies randomly choose one of the three schemes to
help explore the PF sufficiently. Furthermore, we design a
local search strategy to further approach the global PF, which
contains two types of local search for fairness and satisfaction,
respectively. In this study, MOACS is tested on real-world
monthly CRP with various sizes from a major North-American
airline [15]. The experimental results indicate that MOACS
outperforms some representative multi-objective optimiza-
tion algorithms in solving CRP, especially on large-scale
instances.
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TABLE I

EXAMPLE OF FLIGHTS INFORMATION

Fig. 1. Diagram of crew rostering scheme.

To sum up, the contributions of this study are as follows:
1) We propose a new practical multi-objective CRP model

from the perspective of crew members that takes both fairness
and satisfaction into consideration.

2) An HCH strategy is proposed to develop the MOACS
combining the ACS optimizer and the MPMO framework,
so as to efficiently solve the multi-objective CRP.

3) A local search strategy is designed to approach the global
PF, which contains two types of local search for fairness and
satisfaction, respectively.

The rest of this paper is arranged as follows. The definition
and formulation of the multi-objective CRP are described in
Section II. Section III introduces the details of MOACS and
its innovation. Section IV presents the experimental results.
Finally, the conclusion of this study is given in Section V.

II. PROBLEM DEFINITION AND FORMULATION

A. Problem Description

A base is a large airport where crew members are stationed.
For convenience, the crew usually lives in the city where the
base is located. Hence, each crew member is related to one
base. A flight is an activity in which an aircraft travels directly
from one airport to another, generally in a short period of
time. A small portion of the flight schedule of one day is
listed in Table I. A pairing is a connection of several flights.
It starts from the base corresponding to crew members and
finally returns to the base, which lasts usually 3–5 days. The
CPP organizes the flights into pairings, while the CRP in our
study takes pairings already obtained from the CPP as the input
and assigns them to specific crew members. An example with
six pairings is shown in Fig. 1, where each pairing has included
several flights. The CRP aims at assigning all pairings on the
left side to the crew members on the right side.

In our proposed CRP model, (b j , s j , e j , f j , d j , o j )

represents the attributes of pairing p j , where j represents the
pairing index. Three of these attributes require preprocessing

Fig. 2. Schematic diagram of attribute calculation for the pairing.

to obtain, which are the f light time f j , duty time d j , and
overnight time away from home o j . These three attributes are
used comprehensively to measure the fairness of scheduling.
Combined with the flight information of pairings in Fig. 1 and
the corresponding flight in Table I, the required attribute values
can be calculated. The flight time f j refers to the sum of the
actual flying time of all flights included in the pairing p j .
The duty time d j usually consists of three parts. The first
part is all the flight time f j . The second part is the sum
of sitting time, i.e., the sum of intervals between flights that
is less than the minimum rest time MinRestTime. The third
part is the preparation time Brief before the start of the daily
mission and the summary time Debrief after the end of the
daily mission. We also consider the special cases where the
duty time includes an additional fourth part. That is, in some
pairings, a flight that a crew member takes only for relocation,
which is called a deadhead, may be required. In such a
deadhead situation, the crew member flies as a passenger and
does not perform any mission, so the deadhead time is not
included in the flight time but is included in the duty time
because the crew member is still regarded to be on duty during
a deadhead. As for the overnight time away from home o j , it is
the layover in hotels after the end of the daily mission, that
is, the interval between the daily last flight and the first flight
in the next day is larger than or equal to MinRestTime, and
the arrival airport is not the home base of the crew member.
The diagram of the attribute calculation is shown in Fig. 2,
where the duty denotes the schedule for one day. Note that
the crew member will locate in the corresponding base after
performing duty2, so the interval between duty2 and duty3 is
not included in the overnight time away from home.

In addition to the three attributes mentioned above, the other
three attributes are the departure base b j , the start time s j ,
and the end time e j of pairing p j , respectively. s j is equal
to the departure time of the first flight included in pairing
p j minus the pre-flight preparation time Brief. Similarly, e j is
equal to the sum of the arriving time of the last flight included
in pairing p j and the summary time Debrief.

Moreover, each crew member can apply for their preferred
flights and vacations in advance. Note that the preferred flights
of the crew member are associated with their base. There are
two ways to improve the satisfaction of crew. One is assigning
the pairing that includes preferred flights to the corresponding
crew member. The other is avoiding assignments which are
during the preferred vacations of crew.

In our CRP model, (cbi , pfi , pvi , cfi , cdi , coi ) represents
the attributes of the crew member ci . The first three attributes
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cbi , pfi , and pvi denote the crew base, preferred f lights,
and preferred vacation of crew member ci , respectively. The
remaining three attributes cfi , cdi , and coi respectively refer
to the cumulative f light time, duty time, and overnight time
away from home of crew member ci during a month. Note
that we only consider the assignment of pilots, and assume
that only one pilot is required per flight in our model.

To make our paper clearer and easier to read, the basic
notations and terminologies for the CRP model mentioned
above and used following are listed in Table S.I of the
supplementary material.

B. Objective Formulation

Different from most existing CRP models that consider
the cost from the perspective of airlines, we propose the
model for the first time taking both fairness and satisfaction
objectives into account from the perspective of crew members.
This consideration can greatly enhance the enthusiasm and
satisfaction of crew members, thereby increasing the quality
of flights.

The fairness objective refers to the balanced allocation
of workload among all the crew members. As the standard
deviation is the most popular indicator to measure the balance
of different members, it is used in our paper to measure the
fairness objective. Herein, the workload of a crew member
includes three attributes, i.e., monthly flight time, duty time,
and overnight time away from home. Note that the fairness of
crew in each base should be calculated separately because crew
members in different bases cannot perform the same pairing.
Therefore, the fairness objective is formulated as the sum of
standard deviation of the three workload attributes of the crew
members in all the bases, as

g1(X) =

B N
�

b=1

⎛

⎜

⎝

�

�

�

�

1

|Eb|

�

i∈Eb

devb,i

⎞

⎟

⎠
(1)

where

devb,i =
�

c fi − f b

2
+

�

cdi − db

2
+ (coi − ob)

2 (2)

c fi =

ni
�

j=1

f̂i, j (3)

f b =
1

|Eb|

�

i∈Eb

c fi (4)

X is the schedule of all the crew, BN denotes the number of
bases, and Eb represents the set of all crew members in base b.
cdi and coi represent the monthly duty time and overnight
time away from home of member ci , respectively, and they
are calculated in a similar manner to cfi as shown in (3).
f̂i, j denotes the flight time of the j th pairing in the schedule
of crew member ci . ni is the total number of pairings to be
performed by ci . db and ob represent the average duty time
and overnight time away from home of all pairings in base b,
respectively, and they are calculated in a similar manner to
fb as shown in (4). A smaller g1 indicates a more balanced
allocation of workload among all the crew members.

