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Abstract: In recent years, microgrids (MGs) have been developed to improve the overall management
of the power network. This paper examines how a smart MG’s generation and demand sides are
managed to improve the MG’s performance in order to minimize operating costs and emissions.
A binary orientation search algorithm (BOSA)-based optimal demand side management (DSM)
program using the load-shifting technique has been proposed, resulting in significant electricity
cost savings. The proposed optimal DSM-based energy management strategy considers the MG’s
economic and environmental indices to be the key objective functions. Single-objective particle swarm
optimization (SOPSO) and multi-objective particle swarm optimization (MOPSO) were adopted
in order to optimize MG performance in the presence of renewable energy resources (RERs) with
a randomized natural behavior. A PSO algorithm was adopted due to the nonlinearity and complexity
of the proposed problem. In addition, fuzzy-based mechanisms and a nonlinear sorting system were
used to discover the optimal compromise given the collection of Pareto-front space solutions. To test
the proposed method in a more realistic setting, the stochastic behavior of renewable units was also
factored in. The simulation findings indicate that the proposed BOSA algorithm-based DSM had
the lowest peak demand (88.4 kWh) compared to unscheduled demand (105 kWh); additionally, the
operating costs were reduced by 23%, from 660 USD to 508 USD, and the emissions decreased from
840 kg to 725 kg, saving 13.7%.

Keywords: microgrid; binary orientation search algorithm; demand side management; real-time pricing;
energy management; multi-objective management; generation power uncertainty; operating cost

1. Introduction
1.1. Motivation

Stability and proper management of power system networks are crucial for soci-
eties and countries. Optimal power network operation significantly affects economic
performance and consumer satisfaction [1]. Smart microgrids (SMGs) facilitate two-way
communication between producers and consumers. Consequently, to encourage consumers
to control their demand, various costs of electrical energy may have to be applied in what
is known as a DSM program, which improves the load profile of consumers [2]. Three DSM
categories—environmentally motivated type, market-driven type, and network-driven
type—are commonly used, according to the literature. The environmental-driven DSM
focuses primarily on environmental and social standards, such as greenhouse gas emis-
sion reduction. The network-driven type seeks to maintain system reliability, while the
market-driven type seeks to save money for providers and customers [3]. Smart pricing
tools for the DSM implementation process include dynamic pricing policies such as time
of use (ToU) pricing, off-peak low pricing, critical peak pricing, real-time pricing, and day

Sustainability 2022, 14, 10158. https://doi.org/10.3390/su141610158 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141610158
https://doi.org/10.3390/su141610158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2023-5387
https://orcid.org/0000-0002-1280-8918
https://orcid.org/0000-0003-3248-2430
https://orcid.org/0000-0002-3463-6096
https://doi.org/10.3390/su141610158
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141610158?type=check_update&version=2


Sustainability 2022, 14, 10158 2 of 28

ahead pricing. In this study, customers’ electricity consumption is influenced by a real-time
price (RTP)-based DSM program.

The economics of MGs and environmentally friendly electricity generation can benefit
greatly from the inclusion of locally distributed units [4]. In MG, distributed generation
units such as wind turbines (WTs) and solar photovoltaic (PV) panels, as well as diesel
generators (DGs), microturbines (MTs), and fuel cells (FCs), are among the most useful
technologies. Despite the fact that distributed generation units, especially renewable ones,
improve the MG’s performance and environmental parameters, the instability of renewable
units reduces the stability of the produced power from local sources. Renewable units, such
as solar panels and wind turbines, are highly dependent on weather, making these units
unstable. Such events in power production have an impact not only on energy availability,
but also on the overall stability of the power grid. Because wind and solar resources are
unpredictable, a solar-wind energy system is limited in its ability to operate without the
addition of backup power sources such as batteries. Because of this, MGs also include
electrical storage systems. MGs’ excess electrical energy can be stored in the electrical
storage batteries and used later [5]. As a result, the MG’s reliance on the upstream network
is reduced by local energy sources such as distributed generators and electrical storage
systems. The operational schedule of local energy resources, of course, has a significant
impact on their performance and the MG’s efficiency. The distribution of load demand on
a number of distributed generators can be as cost-effective as possible through a process
known as economic dispatch, which decides the starting and stopping of each distributed
generator. Dynamic economic and emission dispatch (DEED) is a critical optimization
problem in the control and operation of power systems. Economic dispatch selects which
generators to use to meet electricity demand. It resembles clearing the electricity market.
The utility creates an overall marginal cost (supply) curve. The economic operation of
a power system is investigated by estimating the penalty factor of the nodes of generation
using an approximation of the active power losses. By simultaneously minimizing emission
and operation costs, the DEED problem provides online generating schedules over a certain
predicted load demand period [6–8].

1.2. Literature Review

Our research focused on the three previously mentioned issues: (1) DEED, (2) DSM,
and (3) a multi-objective energy management system. To solve the DEED problem, many
optimization techniques have been proposed in the literature. For DEED problems, the
authors of [9] proposed the enhanced genetic algorithm (E-GA) and enhanced differential
evolutionary (E-DE) algorithms. The DEED problem was solved using a combination of GA
and DE in [10], with different generating unit combinations such as hydrothermal, solar–
thermal, and wind–thermal. The authors of [11] proposed an enhanced PSO-based DEED
problem with wind uncertainties. In [12–14], a multi-agent consensus-based distributed
energy management system is proposed. This system takes into account the impact of
packet losses in order to eliminate real power mismatch and lower the cost of electricity bills.
The issues of the multi-objective optimizer and load shifting-based DSM for cost reduction
were not presented. The authors of [15] created a hybrid planning model of DGs and
distribution automation (DA) to improve economic, reliability, and operation indices. The
objective function minimizes operation, investment, energy loss, and reliability costs. This
paper used a stochastic programming approach based on a hybrid simulation called Monte
Carlo and simultaneous backward approach to model the uncertainty parameters, such
as load, energy price, and network equipment availability. The authors of [16] presented
a two-layer energy management model in a smart distribution network that considers
flexi-renewable virtual power plants. This model contains market price, load, maximum
renewable energy source power, and flexible source demand uncertainties, which are
modeled using stochastic programming. The model includes a bi-level optimization model
solved by Benders decomposition for a fast solution.
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The DSM is the second problem associated with MG energy management. DSM is also
regarded as an optimization problem. The DSM program should be used with a number of
controllable or shiftable devices, each with its own set consumption pattern. As a result,
many meta-heuristic and evolutionary optimization algorithms are preferred for dealing
with such complexities [17]. The authors of [18–21] only studied an optimal DSM program
based on load shifting to reduce the cost of electricity bills. The issues regarding the
multi-objective optimizer and economic dispatch were not addressed in these studies.

