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Abstract 
In this paper a multi-objective evolutionary algorithm 
with a single run is proposed in order to consider sev- 
eral objectives dealing with transparency and compact- 
ness in obtaining a fuzzy model besides the standard ac- 
curacy objective. In this way the use of Pareto-optimal 
solutions within the evolutionary algorithm let us ob- 
tain attractive fuzzy models with respect to compact- 
ness, transparency and also accuracy. The results of the 
combination of Pareto-based multi-objective evolution- 
ary algorithms and fuzzy modeling is compared with 
other approaches in the literature. 
Keywords: Takagi-Sugeno fuzzy model, Pareto opti- 
mality, multi-objective evolutionary algorithm. 

1. Introduction 

In recent years, fuzzy modeling, as a complement to the 
conventional modeling techniques, has become an ac- 
tive research topic and found successful applications in 
many areas. However, most fuzzy models are presently 
built based only on operator's experience and knowl- 
edge, but when a process is complex there may not be an 
expert available [29]. In this kind of Situation the use of 
unsupervised learning techniques is of fundamental im- 
portance. The problem can be stated as follows. Given 
a set of data for which we presume some functional de- 
pendency, the question arises whether there is a suit- 
able methodology to derive (fuzzy) rules from the data 
that characterize the unknown function as precisely a. 
possible. Recently, several approaches have been pro- 
posed for automatically generating fuzzy if-then rules 
from numerical data without domain experts [18]. 

This paper deals with fuzzy model parameter estima- 
tion and structure selection. In fuzzy model identifica- 
tion, we can, in general, take into account three criteria 

to be optimized: compacmess, transparency and accu- 
racy. Different measures for these criteria are proposed 
here. Compactness is related to the size of the model, 
i.e. the number of rules, the number of fuzzy sets and 
the number of inputs for each rule. Transparency is re- 
lated to linguistic interpretability [3,25] and locality of 
the rules. Often one is interested in the local behavior 
of the global nonlinear model. Such information can 
be obtained by constraining the model-structure during 
identification. Transparency and model interpretability 
for data-based fuzzy models received a lot of interest in 
recent literature [20, 16,2, 171. 

Evolutionary Algorithms (EA) [l,  61 have been recog- 
nized as appropriate techniques for multi-objective opti- 
mization because they perform a search for multiple so- 
lutions in parallel [5, l l ,  261. EAs have been applied to 
learn both the antecedent and consequent part of fuzzy 
rules, and models with both fixed and varying number 
of rules have been considered [28, 141. Also, EAs have 
been combined with other techniques like fuzzy cluster- 
ing [lo, 12, 71 and neural networks [15,23]. This has 
resulted in many complex algorithm. and, as recognized 
in [3] and [25J, often the transparency and compacmess 
of the resulting rule base is not considered to be of im- 
portance. In such cases, the fuzzy model becomes a 
black-box, and one can question the rationale for ap- 
plying fuzzy modeling instead of other techniques like, 
e.g., neural networks. If the fuzzy model or a neural net- 
work is handled as a black-box model it will typically 
store the information in a distributed manner among the 
neurons or fuzzy sets and their associated connectivity 
Wl. 
Most evolutionary approaches to multi-objective fuzzy 
modeling consist of multiple EAs, usually designed to 
achieve a single task each, which are applied sequen- 
tially to obtain a final solution. In these ca.ses each EA 
optimizes the problem attending to one criterion sep- 
arately which is an impediment for the global search. 
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Simultaneous optimization of all criteria is more: ap- 
propriate. Other approaches are based on classical 
multi-objective techniques in which multiple objectives 
are aggregated into a single function to be optimized 
[71. In this way a single EA obtains a single com- 
promise solution. Current evolutionary approacher; for 
multi-objective optimization consist of a single multi- 
objective EA, based on the Pareto optimality nolion, 
in which all objectives are optimized simultaneously to 
find multiple non-dominatedsolutions in a single run of 
the EA. These approaches can also be considered from 
the fuzzy modeling perspective [8, 131. The advantage 
of the classical approach is that no further interaction 
with the decision maker is required, however it is often 
difficult to define a good aggregation function. If the fi- 
nal solution cannot be accepted, new runs of the EA may 
be required until a satisfying solution is found. The ad- 
vantages of the pareto approach are that no aggregarjon 
function ha$ to be defined, and the decision maker #can 
choose the most appropriate solution according to the 
current decision environment at the end of the EA run. 
Moreover, if the decision environment changes, it is not 
always necessary to run the EA again. Another sch-  
tion may be chosen out of the family of non-dominated 
solutions that has already been obtained. 