In terms of the satisfaction objective, a crew member is
satisfied with the pairing assignment if their preferred flights
are included and the assignment does not conflict with their
preferred vacation. Therefore, these two attributes are consid-
ered in the satisfaction objective. In detail, the percentages
of the preferred flights and preferred vacations of all crew
members that are satisfied are calculated separately and the
sum of these two percentages is used to represent the satisfac-
tion of the pairing assignment for the crew members. Thus,
the satisfaction objective is formulated as

g2(X) =
sp f n

P F N
+

spvn

PV N
(5)

where spfn denotes the number of satisfied preferred f lights
and PFN denotes the total number of preferred flights required
from all the crew. Note that some flights may be preferred by
more than one crew member. In such cases, each of these
preferred flights is counted only once in the PFN. Similarly,
spvn represents the number of satisfied preferred vacations
and PVN represents the total number of preferred vacations
required from all the crew. A larger g2 indicates a more
satisfying pairing assignment scheme.

In our proposed CRP model, both objectives are optimized
at the same time. Note that g1(X) is a minimal objective,
whereas g2(X) is a maximal objective. The goal of our model
is defined as (6), which is a bi-objective problem.

optimize G(X) =

�

min g1(X)

max g2(X)
(6)

C. Constraint Formulation

With regard to constraints, different countries or airlines
may have different regulations. Our constraints here are based
on the latest government document CCAR121-R5 [17] in
China. First of all, the connection between pairings should
meet the rationality of time and space. Specifically, the rest
time between the connected pairings cannot be less than
10 hours, and the pairing should be assigned to the crew
member of the corresponding base. Therefore, the constraints
of the reasonable connection between linked pairings in time
and space are defined as (7) and (8), respectively, where ŝi, j ,
êi, j , and b̂i, j denote the start time, the end time, and the
departure base of the j th pairing in the schedule of crew
member ci , respectively.

ŝi, j+1−êi, j ≥ 10, ∀i ∈{1, 2, . . . , C N} ∀ j ∈{1, 2, . . . , ni −1}

(7)

b̂i, j = cbi , ∀i ∈{1, 2, . . . , C N} ∀ j ∈ {1, 2, . . . , ni }

(8)

Second, there are restrictions on cumulative flight time.
In any calendar month, the flight time of a crew member
cannot exceed 100 hours, which is formulated as

31
�

d=1

c f di,d ≤ 100 , ∀i ∈ {1, 2, . . . , C N} (9)

where cfdi,d refers to the flight time of the crew member ci

on the dth day.
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Third, there are limits on the duty time for seven con-
secutive days and one calendar month. During any seven
consecutive calendar days, the accumulative duty time cannot
exceed 60 hours. In any calendar month, the cumulative duty
time cannot exceed 210 hours. Therefore, the constraints of
duty time within two different time ranges are defined as
(10) and (11), respectively, where cddi,d refers to the duty
time of the crew member ci on the dth day. The range of k

in (10) corresponds to all seven consecutive days in a month.

7+k
�

d=1+k

cddi,d ≤ 60, ∀i ∈ {1, 2, . . . , C N} ∀k ∈ {0, 1, . . . , 24}

(10)
31
�

d=1

cddi,d ≤ 210, ∀i ∈ {1, 2, . . . , C N} (11)

Finally, there is an additional requirement for the rest time.
During the 144-hour period prior to a mission, every crew
member should be arranged at least 48 consecutive hours for
rest. The constraints of additional requirements are formulated
as

ni
�

j=2

check Resti, j = 0, ∀i ∈ {1, 2, . . . , C N} (12)

where

check Resti, j =

⎧

⎪

⎪
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⎪

⎪

⎩

1, if
j−1
�

k=0

resti, j,k = 0

0, otherwise

(13)

resti, j,k =

⎧
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⎨

⎪

⎩

1, if min
�

ŝi,k+1 − êi,k , ŝi,k+1

−
�

ŝi, j − 144


≥ 48

0, otherwise

(14)

checkResti, j = 0 indicates that the j th pairing of member ci

meets the additional requirements. resti, j,k is used to check all
the rest time within 144 hours before the start of the j th pairing
of member ci . resti, j,k = 0 indicates that during the 144 hours
before the start of the j th pairing, the rest time between the
kth and the (k + 1)th pairing of member ci does not exceed
48 hours. A set of constraints discussed above ensures the
feasibility of scheduling and sufficient rest for crew members.

III. MOACS ALGORITHM FOR SOLVING CRP

Based on the MPMO framework [25], the MOACS algo-
rithm adopts ACS [18] as the optimizer for multiple ant
colonies, and each colony only optimize one objective.
To adapt the characteristic of MOACS, we design suitable
heuristic information for different objectives and construct
solutions according to the pairings start timeline. In addition,
a new HCH strategy is proposed to explore a more com-
plete PF. Lastly, we propose a local search strategy with two
types of local search to further approach the PF. The entire
MOACS algorithm is described below.

Fig. 3. Schematic diagram of the solution encoding.

A. Solution Encoding

X =

⎛

⎜

⎜

⎜

⎝

x1,1 x1,2 x1,3 · · · x1,n1

x2,1 x2,2 x2,3 · · · x2,n2
...

...
...

. . .
...

xC N,1 xC N,2 xC N,3 · · · xC N,nCN

⎞

⎟

⎟

⎟

⎠

(15)

In ACS, fixed-length binary encoding [27] and integer
encoding [28] are commonly used. Specifically, binary encod-
ing in CRP uses the indicator variable yi, j to indicate whether
the crew member ci performs the pairing p j . The integer
encoding in CRP is an integer vector (z1, z2, . . . , z P N ), where
z j represents the employee index of the crew member perform-
ing the pairing p j . Since these two encodings are fixed-length,
they are easy to implement and facilitate some operators like
crossover and mutation in the genetic algorithm [29]. However,
the constraints involve the crew members’ adjacent pairings,
and all objectives and constraints are related to crew members.
Therefore, it is necessary to decode the solution into a natural
expression such as (15) for fitness calculation. In (15), xi, j

denotes the pairing index of the j th pairing in the schedule of
the crew member ci whose employee index is i , CN denotes
the number of crew members, and ni represents the total
number of pairings to be performed by member ci . Each
row vector represents all the pairings to be performed by a
crew member in chronological order. Since the total number
of pairings performed by each crew member is not fixed,
the length of the row vectors is not fixed.