Nowadays, the emphasis is primarily on the optimization of DEED and DSM in com-
bination. A GA-based DED and DSM combination for efficient energy management in
a microgrid environment was proposed in [22]. The authors of [23] proposed a novel model
of the DED problem in regional grids that included DR. The authors of [24,25] proposed
the DEED problem and a time-of-use dynamic price-based DSM (not optimal program)
combination model with high wind penetration. The primary goal of the literature’s DEED
and DSM combination models was to demonstrate the effects of DSM on the supply side.
Some researchers have studied MGs and DSM in recent years. The authors of [26] proposed
a cloud-based multi-agent framework for MG DED and monitoring. This paper adopted
an optimal DSM-based time-of-use pricing model. Multi-objective optimization and costs of
operation and emission issues for multi-DGs were not applied. In other research, the simul-
taneous minimization of residential peak load and electricity cost has been presented [27].
On the basis of the time-of-use program, the distribution system’s DR program has been
evaluated. The issue under consideration has been modeled as multi-objective mixed-
integer linear programming. The authors of [28] solved the energy management of a MG
connected to the utility power system under probabilistic and deterministic conditions,
taking into account the variations of load demand, photovoltaic (PV), and wind turbine
(WT) systems. Using an equilibrium optimizer (EO) algorithm, the problem of energy man-
agement is solved for a multi-objective function that includes cost minimization, stability
improvement, and voltage profile improvement. The authors of [29] solved the issue of
energy management within the microgrid by combining customer-oriented with utility-
oriented DSM strategies. In light of this, a stochastic energy management framework has
been developed in order to implement and evaluate the flexible load-shaping DSM strategy
with price-based and incentive-based demand response programs (DRPs) in existing non-
dispatchable energy resources. Pedro Faria et al. [30] used the PSO algorithm to minimize
the operational cost of distributed energy resources by taking network constraints and
demand response into account. In [31], a probabilistic model was adopted to search for
multi-objective operation for a smart distribution network with renewable resources (wind
and solar). For predicting changes in wind speed and solar radiation, the PDF Rayleigh
and beta PDFs PDF were employed. Modeling the creation of solar and wind power at the
same time were not taken into account. Despite this, pollutants such as SO2 and NOx are
not taken into account when using the three-constraint method to solve problems. ESS and
controllable DGs are not included in the MG configuration proposed in [32], which has four
objectives of reducing customer peak load, load curve, costs, and emissions fluctuations
while including renewable energy and electric vehicles. An economic model for power dis-
patch to minimize the operating costs in an AC–DC hybrid MG was presented in [33]. This
strategy considered the unpredictability of load demand as well as renewable resources.
The method of Hong’s two-point estimate was utilized in order to model the uncertainties.
The PSO and fuzzy logic systems were used in conjunction with one another to solve the
economic dispatch problem. In [34], a genetic algorithm was used for power dispatching
in a grid-connected MG in order to minimize the operating costs of PV, WT, FC, and MT
systems. An optimal DSM program was not adopted in these studies in order to reduce
operation and emission costs as much as possible. Table 1 summarizes the prior research
that has been applied to DEED, DSM, and multi-objective function optimization strategies.
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Table 1. Summary of previous research studies.

Ref. Resolved Problem(s) Limitations

[9–16] DEED Demand-side scheduling was not optimized, and optimal
multi-objective energy management was not applied.

[18–21] DSM DEED and multi-objective energy management were
not applied.

[22–34] DSM and DEED

In [24,25], the optimal DSM is not used.
In [26,32,34], multi-objective optimization functions are

not employed.
The authors of [22,23,27–29,31,33] proposed

multi-objective optimization with DR only, and load
appliances scheduling based on intelligent DSM with

a load-shifting program was not implemented.

1.3. Contributions

According to the previous studies, it is possible to assert that the optimal DSM-based
multi-objective supply management optimization of a smart MG that considers randomized
natural behavior of RERs is the one that has received the least attention. Because of this,
multi-objective management systems were researched and investigated in a MG as part of
this research. The following are some novel aspects of this study:

1. This study proposed BOSA-based DSM of a SMG with a MOPSO-based DEED to
improve economic and environmental issues. DSM improves the MG load pattern
by adopting real-time pricing. MG operators can meet system demand with opti-
mal management of WT, PV panel, DG, MT, and FC energy storage systems, and
upstream networks.

2. With the stochastic nature of the renewable resources units, a multi-objective sup-
plier/consumer management system for a SMG based on PDFs has been presented
to model the behavior of solar and wind systems, as well as a hybrid wind and solar
system, in an effort to achieve the best possible results despite the uncertainty of
the situation.

3. The proposed optimal DSM is based on real-time dynamic pricing and the first-ever appli-
cation of the BOSA optimization algorithm, which employs the load-shifting technique.

4. Using a combination of the optimal DSM program, a multi-objective particle swarm
optimizer with the Pareto criterion and fuzzy mechanism based nonlinear sorting was
used to find the best MG management program.

5. By utilizing algorithms for optimizing usage of the MG sources and loads, an economic
dispatch can be achieved with optimally lower operation costs and pollution outcomes.

1.4. Paper Organization

The remaining sections are organized as follows: Section 2 describes the problem state-
ment. Distribution energy resources and stochastic modeling are demonstrated in Section 3.
Section 4 describes the proposed optimal DSM program. The proposed multi-objective
optimization model is described in Section 5. The adopted smart MG system is illustrated
in Section 6. In Section 7, the BOSA-based MOPSO algorithm is discussed. Results and
discussion are covered in Section 8. In Section 9, the main conclusion is presented.

2. Problem Statement

Within the scope of this investigation, a probabilistic model is suggested for de-
mand/generation energy management in SMGs in order to reduce emissions and opera-
tional costs. Firstly, a BOSA-based optimal DSM program is proposed to minimize the peak
energy consumption using the load-shifting technique by managing the electricity demand
of various consumers. The main focus is on reducing peak to average energy consumption
by running select appliances when grid stress is low. To that end, all customer loads are
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first classified as shiftable and non-shiftable. Because shiftable loads play an important
role in lowering the peak-to-average ratio, we proposed load-shifting technique in our
strategy to optimize the load profile. Due to the inherently unpredictable nature of the wind
and solar energies, it is impossible to accurately predict their output and they are always
attributed with planning errors due to uncertainty for the following day. Consequently,
a PDF is used to model the operation of the solar, wind, and hybrid solar–wind power
systems in an effort to achieve the optimal possible results despite the inherent uncertainty
in these systems, so as to increase conformity between planning and reality. DEED is one
of the most important optimization problems in controlling and operating power systems.
DEED recommends a model that uses a MOPSO based on non-dominated sorting and
a fuzzy optimization tool to minimize the emissions and operation costs. This model is
used to create generating schedules for a predicted load demand period. Additionally,
a new price-based DSM program is proposed as a way to solve the dilemma of the high
peak unscheduled load profile, to save electricity, and reduce the cost. The section that
follows is devoted to modeling and introducing the objective functions.