In this paper we propose a single multi-objective EA. to 
find, with a low necessity for human intervention, mul- 
tiple non-dominated solutions for fuzzy modeling pmb- 
lems. In section 2, fuzzy modeling and the criteria taken 
into account, are discussed. The main components of 
the multi-objective EA are described in section 4. Sec- 
tion 5 proposes several optimization models for fuzzy 
modeling and a decision making strategy. In section 6, 
experiments with the EA for a test problem are shown 
and compared with results in literature. Section 6 ma-  
cludes the paper and indicates lines for future research. 

2. Fuzzy Model Identification 

2.1. Fuzzy model structure 

We consider rule-based models of the Takagi-Sugalo 
(TS) type [27] which are especially suitable for the ap- 
proximation of dynamic systems. The rule consequent9 
are often taken to be linear functions of the inputs: 

Here x = [ZI , 22 , . . . , z,IT is the input vector, fij is the 
output of the ith ruIe, Aij 0' = 1, .  . . , n) are fuzzy sets 
defined in the antecedent space by membership func- 
tion~ p~~~ : R-+[O, 11, c<j E R (j = 1, .  . . ,n + :l) 
are the consequent parameters, and M is the number of 

rules. The total output of the model is computed by ag- 
gregating the individual contributions of the rules: 

M 

Q = CPi(X)Qi 
i=l 

where pi(x) is the normalized firing strength of the ith 

We apply the frequently used trapezoidal membership 
functions to describe the fuzzy seLs Aij in the rule an- 
tecedents: 

2.2. Multi-objective Identification 

Identification of fuzzy modeLs from data requires the 
presence of multiple criteria in the search process. In 
multi-objective optimization, the set of solutions is 
composed of all those elements of the search space for 
which the corresponding objective vector cannot be im- 
proved in any dimension without degradation in another 
dimension. These solutions are called non-dominatedor 
Pareto-optimal. Given two decision vectors x and y in 
a universe U, x is said to dominate y if f i ( x )  5 fi(y), 
for all objective functions fi, and fj(x) < fj(y), for 
at least one objective function fj. for minimization. A 
decision vector x E U is said to be Pareto-optimal if no 
other decision vector dominates x. 

The Pareto-optimality concept should be integrated 
within a decision process in order to select a suitable 
compromise solution from all non-dominated altema- 
tives. In a decision process, the decision maker ex- 
presses preferences which should be taken into account 
to identify preferable non-domination solutions. Ap- 
proaches based on weights, goals and priorities have 
been used more often. 

2.3. Rule set simplification techniques 

Automated approached to fuzzy modeling often intro- 
duce redundancy in terms of several similar fuzzy sets 
that describe almost the same region in the domain of 
some variable. According to some similarity measure, 
two or more similar fuzzy sets can be merged to create 
a new fuzzy set representative for the merged set.. [241. 
This new fuzzy set substitutes the Ones merged in the 
rule baw. The merging process is repeated until fuzzy 
sets for each model variable cannot be merged, i.e., they 
are not similar. This simplification may results in sev- 
eral identical rules, which are removed from the rule set. 
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We consider the following similarity measure between 
two fuzzy sets A and B: 

models with a small number of rules and fuzzy sets are 
compact. 

In summary, we have considered three criteria for fuzzy 
modeling, and we have defined the following measures 
for these criteria: 

Criteria Meawres 
MSE Accuracy 

Transparency S 
Compactness M, L 

S(A,B)  = ~ IA n BI (5) 
1-4 U BI 

If S(A,  B )  > 8s (we use OS = 0.6) then fuzzy Sets A 
and B are merged in a new fuzzy set C as follows: 

where a E [0, 11 determine the influence of A and B on 
gorithm 

the new fuzzy set C. 
The main characteristics of the Multi-Objective Evolu- 
tionary Algorithm are the following: 

. .  

3. Criteria for Fuzzy Modeling 

We consider three main criteria to search for an accept- 
able fuzzy model: (i) accuracy, (ii) transparency, and 
(iii) compactness. It is necessary to define quantitative 
meawres for these criteria by means of appropriate ob- 
jective functions which define the complete fuzzy model 
identification. 