Based on the above considerations, we directly adopt the
variable-length natural expression shown in (15) as the encod-
ing of solutions. An example of solution encoding is shown in
Fig. 3. This encoding scheme is clear and does not require a
decoding process. Besides, during the solution construction
(details refer to Section III-C), MOACS will handle the
pairings one by one and assign only one crew member to
each pairing according to the pheromone values and heuris-
tic information, which guarantees that each pairing will be
assigned to only one crew member. Moreover, according to
the above encoding, it is easy to calculate the three attributes
of member ci , i.e., the sum of the flight time cfi , duty time
cdi , and overnight time away from home coi .

B. Multiple Colonies Framework

The key to solving multi-objective optimization problems
(MOPs) with evolutionary algorithms is how to choose suitable
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solutions for the next generation. Since it is hard to define
an appropriate fitness metric in multi-objective functions,
the MOACS algorithm borrows the concept of MPMO frame-
work to consider each objective separately. Based on the
MPMO framework, multiple ant colonies are adopted, and
each ant colony only needs to focus on optimizing a single
objective through a conventional optimizer. Herein, the ACS
with the same population size m is adopted as the optimizer for
each ant colony. As the CRP model is a bi-objective problem,
we use two ant colonies named Fcolony and Scolony that
set fairness and satisfaction as their optimization objective,
respectively.

C. Solution Construction

Since each crew member’s schedule must satisfy the time
constraint, it is natural to construct schedules according to
the starting timeline of pairings. Thus, we first index all the
pairings in this order. The ACS imitates the foraging behavior
of ant colonies in finding the shortest path to food. Ants will
release chemicals named pheromones on the paths they pass
and they will follow the path with higher pheromones, which
forms a mechanism similar to the positive feedback. In each
step during solution construction, pheromones and heuristic
information are used to determine which crew member should
be assigned the corresponding pairing p j . The design of the
pheromones and heuristic information will be presented in
Sections III-D and III-E, respectively. The solution construc-
tion process is shown as

i =

⎧

⎨

⎩

arg max
k∈{1,2,...,C N}

�

τ col (k, j) ×
�

ηcol (k, j)
�β

�

, if q ≤ q0

I, otherwise

(16)

where β is a parameter to balance the effect of pheromones
and heuristic information, col is the identifier of the ant colony
(i.e., the Fcolony or the Scolony), and q0 is the probability of
exploitation. τ col(k, j) and ηcol(k, j) represent the col ant
colony’s pheromone and heuristic information between crew
member ck and pairing p j , respectively.

For the pairing p j , we firstly generate a random number
q to determine which construction method is adopted. If q

does not exceed q0, the ant will greedily select the crew for
exploitation, that is, select the crew member with the largest
τ col(k, j) × [ηcol(k, j)]β . Otherwise, the crew member i will
be selected through the roulette wheel selection according to
the probability defined as

p (i, j) =
τ col (i, j) ×

�

ηcol (i, j)
�β

C N
�

k=1
τ col (k, j) ×

�

ηcol (k, j)
�β

,

∀i ∈ {1, 2, . . . , C N} (17)

The heuristic information is not as fixed as traditional
problems because the workload balance is constantly chang-
ing during the construction. Hence, the heuristic information
should be calculated in each step during the construction.
Generally speaking, the number of crew members (i.e., CN)
is always fewer than the number of pairings (i.e., PN), that
is, a crew member should be assigned several pairings in

a month. Therefore, in this case, we only need to calculate
the heuristic information corresponding to all crew members,
instead of all pairings. In contrast, the crew-based ‘pilot-by-
pilot’ solution construction method [30] firstly completes the
assignment for the first crew member, then the second, until
all pairings are assigned, whose time complexity is O(PN2).
However, the time complexity of our pairings-based solution
construction method is O(PN × CN), which will reduce
the computational complexity. Besides, we need to check all
available crew members that can satisfy a set of constraints in
Section II-C when they perform the current pairing.

D. Pheromone Update

1) Pheromone Initialization: In MOACS, the initial
pheromone values τ0 of Fcolony and Scolony are defined as
(18) and (19), respectively, where PN is the total number of
pairings, FGS is the greedy solution about fairness, and SGS

is the greedy solution about satisfaction.

τ
Fcolony
0 = [P N × g1 (FGS)]−1 (18)

τ
Scolony
0 = {P N × [2 − g2 (SGS)]}−1 (19)

Note that different colonies perform the solution construc-
tion process independently according to their different objec-
tives and have their own pheromone values under the MPMO
framework. This is an advantage so that different scales of
the objective values and pheromone values in two colonies do
not lead to objective bias. Herein, objective bias means the
algorithm tends to optimize more on one of the objectives.

The selection of the crew member for the pairing p j in FGS

is defined as

FGS[ j ] = arg min
i∈{1,2,...,C N}

�
�

�c fi, j − c fi, j

�

� +
�

�cdi, j − cdi, j

�

�

+
�

�coi, j − coi, j

�

�



(20)

where cfi, j , cdi, j , and coi, j denote the cumulative flight time,
duty time, and overnight time away from home of member ci ,
respectively, when pairings from p1 to p j have been assigned.
c fi, j , cdi, j , and coi, j refer to the average flight time, duty
time, and overnight time away from home of the first j

pairings, respectively. Note that the calculations of these three
average values are limited to the base of the crew member ci .
According to (20), the pairing p j is always assigned to the
member with the smallest sum of absolute differences between
its three attribute values and the corresponding average values.

As for SGS, the selection of the crew member for the pairing
p j is defined as

SGS[ j ] = arg max
i∈{1,2,...,C N}

f ni, j + 1

cvi, j + 1
(21)

where

f ni, j =

⎧

⎪

⎨

⎪

⎩

f ni, j − f nmin
i, j

f nmax
i, j

− f nmin
i, j

, if f nmax
i, j

> 0

0, otherwise

(22)

cvi, j =

�

1, if pairing p j conflicts with the vacation pvi

0, otherwise

(23)
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fni, j is the number of preferred flights of the crew member
ci included in the pairing p j . Since the selection of the crew
member for the pairing p j considers two factors with different
scales and cvi, j is an indicator variable, fni, j needs to be
normalized. Min-max feature scaling is used for normalization
to eliminate the effect of scales. According to (21), the pairing
p j is always assigned to the crew member with the most
preferred flights in the pairing p j and the least violation of
their preferred vacation.

2) Pheromone Local Update: The MOACS algorithm uses
ACS as the optimizer, in which all ants construct solutions
in parallel. Once an ant has completed a step during the
construction (i.e., assigning a pairing to a crew member),
it immediately performs the local update of pheromones.
It aims to improve the ability of exploration and is described as

τ col (i, j) = (1 − ρ) × τ col (i, j) + ρ × τ col
0 (24)

where ρ is a parameter in the range of (0, 1). Since τ col
0 is a

small value as defined as (18) and (19), the pheromone value
τ col(i , j) between the crew member ci and pairing p j will
be decreased after an ant assigns p j to ci in the ant colony
col. Therefore, other ants will be more likely to select the
other crew member different from ci for p j . The local update
of pheromones helps improve the diversity of solutions and
avoid premature convergence.