3. Distribution Energy Resources

In this study, the MG has renewable energy resources such as PV panels and WTs, and
nonrenewable ones such as DGs, MTs, and FCs. The adopted grid-connected MG also uses
ESS. A DG generates electricity by using a diesel engine and an electric generator. The
output power can be adjusted in response to network demand. The MT has the unique
ability to simultaneously generate both electricity and heat. A distributed generation unit
can generate electricity based on the amount of load it must support. In a FC, the chemical
energy of a fuel is converted into electrical energy. Using an ESS, electrical energy can be
converted to a form that can be stored and used again at a later time. ESS can help mitigate
the effects of renewable energy’s inconsistency when it is used in conjunction with a MG.

3.1. Renewable Units Stochastic Modeling

The adoption of renewable energy units such as solar panels and WTs can have
a significant impact on environmental issues. One of the drawbacks of WTs and PV panels
is their stochastic behavior. For this reason, the stochastic behavior of renewable units is
modelled by the PDF. First, the modeling of renewable units is explained, and then the
stochastic parameter generation method is described.

3.1.1. PV Panel

The energy generated by a PV panel is proportional to the solar irradiance. The
variation of solar radiation can be modeled using the beta PDF. The probability function
of solar irradiance is mathematically represented by Equation (1) [35,36]. This equation is
valid if 0 ≤ x ≤ 1, α ≥ 0, β ≥ 0.

f (x) = C.xα−1(1− x)β−1 =
1∫ 1

0 uα−1(1− u)β−1du
xα−1(1− x)β−1 (1a)

f (x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (1b)

The mean (µ) and variance (σ2) can be used to express the and β and α parameters
as follows,

β = (1− µ)

[
µ(1 + µ)

σ2 − 1
]

(2)

α = µ

[
µ(1 + µ)

σ2 − 1
]

(3)

where the gamma function is denoted by Γ( ); C is constant; α and β are beta PDF param-
eters. The parameter x represents solar irradiance, while f (x) represents the probability
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of solar irradiance according to the beta function. The active power produced by the
photovoltaic panel can be calculated using Equation (4) [37]. Here, A and λ represent the
panel’s surface area and efficiency, respectively.

Ppv(x) = A.λ.x (4)

As a result, when Equation (1) is used, the PDF ( fpv
(

Ppv
)
) for the output power of Ppv

can be written as follows:

fpv
(

Ppv
)
=

Γ(α+ β)

Γ(α)Γ(β)
(A.λ.x)α−1(1− A.λ.x)β−1 i f Ppv ∈

[
0, Ppv(s)

]
(5)

3.1.2. Wind Turbine

In general, the Rayleigh distribution PDF is given by:

f (x) =
xe−(x2/2b2)

b2 (6)

where b is the distribution’s scale parameter. The CDF is defined as [38]:

F(x) = 1− e−(
x2

2b2 ) (7)

where the wind speed is (x = Vw), x ∈ [0, ∞), and b is the scale parameter.
Wind turbine output is modeled using the Rayleigh distribution based on the behavior

of wind speed [39]. The Rayleigh distribution is a subtype of the Weibull distribution with
a shape index of 2.

If Vd is a site’s average wind speed, then the scale parameter:

Vd = b
√

π

2
= 1.253b (8)

b =
1√
π

2

Vd (9)

As a result, by substituting α in PDF and CDF, the WT system’s Rayleigh model will
be achieved as a function of the average wind speed, as shown in (10) and (11).

fV(Vw) =
2
π

Vw

Vd
2 e−(π/4)(Vw/Vd

2)
2

(10)

FV(Vw) = 1− e−(
π
4 )(

Vw
Vd

)
2

(11)

The output power of a specific WT system can be defined as follows [40]:

Pw(Vw) =


PWR VR ≤ Vw ≤ Vco

PWR
Vw−Vci
VR−Vci

VR ≥ Vw ≥ Vci

0 VR ≤ Vw ≤ Vci and Vw ≥ Vco

(12)

In this equation, Vw, Vci, VR, and Vco represent the wind, cut-in, rated, and cut-out
speeds of the WT, while PWR represents its power output. The wind turbine adopted in
this study is of the type AIR403 [41], with PWR = 15 kW, Vci = 3.5 m/s, Vco = 18 m/s, and
VR = 17.5 m/s.

In this paper, the PDF ( fP(Pw)) for the output power of a WT system can be obtained
by applying the transformation theorem as follows [42]:
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fpw (Pw) =



1− [FV(Vco)− FV(Vci)] Pw = 0

(
VR−Vci

PR

)(
π

2Vd
2

)(
Vci + (VR −Vci)

Pw
PR

)
e
−(

Vci+(VR−Vci)
Pw
PR

2√
π

Vd
)

2

0 < Pw < PR

FV(Vco)− FV(VR) PR = Pw

(13)

Power generation by hybrid WT–solar PV system (Ph) equals the sum of the power
output from the WT system and the PV system.

Ph = Pw + Ppv (14)

Assuming that Pw and Ppv are performance-independent according to Equations (4)
and (12), a random variable’s density function Ph is defined as the convolution of density
functions Pw and Ppv [43]:

f (Ph) = fpw(Pw) ∗ fpv(Ppv) (15)

4. The Proposed DSM Program

DSM techniques modify customer demand patterns to change the load curve shape in
order to minimize the peak consumption [44]. DSM focuses on energy-saving technologies
and financial incentives rather than expanding the transmission and distribution grid
or generation capacity. Peak periods of the distribution system’s load profile can be
rescheduled using an appropriate objective and DSM methodology to eliminate system
instabilities caused by high load demand. Six DSM techniques alter the load profile curve.
Peak-clipping, valley-filling, load-shifting, load shape flexibility, load growth, and load
conservation [45,46]. Figure 1 shows DSM strategies.

Figure 1. DSM techniques.

Peak clipping involves removing peaks above a certain consumption point to reduce
peak demand. Valley filling collects energy storage devices to redistribute loads during
off-peak hours [47]. Load shifting shifts on-peak loads to off-peak periods, reducing peak
energy demand. Strategic conservation objectives can improve load profiles by reducing
customer demand over a daily time. Strategic load growth helps people respond quickly
to high demand. Load shape affects SMG reliability [48]. Individuals can participate in
the load control strategy, called flexible loads in SMG management. In this paper, a load-
shifting technique based optimal DSM using BOSA is proposed to minimize the peak
energy consumption. The optimal load reduction profile is applied as an input to the single
objective or multi-objective PSO algorithm for DEED purposes. Figure 2 shows the optimal
DSM strategy flowchart. In the first step, a survey is conducted to collect load information.
After classifying the loads, a load profile comprising both shiftable and non-shiftable loads
was generated. With the aid of the load curve, the consumption of peak load and PAR were
analyzed. In addition, the durations of on-peak and off-peak hours were determined using
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the load profile curve. Hourly consumption limits were compared to the pre-determined
hourly consumption limit. Depending on the types of appliances that were in use at the
time, the excess energy consumption was reduced through load shifting. Load shifting is
implemented if shiftable loads were in operation at the time. This entire procedure was
observed for 24 h.

Figure 2. The flowchart of optimal DSM strategy.

4.1. DSM Objective Function

The desired purpose is to reduce the PAR of total energy usage by electrical service
providers. The proposed DSM program based on load shifting schedules each of the
system’s shiftable loads such that the energy consumption curve is as near as feasible to the
ideal energy consumption curve. In addition, time slots and shiftable loads are considered
movable components. Our objective is to reduce the user’s power price while decreasing
the PAR to increase the grid’s efficiency. The statement of the minimization problem is
as follows:

Minimize :
24

∑
t=1

N

∑
n=1

M

∑
m=1

X(n, m, t)E(n, m)PR(t) (16)
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Subject to : PMax(t) ≥
24

∑
t=1

N

∑
n=1

M

∑
m=1

X(n, m, t)E(n, m) (17)

Mn = 24− ln (18)

where t represents the time slots, n represents the number of appliances, m represents
the appliance type, PR(t) represents the price of electricity at time slot t, X represents the
ON/OFF state of the device, E represents the energy consumption, and PMax(t) represents
the maximum power. Maximum allowable delay of the appliance m is denoted by Mn, and
the appliance’s duration of operation is ln. This illustrates that the total energy consumption
of N appliances of M kinds during time slot t is equal to or less than the maximum permitted
power for decreasing the peak-to-average ratio.

4.2. Constraints

During the process of load scheduling, constraints must be addressed. For instance,
the total number of shiftable appliances should surpass the number of loads moved in
an hour. Otherwise, we must rein down excessive demand. In addition, there is time-shift
restriction for shiftable loads; we may postpone or advance it within the allowed range.
Equation (19) states that the number of shiftable appliances at the time step t cannot be
fewer than the number of shifted appliances, since DSM can only plan load shiftability.
Finally, we impose a time constraint on the shifting of controlled loads

S(n, m, t) ≤
24

∑
t=1

H(n, m, t) ∀ − T ≤ t ≤ T (19)

where S represents the shifted appliances, H represents the shiftable appliances, and T
represents the maximum time shift.

At all times, the user’s power consumption must be less to or equal to the maximum
power consumption. This is demonstrated using Equation (20):

PDemand(t) ≤ PDemand
max (t) ∀ t ∈ [0, 24] (20)

where PDemand(t) is the power demand at hour t-th of the day and PDemand
max (t) represents

the authorized maximum power demand limit.
To achieve the load duration criteria, all controllable and non-controllable loads are

scheduled for the whole 24 h of the day. The load duration is the anticipated operating
time for the device type:

Subject to
24

∑
t=1

M

∑
m=1

X(m, t) = dm (21)

where dm represents the operating hours number associated with the load type “m”.
Demand for shifted and scheduled loads should be equal to the total daily demand

for loads before scheduling:

Subject to
24

∑
t=1

M

∑
m=1

B(m, t) =
24

∑
t=1

M

∑
m=1

A(m, t) (22)

where B(m, t) is the total daily demand for the m-th type of load shifting before the t-th
hour and A(m, t) is the total daily demand for the m-th type of load shifting after the
t-th hour.

The load shifting-based distributed scheduling mechanism addresses the appliances
in each time slot cumulatively and generates a full pattern as a result of solving the
minimization problem.
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4.3. Binary Orientation Search Optimization Algorithm

The BOSA presented in (2019) simulates orientation game rules. Players follow the
referee’s instructions in this game. The players’ initial or starting positions are shown in
Equation (23) [49]

Xi =
(

x1
i , . . . , xd

i , . . . , xn
i

)
(23)

where xd
i represents the position of player i of d-dimension, and n is the number of variables.

In each iteration, the referee is the player with the highest value of the fitness function,
as described in Equation (24) [49].

Referee =

{
Maximization problem : location o f max( f )
Minimization problem : location o f min( f )

(24)

The letter f denotes the value of the fitness function.
The direction in which the referee’s hand moves does not always correspond to the

direction wherein the referee moves. The referee’s hand is the only consideration for
players. To simulate the direction, Equations (25) and (26) are used [49]:

Pi = 0.8 + 0.2
t
T

(25)

Orientationd
i =

sign
(

Refereed − Playerd
i

)
f or rand < Pi

−sign
(

Refereed − Playerd
i

)
else

(26)

At t iteration, and maximum iteration T.
While each player must move in the referee’s direction, some may not be able to.

Equations (27) and (28) model this problem.

error = 0.2
(

1− t
T

)
(27)

xd
i =

xd
i + rand ∗Orientationd

i ∗ xd
ho f or rand < error

xd
lo + rand ∗

(
xd

ho − xd
lo

)
else

(28)

where xd
ho and xd

lo represent the upper and lower limit.
Particle positions in discrete space are represented by the numbers zero and one for

each of the two dimensions. Changing an agent’s value from zero to one or from one to
zero corresponds to its movement in any dimension. As a result, a probability function is
used to calculate the player’s displacement in each dimension, and the player’s position is
then updated as a result. Probability functions in the BOSA are restricted to the intervals
[0–1]. In Equation (29) [49], the probability function S(dX j,d (t)) is shown.

S(dX j,d (t)) =
∣∣∣tanh

(
dX j,d (t)

)∣∣∣ (29)

The new position of every player is simulated in accordance with the probability
function (30).

X j,d (t + 1) =

complement
(

X j,d (t)
)

f or rand < S(dX j,d (t))

X j,d (t) else
(30)

A description of the various steps involved in the BOSA is provided as follows
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BOSA Algorithm Steps

• Step 1: the system space will be defined, and the initial values will be selected.
• Step 2 is the initial positioning of the players.
• Step 3 is the evaluation of the players.
• In Step 4, the referee will decide which way each player should face.
• Step 5: Maintaining an up-to-date position for the referee.
• In Step 6, the probability function for displacement is computed, which is the final step.
• Step 7 involves bringing the status of the player up to date.
• Step 8: repeat Steps 3–7 indefinitely or until the stop condition is satisfied, whichever

comes first.