3) Pheromone Global Update: The conventional ACS for
single-objective problems updates global pheromones directly
through the best solution found so far. However, a set of
non-dominated solutions are obtained in MOPs, and we can-
not determine which one is the best solution. A different
method needs to be designed to update global pheromones
for MOPs. There have been some techniques for glob-
ally updating pheromones in previous studies, for example,
Zhan et al. [25] proposed selecting a random solution
from non-dominated solutions to globally update pheromones.
Barán and Schaerer [31] proposed updating all the non-
dominated solutions. Doerner et al. [32] proposed updating
the best solution of respective objectives. Updating a random
solution from non-dominated solutions will improve the solu-
tion diversity, but it lacks efficient search guidance. In contrast,
updating all the non-dominated solutions or the best solution of
respective objectives will guide ants to search better. However,
the former technique may lead to premature convergence and
the latter may get trapped in a narrow region of PF.

Therefore, the global update strategy [33] is adopted due to
its ability to balance search efficiency and solution diversity,
as described below. Firstly, we introduce a set Archive to
save all non-dominated solutions from two ant colonies in
all generations, and the global update solutions (GUSs) will
be selected from the Archive. Then, we sort all solutions in
the Archive in ascending order by the objective value g1.
Finally, Fcolony randomly selects the GUSFcolony from the
first |Archive| × θ solutions with smaller g1, whereas Scolony

randomly selects its GUSScolony from the last |Archive| × θ

solutions with better g2. θ is a parameter in the range of
(0, 1), which controls the balance between search efficiency
and solution diversity. A small θ accelerates convergence,
while a large θ improves the global search ability. The GUS of

an ant colony performs the local search strategy described in
Section III-F below, which generates a new neighbor solution
GUSnew. If GUSnew and the original GUS are non-dominated
to each other, both are allowed to globally update. Otherwise,
only the GUSnew is required in the global update. Generally,
the local search strategy can improve GUS on one objective,
so that GUSnew is not dominated by the original GUS. The
global update of pheromones by GUSs is shown as

τ col(i, j) = (1 − ε) × τ col (i, j) + ε × 1τ (i, j) (25)

1τ(i, j) =

⎧

⎪

⎨

⎪

⎩

g1(GU SFcolony)−1, if (i, j)∈GU SFcolony

[2−g2(GU SScolony)]−1, if (i, j)∈GU SScolony

0, otherwise

(26)

where ε is a pheromone decay parameter in the range of
(0, 1). After the execution of the global update, the promising
solutions GUSs are allowed to leave more pheromones on
their paths for increasing their attractiveness. Conversely,
the pheromones on the paths of the other solutions will evap-
orate according to the local update to reduce their desirability.

E. Hybrid Complementary Heuristic Strategy

Heuristic information is equivalent to the self-experience of
ants, which can be used to better guide the search. We first
introduce how to choose reasonable heuristic information for
the two ant colonies with different optimization objectives.
Note that only crew members who meet a set of constraints
need to calculate heuristic information, and the heuristic infor-
mation of remaining members is directly set to zero. Fcolony

aims to optimize the fairness objective. Thus, its heuristic
information is devised to reduce the sum of deviations of the
three attribute values, which are the flight time, duty time,
and overnight time away from home. Since the solution con-
struction restricts the heuristic information to be a maximum
objective, the heuristic information uses the inverse of the
sum of deviations. The smaller the sum of absolute difference
between the three attribute values and their corresponding
average values, the greater the heuristic information of the
crew member. The definition of heuristic information about
fairness objective is shown in (27), whose variables have been
given in Section III-D. Notice that since solutions constructed
by each ant are different, the corresponding heuristic informa-
tion may be different for different ants, even if the pairing p j is
assigned to the same crew member. Therefore, it is necessary
to dynamically calculate heuristic information in each step
during each ant’s solution construction.

η1 (i, j) =
�
�

�c fi, j − c fi, j

�

�+
�

�cdi, j − cdi, j

�

�+
�

�coi, j − coi, j

�

�

−1

(27)

In addition, Scolony aims to obtain the schedule contain-
ing as many preferred flights and vacations as possible for
the crew. Hence, its design of heuristic information involves
the number of crew members’ preferred flights included in the
current pairing and whether the current pairing conflicts with
their preferred vacations. The more a crew member’s preferred
flights are included in the current pairing and the pairing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

does not conflict with their preferred vacation, the greater the
heuristic information of the crew member. The definition of
heuristic information about the satisfaction objective is shown
in (28). The variables in (28) have been given in Section III-D.

η2 (i, j) =
f ni, j + 1

cvi, j + 1
(28)

Since each ant colony only focuses on optimizing a single
objective optimization problem in the MPMO framework,
it may lead to solutions concentrating on the margin of PF.
There are two methods to enhance the exploration of the
central part of PF. Chen et al. [33] proposed the ordinary
complementary heuristic strategy that utilized the heuristic
information of the external objective. The other method is
to use aggregated heuristic information combining all objec-
tives [34]. Based on the second method, we design the suit-
able aggregated heuristic information defined in (29), which
includes two terms about fairness and satisfaction objectives,
respectively. The first term η1(i , j) is in the range of (0, ∞)

and the second term ( f ni, j − cvi, j + 1) is in the range of [0,
2]. Since the two terms are in different scales, we combine
them by multiplication to reduce the impact of scales.

η3 (i, j) = η1 (i, j) ×
�

f ni, j − cvi, j + 1


(29)

In order to fully explore the PF, we propose a hybrid
strategy in which an ant colony randomly utilizes the heuristic
information of its own objective, the other objective, or the
aggregated heuristic information. These are the three heuristic
information schemes in our proposed HCH strategy. The HCH
strategy is defined in (30) so that the three schemes will be
adopted with the same probability. In detail, we firstly generate
a random number r with uniform distribution to determine the
heuristic scheme. If r is less than 1/3, which corresponds to
the heuristic information of their own objectives, Fcolony uses
η1 and Scolony uses η2 as their heuristic information. If r is
greater than 1/3 and less than 2/3, which corresponds to the
heuristic information of the external objective, Fcolony uses η2
and Scolony uses η1 as their heuristic information. Otherwise,
the aggregated heuristic strategy is selected, and both Fcolony

and Scolony adopt η3 as their heuristic information. The HCH
strategy with three schemes can balance the search of the
whole PF. In detail, the first scheme helps to explore the
margin of the PF, while the other two schemes can explore
the central part of the PF. Note that the random number
r is generated per generation, and therefore the heuristic
information scheme used in different generations may be
different.
�

ηFcolony (i, j) , ηScolony (i, j)
�

=

⎧

⎪

⎨

⎪

⎩

(η1 (i, j) , η2 (i, j)) , if r < 1/3

(η2 (i, j) , η1 (i, j)) , if 1/3 ≤ r < 2/3

(η3 (i, j) , η3 (i, j)) , otherwise

(30)

F. Local Search Strategy

To enhance the accuracy of solutions generated by MOACS,
we design two types of local search for the two objectives
respectively. On the one hand, the local search for improving

the fairness adjusts the pairings performed by two crew mem-
bers with the largest deviation. On the other hand, the local
search for improving crew satisfaction adjusts crew members
who perform pairings during their preferred vacations. In order
to approach the global PF, both Fcolony and Scolony randomly
choose one of these two local searches to execute. Taking
Fcolony as an example, if it executes the local search designed
for fairness, its g1 value is likely to decrease and the margin of
PF can be explored. In the other case, if it executes the local
search designed for satisfaction, its g2 value may increase and
the central part of PF can be explored. In addition to the HCH
strategy mentioned above, this is another way to overcome
the shortcoming that each ant colony only focuses on its own
objective.

The local search strategy is executed in each ant colony in
every generation after the selection of GUS. As only the GUS

of each ant colony executes the local search strategy, it does
not take too much time. Note that if all preferred vacations
in GUS have been satisfied, the solution will directly perform
the local search designed for fairness. Otherwise, the GUS will
randomly select one of the two types of local search. That is,
a random number r1 within the range of [0, 1] is randomly
generated. If r1 is smaller than 0.5, the ant colony performs the
local search designed for fairness. Otherwise, the other local
search designed for satisfaction will be performed. These two
types of local search are described in detail below. Firstly,
the local search designed for fairness is described below, and
its pseudocode is shown in Algorithm 1.

Algorithm 1 Local Search for Fairness
Input: GUS

Output: the newly generated solution GUSnew

1 for b = 1: BN do
/∗ Calculate the sum of the absolute difference absd

for all crew members in base b. ∗/
2 maxabsd = 0;
3 foreach i ∈ Eb do

4 absdi = |c fi − f̄b| + |cdi − d̄b| + |coi − ōb|;
5 if absdi > maxabsd then

6 C1 = i ;
7 maxabsd = absdi ;

/∗ Find the matching member for C1. ∗/
8 mindist = +∞;
9 foreach i ∈ Eb do

10 dist = |(c fC1 + c fi )/2 − f̄b|+

|(cdC1 + cdi )/2 − d̄b| + |(coC1 + coi)/2 − ōb|;
11 if dist < mindist then

12 C2 = i ;
13 mindist = dist ;

14 TransferPairings(C1, C2);
15 ExchangePairings(C1, C2);

16 Evaluate the newly generated neighbor solution GU Snew;

We first calculate the sum of the absolute difference absd

between the three attribute values and their corresponding
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Fig. 4. Schematic diagram of the local search for fairness.

average values for all crew members, as shown in Line 4. The
crew member C1 with the largest absd in base b is selected
to conduct the local search. The above steps are carried out
from Line 2 to Line 7. Then, the matching member C2 for
C1 can be found from Line 8 to Line 13. The criterion for
finding the matching member C2 is that the average attribute
values of the two members C1 and C2 are the closest to the
average attribute values of all the members in the entire base.
Next, we try to transfer the pairings directly as shown in
Line 14. The pairings in the crew member’s schedule with a
large sum of three attribute values between members C1 and
C2 are transferred to the other member’s schedule. After that,
we try to exchange the pairings with overlapping time in the
schedules of members C1 and C2, as shown in Line 15. Note
that the transfer and exchange of pairings require to satisfy a
set of constraints, and if the sum of absd of the two members
does not decrease after the transfer and exchange, the original
schedules will be restored. After the crew members in all bases
have been adjusted, the newly generated neighbor solution will
be evaluated at last, as shown in Line 16.

The transfer and exchange of pairings in Line 14 and
Line 15 of Algorithm 1 are illustrated with an exam-
ple in Fig. 4. The three numbers ( f j , d j , o j ) around the pairing
p j represent the flight time, the duty time, and the overnight
time away from home of pairing p j , which is a part of its
attributes. The wired arrows represent the timeline. The sum
of absd of the two members is 169 before the local search, and
it turns to 47 after the transfer of pairing p3, so the transfer
succeeds. Similarly, the sum of absd increases to 141 when
pairing p4 is transferred from member C1 to member C2. Since
it is larger than 47, the transfer is not performed. Next, we try
to exchange pairings that overlap in time. In this example,
pairings p1 and p2 overlap, and the pairing group including
pairing p5 and p7 overlaps with pairing p6. After the exchange
for pairing p1 and p2, the sum of absd slightly increases to
59 which is also larger than 47, thus the exchange is still not
executed. When the pairing group and pairing p6 exchange,
the sum of absd decreases to 17, so this exchange is performed
successfully. The transfer and exchange of pairings make the

Algorithm 2 Local Search for Satisfaction
Input: GUS

Output: the newly generated solution GUSnew

1 for b = 1: BN do

2 Randomly select a member C from all crew members
in base b whose preferred vacation is not satisfied;

3 ProcessingPool = ∅;
4 foreach pairing p in the schedule of member C do

5 if pairing p conflicts with the preferred vacation of
member C then

6 ProcessingPool = ProcessingPool ∪ p;

7 foreach pairing p ∈ Processing Pool do

8 IdleMembers Pool = ∅;
9 foreach member mem in base b do

10 if member mem can perform pairing p and
pairing p does not conflict with his preferred
vacation then

11 IdleMembers Pool =

IdleMembers Pool ∪ mem;

12 if IdleMembers Pool 6= ∅ then

13 Select the idle crew member idlemem with the
most preferred flights in pairing p;

14 TransferSinglePairing(C , idlemem, p);

15 Evaluate the newly generated neighbor solution GUSnew;

three attribute values of member C1 and C2 close to the actual
average of their base b.

The other local search designed for satisfaction is described
below, and its pseudocode is shown in Algorithm 2. We first
randomly select a crew member C from all crew members
in base b whose preferred vacation is not satisfied to make
the adjustment, as shown in Line 2. Then, we examine the
pairings set ProcessingPool that conflicts with their preferred
vacation from the schedule of crew member C , which is
carried out from Line 3 to Line 6. Next, for each pairing p

in ProcessingPool, we check all idle crew members who can
perform this pairing and do not conflict with their preferred
vacation. This is performed from Line 7 to Line 11. If there
are idle crew members, this pairing p is transferred from the
schedule of member C to the schedule of the idle crew member
with the most preferred flights in pairing p, as shown from
Line 12 to Line 14. After the crew members in all bases have
been adjusted, the newly generated neighbor solution will be
finally evaluated, as shown in Line 15.