In this study, generation demand-side management is subjected to a multi-objective
MG problem. Reducing daily MG operation cost and pollutant production are the main
objectives. These indices are optimized with production–consumption power balance and
energy storage system constraints. Mathematical explanations of objective functions and
constraints follow.

5. Multi-Objective Optimization Model

A stochastic programming model with multiple objectives will be utilized to investi-
gate the effects of existing renewable generation resources, such as wind and solar pho-
tovoltaics, on operation costs and pollution emissions. In this study, residential (RL),
industrial (IL), and commercial (CL) demand are considered responsive with or without
adopting the optimal DSM program. Figure 3 illustrates the proposed optimization model.

Figure 3. Proposed multi-objective optimization model configuration.

The startup and fixed running costs of distribution generators, the non-spinning and
spinning backup costs supplied by distribution generators, and the power purchased/sold
from/to the main grid are all considered as operational costs. Uncertain operational
costs are determined by realizing and considering the probability of scenario Prsc during
the t-th period and sc-th scenario, which are a combination of possible outcomes. Here,
the operation function is the cost of running distributed generation units, and the costs
related with the expected energy not served (EENS) and the value of lost load (VOLL) for
consumers are all included in the operational cost function.

Min fA(X) =
T

∑
t=1

Fcost(t) = FS(t) +
SC

∑
sc=1

Prsc × FU,sc(t) (31)

where FS(t) and FU, sc(t) denote certain and uncertain operational cost functions, respectively, Prsc
denotes the probability of occurrence of scenario sc. The definitions of the certain and uncertain
operational cost functions can be found using Equations (32) and (33), respectively.
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FS(t) =
T
∑

t=1

{
NDG

∑
i=1

[
Pi(t)OPi(t)STi(t) + SUSi(t)|STi(t)− STi(t− 1)|+ RCDG

i (t)
]
+ PESS(t)OPESS(t)STESS(t)

+SUSESS(t)|STESS(t)− STESS(t− 1)|+ STB(t)PGB(t)OPGB(t)− STS(t)PGS(t)OPGS(t) t

} (32)

FU,sc(t) =
T

∑
t=1

{
NDG

∑
i=1

CDG
i,sc (t) + CESS

sc (t) + EENSsc(t)×VLL(t)

}
(33)

where Pi(t) and OPi(t) represent the total output power and the price that was being offered for the
i-th unit during the t-th period; STi(t) is a binary representation of the on mode and off mode of the
i-th unit during the t-th period, PESS(t) and OPESS(t) denote the total output power and the price that
was being offered for the ESS unit during the t-th period; STESS(t) is a binary representation of the
on mode and off mode of the ESS during the t-th period, SUSi(t) and SUSESS(t) are a representation
of the costs associated with running and shutting down the i-th and ESS unit during the t-th period;
RCDG

i (t) is the reserve costs of the i-th DG during the t-th period. PGB(t) and PGS(t) are the amounts
of power exchanged with the utility in period t. OPGB(t) and OPGS(t) represent the offered price for
open market power with utility during the t-th period; CDG

i,sc (t) and CESS
sc (t) represents the running

cost of the i-th DG unit and ESS in the sc-th scenario during the t-th period; and EENSs(t) and VLL(t)
represent the EENS in the sc-th scenario at the t-th period and value of lost load. In Equation (33),
XT = [X1, X2, . . . ., XT ] is the state vector of the variables, which includes the active power produced
by each DG, the power used in the battery’s charge and discharge, and the real power exchanged
with the upstream grid.

The quantity of pollution generated by DG units as well as the grid at the energy purchase time
are both included in the pollution emissions function. The pollutants include carbon dioxide (CO2),
sulfur dioxide (SO2), and nitrogen oxides (NOx), and the mathematical representation model of the
pollution emission function can be obtained as follows:

Min fB(X) =
T

∑
t=1

FEmission(t) =
T

∑
t=1

[EmDG(t) + EmGrid(t)] (34)

The following formula can be used to calculate the average emissions generated by renewable
DG units:

EmDG(t) =

{
NDG

∑
i=1

(EDG
CO2

(i) + EDG
SO2

(i) + EDG
NOx

(i))

}
× PDG

i (t) + (EESS
CO2

+ EESS
SO2

+ EESS
NOx

)× PESS(t) (35)

where PDG
i (t) is the active power of i-th DG, EDG

CO2
(i), EDG

SO2
(i), and EDG

NOx
(i) denote the amount of

CO2, SO2, and NOx pollution resulting from the i-th DG, respectively, and kg/MWh is the unit of
measurement. Similarly, the grid pollution can be expressed as follows:

EmiGrid(t) = (EGrid
CO2

(i) + EGrid
SO2

(i) + EGrid
NOx

(i))× PGrid(t) (36)

where PGrid(t) represents the grid power which has maximum and minimum value (±30 kW),
EDG

CO2
(i), EDG

SO2
(i), and EDG

NOx
(i) denote the amount of CO2, SO2, and NOx pollution resulting from the

main grid which are assumed as 950 kg/MWh, 0.5 kg/MWh, and 2.1 kg/MWh.
The following constraints are assumed to govern the operation of a typical smart MG.

5.1. Power Balance Constraint
In each interval and scenario, the total amount of electricity made by DGs and utility purchases

must match the total amount of demand loads.

NDG

∑
i=1

PDG
i (t) + PESS(t) + PGrid(t) =

NL

∑
l=1

POptimal.Demand
l (t) (37)

where POptimal.Demand
l (t) denotes the total optimal demand power.
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5.2. DG Power Constraints
Each unit’s maximum and minimum power output is constrained and can be stated as follows:

PDG
i,min(t) ≤ PDG

i (t) ≤ PDG
i,max(t) (38)

PESS
min (t) ≤ PESS(t) ≤ PESS

max (t) (39)

PGrid
min (t) ≤ PGrid(t) ≤ PGrid

max (t) (40)

where PDG
i,min(t), PESS

min (t), and PGrid
min (t) represent the minimum active power of the i-th DG, the ESS,

and the utility, respectively, during period t. The maximum active power units for the period t are
PDG

i,max(t), PESS
max (t), and PGrid

max (t).

5.3. Battery Constraints
For each interval of time, a battery’s charging and discharging limitations and equations can be

expressed in the following forms [50]:

WESS(t) = WESS(t− 1) + ηchPch(t)Ich −
1

ηdisch
Pdisch(t)Idisch(t) (41)

WESS,min ≤WESS(t) ≤WESS,max (42)

Pch(t) ≤ Pch,max(t); Pdisch(t) ≤ Pdisch,max (43)

where the quantities WESS(t) and WESS(t− 1) each represent the amount of energy that is stored in
the battery at time t and time t− 1, respectively; WESS,min and WESS,max are the lowest and highest
amounts of energy that can be stored in the battery, respectively. Pch,max/Pdisch,max is the maximum
battery charge/discharge power. Pch/Pdisch refers to the maximum charge/discharge allowed over
a given time period. During charging and discharging, ηch/ηdisch is the battery’s efficiency, Ich(t) and
Idisch(t) are the charge and discharge states of the battery.

6. Proposed Smart MG System
Typically, a MG consists of distribution generators, energy reserves, and loads that can be

operated independently or in tandem with the area’s primary electrical grid [51–54]. The development
of MGs is an aspect of the concept of smart grids; given the benefits of MGs, such as reduced energy
costs and enhanced security and system reliability [55–59], it is evident that MGs and smart grids share
common goals [60,61]. Moreover, the development of green technologies and the implementation
of DSM programs in MGs are contingent on the adoption of smart grid technologies. As seen in
Figure 4, a connected grid of residential, commercial, and industrial consumers makes up the SMG
under study, in addition to power-generating resources including MTs, DGs, WTs, PV panels, FCs,
and an ESS (nickel–metal hydride (NiMH) battery). NiMH batteries have a significantly longer
lifespan than lead-acid batteries as well as a significantly higher power and energy density than
lead-acid batteries. In addition to not posing any danger, their power output is unaffected by the
amount of charge that is currently present in the battery. With the utility, this SMG has the ability
to exchange energy. The startup and shutdown costs, DG price offers, the amount of greenhouse
gas emissions produced by DGs, as well as the minimum and maximum power generation, are all
included in Table 2 (modified from table in [50,62]). Table 3 shows the adopted appliance loads and
their attributes.
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Figure 4. The proposed SMG schematic configuration.

Table 2. Bids and DG source emissions coefficients.

Unit
Type

Bid
USD/kWh)

SU/SD
(USD)

CO2
(kg/MWh)

SO2
(kg/MWh)

NOx
(kg/MWh)

Pmin
(kW)

Pmax
(kW)

DG 0.586 0.15 890 0.0045 0.23 30 300

MT 0.457 0.96 750 0.0036 0.1 6 30

FC 0.294 1.65 460 0.003 0.0075 3 30

PV 0.7 0 0 0 0 0 25

WT 0.65 0 0 0 0 0 15

ESS 0.38 0 10 0.0002 0.001 −30 30

Table 3. Numerous appliances and their attributes.

Appliance
Number

Appliance
Type Operating Time IL Rated

Power (kW)
CL Rated

Power (kW)
RL Rated

Power (kW)

1 Nonshiftable 12 AM–12 PM 4 4 2

2 Shiftable
7–9 AM,

11 AM–14 PM
& 18 PM–22 PM

0.6 0.6 0.3

3 Shiftable 7 AM–12 PM,
15 PM–20 PM 0.4 0.4 0.2

4 Shiftable 1 AM–10 AM,
15 PM–24 PM 4.8 4.8 2.4

5 Shiftable
7 AM–9 AM,

11 AM–14 PM,
18 PM–22 PM

0.6 0.6 0.3

6 Shiftable 8 AM–18 PM 0.4 0.4 0.2

7 Shiftable 10 AM–15 PM,
18 PM–22 PM 0.4 0.4 0.3

8 Nonshiftable 12 AM–12 PM 2 2 1

9 Nonshiftable 12 AM–12 PM 1.6 1.6 0.8
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7. BOSA-Based MOPSO Algorithm
Inequalities and equality constraints must be optimized simultaneously in multi-objective

optimization problems because they involve multiple competing objective functions.

Min F(X) = [ f1(X), f2(X), . . . , fn(X)]T (44)

Subject to gi(X) < 0 i = 0, 1, 2, . . . Nueq

hi(X) = 0 i = 0, 1, 2, . . . Neq
(45)

where F(X) is a vector that contains the objective functions and X is a vector that contains optimiza-
tion variables, fi(X) is the objective function that corresponds to the i-th optimization variable, gi(X)
and hi(X) are limitations of equality and inequality, and n represents the number of the objective
functions that are being considered.

Each pair of solutions in multi-objective optimization can have two distinct relationships with
one another: either one solution could dominate the other or no solution can dominate the other.

∀ j ∈ {1, 2, . . . , n}, f j(X1) ≤ f j(X2) (46)

∃ k ∈ {1, 2, . . . , n}, fk(X1) ≤ fk(X2) (47)

It is possible to use the particle swarm optimization (PSO) algorithm to solve multi-objective
problems, and this solution is referred to as multi-objective swarm particle optimization (MOPSO).
This is accomplished by applying the concepts of Pareto optimality while utilizing the fundamental
principles of PSO. A repository is used to save different solutions when using the MOPSO algorithm.
A repository is an external memory in which dominated solutions are stored. This algorithm begins
its execution by first working with a collection of random particles. During a series of repeated steps,
all of the population particles are compared with one another, and the positions of the particles that
dominate the comparison are recorded in the repository. Using the following equation, the new
velocity and position of the i-th particle in the dm-th dimension and the t + 1 repetition are calculated
and updated. See [63,64] for more details.

vt+1
idm = w× vt

idm + c1rand1 ×
(

pt
bestidm − xt

idm
)
+ c2rand2 ×

(
gt

bestidm − xt
idm
)

(48)

xt+1
idm = xt

idm + vt+1
idm (49)

The proposed optimal DSM-based MOPSO system applied to the investigated problem can be
executed according to the steps outlined below.

1. The required input data are collected at the start of the program, and include: MG structure,
utility, and DG operating characteristics PV and WT forecasted output power for every time
period under consideration, offering of the real-time price for DGs and utility, the daily demand
curve, and pollutant emission coefficients.

2. Set the values for all BOSA parameters.
3. Randomize a population to minimize DSM objective (Equation (16)).
4. For each population within the iteration range, Equations (29) and (30) are used to update positions.
5. Check all the constraints for each population.
6. Initial population of MOPSO, an initial population, is considered based on the problem’s

limitations and the following relationship:

X0 = [X1, X2, . . . , XN ]T (50)

where X is regarded as the decision variable vector, which consists of the unit’s output gener-
ation power, the power exchange with the main grid, the amount of load reduction, and the
on/off modes in the day ahead vision, which are stated as follows:

X =
[
Pg, Ug

]
1×2nT (51)

Pg =
[

Pdg1, Pdg2, . . . , PdgNdg
, PESS1, PESS2, . . . , PESSNESS , Pgrid, Pload

]
(52)

Ug =
[
Udg1, Udg2, . . . , UdgNdg

, UESS1, UESS2, . . . , UESSNESS , Ugrid, Uload

]
(53)

n = Ndg + NESS + 2 (54)
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where n represents the number of decision variables, Ndg and NESS represent the total number
of generation units and storage units, respectively, and T represents the total number of periods,(

Pdg1, Pdg2, . . .
)

, (PESS1, PESS2, . . .), Pgrid, Pload are the vectors of the active power that includes
all DGs and storage units; utility grid power and load active power; and Ug is the state vector
that indicates whether all units are ON or OFF during period t.