The local search for satisfaction is illustrated with an
example in Fig. 5. In the example, the preferred vacation of
member C conflicts with pairing p4 and p6 in their schedule.
Both pairings are stored in ProcessingPool temporarily and
then check all idle members for each pairing. In this example,
member c3 and c5 are able to perform pairing p4, and only
member c2 can perform pairing p6. Additionally, the number
in parentheses on the member circle denotes the number of
preferred flights of the corresponding member included in the
above pairing. Since member c5 applies for more preferred
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Fig. 5. Schematic diagram of the local search for satisfaction.

flights in pairing p4, pairing p4 is assigned to member c5
at last. Although the preferred flights of member c2 are
not included in pairing p6, pairing p6 is still assigned to
member c2 because pairing p6 has only one idle member.
The local search for satisfaction may lead to an increase in
the satisfaction rate of preferred flights and vacations.

G. Complete MOACS Algorithm

The overall pseudocode of the MOACS is shown in
Algorithm 3. Firstly, the greedy solutions FGS and SGS are
generated, which are used to initialize the pheromones by (18)
and (19), and the global archive is also initialized. Then in
every generation, the heuristic strategy is randomly selected.
Two ant colonies calculate their heuristic information accord-
ing to (30). In each step during the solution construction,
a crew member is selected for each pairing by (16) and
the pheromones are locally updated according to (24). After
all ants have constructed solutions, these newly generated
solutions will be evaluated and added into the global archive.
All dominated solutions in the archive will be eliminated,
and then GUSFcolony and GUSScolony are selected from it.
If all preferred vacations have been satisfied, the GUS will
directly perform Algorithm 1. Otherwise, it will randomly
perform Algorithm 1 or Algorithm 2. The global update of
pheromones is conducted according to (25) and (26). If the
newly generated GUSnew and the original GUS are non-
dominated to each other, both are used in the global update
of pheromones. Otherwise, only the GUSnew is used. MOACS
terminates when the maximum execution time is reached and
outputs all non-dominated solutions in the archive.

IV. EXPERIMENTS AND COMPARISONS

In this section, experimental tests are performed on the real-
world dataset to verify the performance of MOACS in solving
CRP. All the algorithms are implemented in C++ and run on
a PC with a Xeon Quad CPU E3-1225 and 4.0GB of RAM.

A. Test Dataset

We use the experimental instances in [15] to test the
performance of all algorithms in solving CRP. This dataset
comes from a major North-American airline and provides

Algorithm 3 Procedure of MOACS

1 t = 0;
2 Generate greedy solutions FGS and SGS;
3 Archive = ∅;

4 Initialize the pheromone τ
Fcolony
0 and τ

Scolony
0 according

to (18) and (19), respectively;
5 while t ≤ MaxT ime do

6 HeurSchNo = rand()%3; // 0, 1, 2 represent three
different heuristic schemes

7 for col = 1 : 2 do

8 for j = 1 : PN do

9 for k = 1 : m do

10 Calculate heuristic information of the kth ant
in the colth colony based on HeurSchNo by
(30);

11 Select a crew member by (16) and add the
pairing p j to their schedule;

12 Perform the local update of pheromone
according to (24);

13 for k = 1 : m do

14 Evaluate the kth ant in the colth colony;
15 Add the kth ant in the colth colony to Archive;

16 Eliminate all dominated solutions in Archive;
17 for col = 1 : 2 do

18 Select the global update solution(GU S) for the
colth colony;

19 if all preferred vacations in GUS have been
satisfied then

20 Perform Algorithm 1;
21 else

22 Randomly perform Algorithm 1 or
Algorithm 2;

23 Perform the global update of pheromone for
GUSnew according to (25) and (26);

24 if GU Snew and the original GUS are
non-dominated to each other then

25 Perform the global update of pheromone for the
original GUS according to (25) and (26);

26 Update the elapsed time t;

Output: All non-dominated solutions in Archive

TABLE II

SIZE OF SEVEN TEST INSTANCES

seven instances of different sizes as shown in Table II. The
last four instances are large. In our proposed CRP model,
we consider monthly schedules that have more guiding value
in the practical application.
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TABLE III

COMPARISONS OF MOACS WITH NON-METAHEURISTIC ALGORITHMS ON TWO OBJECTIVES

We use the pairings from the dataset [15] as our input of
the CRP. The pairings are the solutions of the CPP. Since
our proposed model further involves preferred flights and
vacations, we randomly generate these data. The generator for
preferred flights from the dataset recommends that each crew
member prefers a certain percentage per f of flights associated
with their base. Instead of randomly selecting preferred flights
from all flights, this way is more reasonable in the actual
situation, because crew members generally prefer flights close
to their bases. In addition, the generator for preferred vacations
from the dataset suggests that a certain percentage perv of all
crew members apply for vacation. The vacation periods can
occur on any day of the month with lengths between 2 and
10 days with uniform distribution. Their preferred vacations
start at 00:00 and end at 23:59 by default. Here we set per f

to 10% and perv to 30%.

B. Experimental Settings

The parameter configurations in our proposed MOACS
algorithm are shown as follows. The number of ants in each
ant colony m is set to 60. The CRP-related parameters in
Section II are Brief = 30 minutes, Debrief = 30 minutes,
and MinRestTime = 9 hours. The configurations of other
ACS-related parameters are the same as in [18] (except for
the initial pheromone value τ0), where the parameter β = 2,
q0 = 0.9, ρ = 0.1, and ε = 0.1. The setting of τ0 for Fcolony

and Scolony is given in (18) and (19), respectively. The
parameter θ in the global update of pheromone is set to 0.1.

MOACS is compared with three algorithms, greedy heuris-
tic, NSGA-II [29], and P-ACO [35]. NSGA-II is a popular
algorithm to solve MOPs. Based on the NSGA-II variant,
Chen et al. [29] designed crossover and mutation operators for
this problem and proposed a special repair operator to improve
the feasibility of solutions. The parameters of NSGA-II [29]
are set according to the corresponding reference. The popula-
tion size and offspring size are set to 100 and 80, respectively.
The crossover rate is set to 1.0, the mutation rate is set to 0.3,
and the parameter related to the population update is set to 0.5.
The maximum generations are 2000 in NSGA-II for each
instance. Since the execution time of other heuristic algorithms
is different from NSGA-II in every generation, all the heuristic
algorithms use the same execution time as NSGA-II to ensure
the fairness of comparison. P-ACO [35] is a classical multi-
objective algorithm based on ACO with multiple pheromone
matrices for multiple objectives, but only one heuristic matrix
that integrates the information of all objectives. The parameters

of P-ACO [35] are the same as MOACS. Since P-ACO adopts
only one heuristic matrix, we design the heuristic information
to be the same as (29) in Section III-E for P-ACO. All the
heuristic algorithms run independently 10 times.