7. For each of the generated populations, the power dispatch algorithm is implemented as shown
in Figure 5, and the fitness is calculated using (33) or (36).

Figure 5. Power dispatch algorithm.

8. Defining non-dominant solutions.
9. Creating a repository for non-dominated solutions.
10. Choosing the best non-dominated solution particle as the leader: the best particle is chosen as the

leader by apportioning the search area into equal sections, allocating probability distributions
to each part of the identified search space, and finally using the roulette wheel to select the best
particle as the leader.

11. Each particle’s new velocity and position are calculated using (48) and (49).
12. Modifying the optimal position of every particle:To update each particle’s optimal position, the

new position of the particle is compared to the position of the particle before.
13. Adding the repository’s current non-dominated solutions.
14. The dominated solutions are being removed from the repository.
15. Excessive members will be omitted if the number of individuals in the repository exceeds the

pre-specified capacity.
16. The optimization process will end if the maximum number of repetitions is reached; otherwise,

return to Step 10.
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17. Choosing the best interactive solution: The membership function-based fuzzy logic can be
used to select the optimal solution from the optimal Pareto responses. Here, ∂k

i is the objective
function’s optimality amount in optimal Pareto response k, which is calculated as follows:

∂k
i =


1 f min

i ≥ fi

f max
i − fi

f max
i − f min

i
f min
i > fi > f max

i

0 fi ≥ f max
i

(55)

where f max
i and f min

i are the objective function’s upper and lower limits, respectively. In the
method which is being proposed, these values are figured out by using the results of optimizing
each objective function. ∂k

i is between 0 and 1, and a value of 0 indicates that the solution
does not meet the designer’s objectives, while ∂k

i = 1 indicates that the solution meets the
designer’s objectives.

8. Results and Discussion
Figure 6a depicts hourly data of the wind speed obtained from the forecast of the weather. The

solar PV under consideration is a 25 kW SOLAREX MSX [65]; Figure 6b depicts the average adopted
hourly solar irradiance. In a typical system with a 30 kWh battery, the minimum and maximum
charges are 10% and 100% of the battery’s total capacity, respectively, with a discharge and charge
efficiency of 94% [66,67].

Figure 6. Hourly adopted (a) wind speed and (b) solar irradiance.

In this paper, the MG connected to the main grid (shown in Figure 4) was used as the test system.
Three feeders (F1, F2, and F3), corresponding to medium residential, industrial, and commercial
consumers were considered in this system, with the maximum electricity demand assumed to be
40%, 40%, and 20% of the total load energy in the system per time period, respectively.

Figure 7 shows the daily schedule and unscheduled system load demand curve. It illustrates the
simulation results of the proposed DSM program for one day (24 h) when the DSM based on the BOSA
algorithm is adopted for optimal shifting the controllable (shiftable) loads from on-peak to off-peak
hours. Users schedule their peak loads during periods of low electricity costs, resulting in a reduced
electric bill. As depicted in Figure 8, proper load scheduling can significantly reduce a user’s daily
electricity bill. The peak demand value is up to 88.4 kWh using the proposed algorithm-based
DSM, which is the lowest in comparison to unscheduled programming (105 kWh). Additionally, the
adopted algorithm achieves cost savings (up to 15.7% savings).



Sustainability 2022, 14, 10158 18 of 28

Figure 7. The daily schedule and unscheduled load demand curve.

Figure 8. The schedule and non-schedule PAR.

The peak-to-average (PAR) is lowered, which assists in maintaining a healthy equilibrium
between the supply and demand of electricity. When it comes to the reduction of PAR, we have
placed a higher priority on interruptible appliances. When compared to the non-scheduled load
curve, the BOSA technique brings the PAR down to almost 84.3%, as shown in Figure 8. This reduces
the electricity cost compared to unscheduled usage. The adopted real-time dynamic price profile is
shown in Figure 9.

Figure 9. The adopted real-time dynamic price.
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Operational costs and pollution emissions were analyzed in order to determine the impact
of planning for energy levels, reserves, and optimal DSM on operational costs and environmental
impacts, as well as the uncertainty caused by wind and solar resources. The problem was considered
under six distinct cases:

• Case #1: single-objective (emission function optimization only) without DSM.
• Case #2: single-objective (emission function optimization only) with DSM.
• Case #3: single-objective (considering operation cost function) without DSM.
• Case #4: single-objective (considering operation cost function) with DSM.
• Case #5: multi-objective (emission and operation cost functions) optimization without DSM.
• Case #6: multi-objective (emission and operation cost functions) optimization with DSM.

8.1. Cases #1 and #2: Emission Function Optimization Only without and with DSM
This section investigated the results of minimizing pollution emissions with and without the

DSM. Figures 10 and 11 illustrate the optimal power allocation of the generation units in these two
cases, respectively. Figures 10 and 11 reveal that the power production by the WTs and solar PV panels
was not considerably different from the predicted amounts presented in Figure 12, which may be
related to the fact that these forms of power generation are pollution-free. The data suggested that the
utility purchased from the MG for the majority of working periods due to its high level of pollution
emissions. In addition, when pollutant emissions were minimized, the DSM had a considerable
effect in covering the uncertainties related to wind and solar energy production. As shown in
Figure 13a, the power dispatch algorithm has addressed the supply–demand mismatch; however,
Case #1 has not resulted in decreased emission because the DSM is not used to minimize power
generating requirements. The daily supply–demand power with DSM program implementation
based on BOSA is depicted in Figure 13b. It is obvious that the peak-to-average ratio of the load
demand has decreased, consequently reducing the necessary generation power, cost, and emissions
as indicated in Figure 14. Implementing the DSM program resulted in a 13% reduction in pollutant
emissions. The convergence characteristics of the proposed algorithm are shown in Figure 14a,b
without and with adoption of DSM, respectively.

Figure 10. The optimal power allocation of the generation units in Case #1.

Figure 11. The optimal power allocation of the generation units in Case #2.
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Figure 12. (a) PV and (b) WT power generation using DSM (Case #2).

Figure 13. Supply–demand balance of Cases #1 and #2 (a) without DSM and (b) with DSM.

Figure 14. Convergence characteristic of the proposed algorithm (a) without DSM and (b) with DSM.
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8.2. Cases #3 and #4: Operation Cost Function Optimization Only without and with DSM
In these cases, operating cost minimization results were analyzed without and with DSM.