C. Experimental Results

Although the proposed CRP model is a bi-objective prob-
lem, common performance metrics such as inverted gen-
erational distance cannot be used because the true PF is
not known. Hence, the two performance metrics hypervol-
ume (HV) and C(X , Y ) [36] are adopted for performance
evaluation. HV represents the volume among a solution set
and a reference point. The reference point is selected by the
worst objective values about fairness and satisfaction from
all solutions obtained by all comparison algorithms in all
runs. The larger the HV of the solution set, the better its
diversity and convergence efficiency. The HV is calculated
independently in each run and the average result of the 10 runs
is compared.

In addition, C(X , Y ) concerns the dominant relationship
between two sets of solutions and is defined as

C(X, Y ) =
|{y ∈ Y |∃x ∈ X : x � y }|

|Y |
(31)

where x � y denotes solution x dominates or equal to y.
It represents the ratio of the number of solutions in Y dom-
inated by any solution in X and is in the range of [0, 1].
If C(X , Y ) equals to one, it means each solution in Y is
dominated by or equal to at least one solution in X . If C(X , Y )

equals to zero, it represents that no solutions in Y can be
dominated by any solution in X . Note that the sum of C(X , Y )

and C(Y , X) is generally not equal to one. If C(X , Y ) is larger
than C(Y , X), it represents the solution set X is better than Y .
We collect all non-dominated solutions obtained in 10 runs to
calculate the C(X , Y ) value.

1) Comparison With Non-Metaheuristic: The greedy heuris-
tic is an efficient non-metaheuristic algorithm to deal with
single-objective problems. The greedy algorithms for opti-
mizing fairness and satisfaction are termed GreedF and
GreedS, respectively, both of which have been described in
Section III-D. The comparisons of MOACS with GreedF and
GreedS are presented in Table III, where the best results are
in boldface. Since MOACS is a multi-objective algorithm,
its result is a solution set. Here, we use the best solution
for the corresponding single objective in each run and use
their median of the 10 runs for comparison. In other words,
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the solutions with minimum g1 and maximum g2 in the median
run, i.e., the margin of the PF, are used to compare with the
greedy algorithms, which are shown in the left and right side
of Table III, respectively.

As can be seen from Table III, MOACS performs much
better than the greedy algorithms on g1 on most instances.
Although the average of MOACS cannot reach the best value
on fairness in I5-757 and I7-320, MOACS can still obtain
the better g1 in some runs on these two instances. As for the
performance in terms of satisfaction, MOACS can get the best
result in I1-727, and obtain the solutions close to GreedS on
g2 on other instances. The reason for the good performance
of greedy algorithm in optimizing g2 is that the selection
for a pairing has less impact on the selection for the other
pairings. Thus, it tends to obtain a fairly high satisfaction
rate. However, the optimization of g1 is more complex so
that the greedy algorithm may easily get trapped in a local
optimum. Moreover, since MOACS optimizes both objectives
g1 and g2 at the same time rather than simply focuses on
g2, it is reasonable that MOACS cannot obtain the best g2

on some instances. Although MOACS cannot exceed GreedS
on g2, it has a significant advantage on another objective g1.
In a word, MOACS can get the solutions as good as or even
better than that of the greedy algorithms on the corresponding
objective, while it is far better than greedy algorithms on the
other objective.

2) Comparison With Multi-Objective Optimization: The
multi-objective algorithms adopted for comparison are the
NSGA-II variant [29] and P-ACO [35]. Since the two com-
parison algorithms do not contain the local search, we use a
MOACS variant without the local search for fair comparisons,
which is termed MOACS-noLS.

Since the CRP is an NP-hard problem with various con-
straints, it is difficult to find a feasible solution. Firstly,
we focus on the feasible rate (FR) of all comparison algo-
rithms, which is the ratio of the number of feasible runs to the
total number of runs. The comparisons of MOACS-noLS with
NSGA-II and P-ACO in terms of FR are shown in Table IV,
where the best results are in boldface. We can find that
ACO-based algorithms have a significant advantage in finding
feasible solutions. Both P-ACO and MOACS-noLS are able
to obtain feasible solutions in all 10 runs on all instances
because a set of constraints is checked and satisfied in each
step during the solution construction. In contrast, NSGA-II
only has a 50% probability of finding a feasible solution in
I2-DC9 and even can hardly obtain a feasible solution on the
last four large-scale instances. As the solutions obtained by
NSGA-II are randomly generated at the beginning, it is hard
to satisfy a set of constraints in such high dimensional search
space.

Table IV also compares MOACS-noLS with NSGA-II and
P-ACO in terms of HV, where the best results are in boldface.
Wilcoxon rank-sum tests with significance level 0.05 are used
for the significance tests. The symbols ‘+’, ‘≈’, and ‘−’
mean that MOACS-noLS is significantly better than, similar
to, and significantly worse than the corresponding algorithm,
respectively. As can be seen from Table IV, MOACS-noLS
outperforms the other two comparison algorithms on HV.

TABLE IV

COMPARISONS OF MOACS-NOLS WITH THE OTHER

MULTI-OBJECTIVE OPTIMIZATION

ALGORITHMS ON FR AND HV

TABLE V

COMPARISONS OF MOACS-NOLS WITH THE OTHER

MULTI-OBJECTIVE OPTIMIZATION

ALGORITHMS ON C(X, Y )

Note that NSGA-II can hardly find a feasible solution on
large-scale instances. MOACS-noLS performs better than
NSGA-II obviously on seven instances. Compared with P-
ACO, MOACS-noLS has a significantly large HV and the gap
is more distinct with the growth of instance size.

Moreover, the comparison results on another performance
metric C(X , Y ) are shown in Table V. The larger values
between C(MOACS-noLS, –) and C(–, MOACS-noLS) are in
boldface. We can find that C(MOACS-noLS, –) values are sig-
nificantly larger than C(–, MOACS-noLS) values on all seven
instances compared with NSGA-II and P-ACO. It indicates
that MOACS-noLS outperforms the other two comparison
algorithms. Specifically, most C(MOACS-noLS, –) values are
very close to one, which denotes most solutions obtained by
the other algorithms are dominated by at least one solution
of MOACS-noLS. The C(NSGA-II, MOACS-noLS) values
on most instances extremely approximate zero except for
I1-727, which means very few solutions of MOACS-noLS are
dominated by or equal to the solutions of NSGA-II. Although
some solutions of MOACS-noLS are dominated by or equal to
those found by P-ACO, C(MOACS-noLS, P-ACO) values are
still obviously larger than C(P-ACO, MOACS-noLS) values
on all instances.

The two performance metrics discussed above focus on dif-
ferent aspects of PF, and MOACS-noLS outperforms the other
algorithms on both metrics. HV considers the solution quality
in terms of diversity and convergence, and C(X , Y ) reflects
the dominant relationship between solution sets. Combining
these two performance metrics can provide a more convincing
result, but lacks an intuitive comparison. In order to visualize
the solution sets obtained by different algorithms, we plot all
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Fig. 6. Performance of NSGA-II, P-ACO, and MOACS-noLS on two
instances. (a) I2-DC9. (b) I5-757.

the solutions found in 10 runs in Fig. 6 by taking I2-DC9
and I5-757 as examples. The figures for the remaining five
instances are shown in Fig. S.1 of the supplementary material.
Note that satisfaction g2 is a maximum objective, we convert
the ordinate to 2–g2 to observe the solution set clearly, which
denotes the sum of dissatisfaction rates and is a minimum
objective.

These figures further confirm that MOACS-noLS has overall
better performance than the other two compared algorithms.
It can be seen from the previous experiments that the solutions
of NSGA-II in I2-DC9 and the last four large-scale instances
are basically infeasible. Therefore, the PFs of NSGA-II on
these instances are quite different from the other algorithms.
Compared with P-ACO, MOACS-noLS obtains a broader PF
due to its pheromone update rule and HCH strategy. The
pheromone update rule increases the diversity of solutions,
which helps explore the whole PF. Meanwhile, MOACS-
noLS adopts the HCH strategy with three kinds of heuristic
information schemes, which also leads to the exploration of
the whole PF. By contrast, P-ACO merely uses one integrated
heuristic matrix, which results in the solution set focusing only
on the central part of the PF.

D. Effectiveness of Local Search Strategy

We propose a local search strategy with two types of local
search for the two objectives respectively to help MOACS
further approach the global PF. To investigate the effectiveness
of the local search strategy, we compare the performance
of MOACS-noLS and MOACS using the HV and C(X , Y )

metrics. Both algorithms run independently 10 times. The
comparison results containing two types of experiments are
shown in Table S.II of the supplementary material, where the
larger results are in boldface. Since both algorithms involve
stochastic factors, Wilcoxon rank-sum tests with significance
level 0.05 are used to statistically evaluate the results. The
symbols ‘+’, ‘≈’, and ‘−’ mean that the performance of
MOACS is significantly better than, similar to, and signifi-
cantly worse than that of MOACS-noLS on HV, respectively.

From the left side of Table S.II, we can see that MOACS
outperforms MOACS-noLS with regard to HV on all seven
instances. As for the C(X , Y ) metric, the values of C(MOACS,
MOACS-noLS) are larger than C(MOACS-noLS, MOACS)
on all instances, which further confirms that MOACS per-
forms better than MOACS-noLS. Both results reflect the

Fig. 7. Performance of MOACS-noLS and MOACS on two instances. (a)
I2-DC9. (b) I5-757.

effectiveness of the local search strategy. Also taking I2-
DC9 and I5-757 as examples, we curve all the solutions
obtained in 10 runs to compare both algorithms intuitively and
the results are shown in Fig. 7. The PF distribution of MOACS
is better than that of MOACS-noLS on both small-scale
instance I2-DC9 and large-scale instance I5-757. Since two
types of local search are performed randomly, the solutions
are able to approach the global PF with better g1 or g2, which
helps improve their quality. In conclusion, all the above results
validate the effectiveness of the local search strategy.

E. Parameters Analysis

The MOACS parameters include m, β, q0, ρ, ε, and θ . The
settings of β, q0, ρ, and ε are the typical scheme of ACS,
so only m and θ are analyzed. The investigation results are
plotted in Fig. S.2 of the supplementary material. The x-axis
of the figure denotes the corresponding parameter settings and
the y-axis denotes the average HV among 10 independent runs.
Note that when testing a parameter, all other parameters are
set the same as stated in Section IV-B.

Firstly, we analyze the influence of the parameter m. We set
m from 20 to 60 with a step of 10. The comparison results
of average HV on all seven instances with respect to the
parameter m are shown in Fig. S.2(a). From Fig. S.2(a), there
seems to be no significant difference in the performance of all
settings. The medium-sized m such as “40” has a slightly large
HV on the first three instances, but its performance is slightly
worse than the other settings on most large-scale instances.
On the one hand, smaller ant colonies can perform more
generations in the same execution time, so the local search
strategy will be executed more times, which is helpful for
exploitation. On the other hand, an increase in the number
of ants can also help increase the search area [37], but it
will reduce the number of times that the local search strategy
is executed. Since these two factors are in conflict, m is
insensitive in MOACS. Finally, we select the setting “60”
because it has the overall best performance.

The other parameter we study is the selection rate θ pro-
posed in the global update of pheromones in Section III-D.
We set θ from 0 to 0.4 with a step size of 0.1. Note that
θ = 0 represents that MOACS always selects the best solution
of each objective as the GUS. The comparison results of
average HV on all seven instances in regard to the parameter
θ are shown in Fig. S.2(b). From Fig. S.2(b), we can find that
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the setting “0.1” for θ obtains the best performance among
other settings on most instances. On the first three small-
scale instances, the larger θ can get better HV for it provides
more diversity. However, an excessively large θ brings a worse
HV on the large-scale instances I4-D95 and I6-319 due to
the reduction in convergence efficiency. The results show that
the setting “0.1” for θ is suitable for balancing the solution
diversity and search efficiency. Moreover, the setting “0.1” is
better than “0” on most instances, which also confirms the
effectiveness of the global update strategy.

V. CONCLUSION

Different from most existing models that consider the cost
from the perspective of airlines, this study proposes a new
multi-objective CRP model from the perspective of crew
members. Specifically, the fairness and satisfaction of crew
are taken into account at the same time. Combining the ACS
optimizer and the MPMO framework, a novel MOACS algo-
rithm is developed to solve the multi-objective CRP efficiently.
Under the MPMO framework, two ant colonies are employed
to optimize fairness and satisfaction objectives, respectively.
Besides, to prevent ant colonies from concentrating only on
their own objectives, we propose a new HCH strategy with
three kinds of heuristic information schemes. It randomly
uses the heuristic information of two ant colonies and the
aggregated heuristic information, which helps explore the
global PF. Furthermore, we design a local search strategy
with two types of local search for fairness and satisfaction
objectives, respectively, which helps approach the global PF.

Experiments are conducted on monthly CRP with dif-
ferent sizes from the real world. The results verify the
effectiveness of MOACS in solving multi-objective CRP.
It generally outperforms the greedy algorithm and other multi-
objective evolutionary-based algorithms, especially on large-
scale instances. In conclusion, MOACS is more effective than
the compared algorithms in dealing with the multi-objective
CRP. In future work, the number and qualifications of crew
members required for flights will be further considered in the
CRP model.
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