Figure 15 illustrates the optimal power generation allocation of the unit without DSM. The simula-
tion’s results, which pertain to the case without an optimal DSM program, indicate that charging
of the battery started in the earliest hours of the day, when the price has dropped, while the utility
purchased electricity from the MG during the peak times of demand, when the price became high-
est, so that the power consumption could be met by the offering of the price from the distributed
generation resources. When there were DSM available in the system (Figure 16), almost the same
situation existed. The power generated by the PVs and WTs, especially with adoption of DSM, are
depicted in Figure 17a and b respectively. However, because the price of WT and PV resources offered
is higher than the price of other generation resources, they cannot gain a great deal of attention
when determining the optimal operational cost. As depicted in Figure 17, their power generation
is very low or even zero in these cases. As shown in Figure 18a, the supply–demand mismatch
has been adjusted by the proposed power dispatch algorithm, but Case#3 has not resulted in lower
operating costs due to the fact that the DSM is not adopted to reduce power generation requirements.
Figure 18b shows the daily supply–demand power with DSM program adoption based on BOSA. It
is evident that the peak-to-average ratio of the load demand is reduced in this case (Case #4), thereby
reducing the required generation power and system operation costs as depicted in Figure 19.

Figure 15. The optimal power distribution of the generating units in Case #3.

Figure 16. The optimal power distribution of the generating units in Case #4.
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Figure 17. Power generation adopting DSM (a) PV and (b) WT (Case #4).

Figure 18. Generation–demand balance of Cases #3 and #4 (a) without using DSM and (b) with DSM.

Figure 19. Convergence characteristic of the proposed algorithm (a) without DSM and (b) with DSM.
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8.3. Cases #5 and #6: Emission and Operation Cost Functions Optimization without and with DSM
In these particular cases, the outcomes of minimizing two incompatible functions, namely,

pollutant emissions and operating costs, were analyzed, both without and with the optimal DSM
program. The optimal power allocation was performed for the simultaneous reduction of operational
costs and emissions. Most of the time, the utility purchases power from the SMG as shown in
Figure 20 (without DSM) and Figure 21 (with adopting DSM) due to the utility’s high pollution levels.
Figure 22a,b illustrates the power generation by the WTs and solar PVs takes into consideration
the reduction of the operating cost and pollutant emission functions, as well as the simultaneous
reduction of the pollutant emission and operating cost functions when DSM was available. As wind
and solar power are typically pollution-free, their maximum power generation is achieved when the
pollution emission function is considered. These resources, at the same time, do not receive much
consideration when it comes to the optimal operational cost because their prices are higher than those
of other power generation resources. As a result, in these cases, the energy extracted from WTs and
solar PVs results in the lowest operating costs and emissions. The supply–demand mismatch has been
fixed by the power dispatch algorithm, but Case #5 has not led to less pollution or lower operating
costs overall due to DSM not being adopted to decrease the generation requirements, as shown in
Figure 23a. Due to the load demand reduction in Case #6, the supply–demand power mismatch
has been resolved by the power dispatch algorithm with lower generation requirements, which has
resulted in decreased emissions and lower overall costs of operation (as shown in Figure 23b).

Figure 20. The optimal power distribution of the generating units in Case #5.

Figure 21. The optimal power distribution of the generating units in Case #6.
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Figure 22. (a) Solar PV and (b) WT power generation adopting DSM (Case #6).

Figure 23. Supply–demand balance of Cases #5 and #6 (a) without using DSM and (b) with DSM.

According to Figure 24, since operational cost and emissions cost objectives are opposite,
traveling from curve initial points to Pareto path endpoints corresponds to a change in operation
behavior from low cost and high pollution to high cost and low pollution, with fuzzy mechanisms
determining the optimal operation point. Figure 24a shows that without DSM, the optimal operating
point cannot be improved to reduce operational costs and pollution emissions. In the case with DSM
programs (Figure 24b), they help to improve the optimal operation point, lowering operational costs
and pollution emissions by 21% and 7.2%, respectively.

Figure 24. Convergence characteristic of the proposed algorithm (a) without DSM and (b) with DSM.
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8.4. Time Testing Results
These tests are presented to demonstrate the time required to execute the proposed system

operation for six adopted scenarios. The elapsed time of the proposed DSM and single-objective
or multi-objective optimization algorithms is showed in Table 4. The optimal DSM algorithm is
implemented with a maximum iteration number of 300, a population size of 10, maximum limit of
100, and a maximum shift time of 4. The PSO is executed with a maximum iteration number of 500
and a swarm size of 10.

Table 4. The elapsed time of the proposed optimization algorithms.

Operational
Condition of MG Case No. BOSA

(Elapsed Time)
MOPSO

(Elapsed Time)
BOSA + MOPSO
(Elapsed Time)

Optimal DEED
without DSM

#1 - 43.99 s 43.99 s

#3 - 36.92 s 36.92 s

#5 - 63.41 s 63.41 s

Optimal DEED
with DSM

#2 3.77 s 44.29 s 49.06 s

#4 3.59 s 37.26 s 40.97 s

#6 3.7 s 63.72 s 67.85 s

9. Conclusions
This paper proposed a multi-objective DEED combined model with BOSA-based DSM to stay

ahead of DSM’s utility, generation, and energy consumption reduction benefits. The proposed BOSA-
based DSM program adopts a load-shifting program to obtain day-ahead optimal load appliances
scheduling. The problems associated with MG operation were addressed by managing the energy
according to the analysis of the total operating costs of the MG and the associated pollutant emissions
with/without applying optimal DSM based on BOSA. The consumer side has the potential to play
an active role in energy production and consumption management. Consumers could participate in
RTP-based DSM for consumption management. RTP was implemented to incentivize consumers to
better regulate their electricity consumption. In addition, a probabilistic programming technique was
employed to model the stochastic behavior of wind and solar cell power generation. The fuzzy-based
MOPSO method was used to solve and optimize the DEED proposed model. Simulation results
demonstrated that if consumers participate in DSM, it is possible to reduce operational costs and
emissions. Among the cases studied, the best results were found when BOSA-based DSM was used
to look at operating costs and pollutant emissions at the same time. Additionally, simulation results
demonstrated that considering the pollution function as the primary objective made the operational
costs increase, so DSM programs were utilized for minimizing the operation cost and vice versa for
considering the operation cost as a single objective. This model also demonstrated that if consumers
collaborate in DSM, in addition to compensating for production shortages due to the unpredictability
of wind and solar power, this results in a decrease in operating costs and system-wide pollution
simultaneously. The results show that, when compared to unscheduled peak demand (which was
105 kWh), the proposed BOSA algorithm-based DSM had the lowest peak demand (88.4 kWh).
Additionally, operating costs dropped from660 USD to 508USD, a 23% decrease, and emissions
dropped from 840 kg to 725 kg, a 13.7% reduction.
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