The accuracy of a model can be measured with the mean 
squared emr:  

1. The proposed algorithm is a Pareto-based multi- 
objective EA for fuzzy modeling, i.e., it has been de- 
signed to find, in a single run, multiple non-dominated 
solutions according to the Pareto decision strategy. 
There is no dependence between the objective functions 
and the design of the EA, thus, any objective function 
can easily be incorporated. Without loss of generality, 
the EA minimizes all objective functions. 

2. Constraints with respect to the fuzzy model structure 
are satisfied by incorporating specific knowledge about 
the problem. The initialization procedure and variation 

(7) 
l K  

M S E  = 37 C(nrk - &kI2 
k=l 

operators always generate individuals that satisfy these 
constraints, where Y k  is the true output and $k is the model output 

for the kth input vector, respectively, and K is the num- 
ber of data samples. 

Many measures are possible for the second criterion, 
transparency. Nevertheless, in this paper we only con- 
sider one of most significant, simifaarity, as a first start- 
ing point. The similarity S among distinct fuzzy Set$ 
in each variable of the fuzzy model can be expressed a5 
follows: coded by floating-point numbers. 

3. The EA has a variable-length, real-coded represen- 
tation. Each individual of a population contains a vari- 
able number of rules between 1 and m z ,  where m x  
is defined by a decision maker. Fuzzy numbers in the 
antecedents and the parameters in the consequent are 

4. The initial population is generated randomly with a 
uniform distribution within the boundaries of the search 
space, defined by the learning data and model con- 
swaints. 

s = “4 S(Aij ,  Bik), 
A i j  a, # B i b  I s  (8) 

i = l ,  ..-, n , j = l ,  ..., M, k = l ,  ..., M 

This is an aggregated similarity measure for the fuzzy 
rule-based mod i  with the objective to minimize the 
maximum similarity between the fuzzy sets in each in- 
put domain. 

5. The EA search for among simplified rule sets, i.e. all 
individuals in the population has been previously sim- 
plified (after initialization and variation), which is an 

Finally, meawres for the third criterion, the compact- 
ness, are the number of rules M and the number of dif- 
ferent fuzzy sets L of the fuzzy model. We assume that 

added ad hoc technique for transparency and compact- 
ness. So, all individuals in the population have a simi- 
larity S between 0 and 0.6. 
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6. Chromosome selection and replacement are achieved 
by means of a variant of the preselection scheme. This 
technique is, implicitly, a niche formation technique and 
an elitist strategy. Moreover, an explicit niche formation 
technique has been added to maintain diversity respect 
to the number of rules of the individuals. 

In each iteration of the EA, two individuals are picked 
at random from the population. These individuals are 
crossed nChildren times and children mutated produc- 
ing 2 . nChildren offspring. Afterwards, a nondomi- 
nated individual (random if there are several) among the 
first offspring replaces the first parent, and a nondomi- 
nated individual (random if there are several) among; the 
second offspring replaces to the second parent only if: 

- the offspring dominates the parent, and 

- the number of rules of the offspring is equal to the 
number of rules of the parent, or the niche count of the 
parent is greater than minNS and the niche count of 
the offspring is smaller than maxNS. 

The niche count of an individual I is the number of indi- 
viduals in the population with the Same number of rules 
as I. The added explicit niche formation technique en- 
sures that the number of individuals with M rules, for 
all M E [ l ,muz ] ,  is greater or equal to minNS and 
smaller or equal to muxNS. 

7. The EAs variation operators affect at the individuials 
at different levels: (i) the rule set level, (ii) the rule level, 
and (iii) the parameter level. 

Remark All the procedures in this section can be ob- 
tained from the authors on request. 

5. Optimization Model and Decision 
Making 

After preliminary experiments in which we have chx- 
ked different optimization models, the following re- 
marks can be maded: 

1. The minimization of the number of rules M of the 
individuals has negative influence on the evolution 
of the algorithm. The reason is than this parameter 
is not an independent variable to optimize, as the 
amount of information in the population decreases 
when the average number of rules is low, which is 
not good for exploration. Then, we do not mini- 
mize the number of rules during the optimization, 
but we will take it into account at the end of the 

run, in a posteriori articulation of preferences ap- 
plied to the last population. 

2. It is very important to note that a very transparent 
model will be not accepted by a decision maker if 
the model is not accurate. In most fuzzy model- 
ing problems, excessively low values for similarity 
hamper accuracy, for which these models are nor- 
mally rejected. Alternative decision strategies, as 
goal programming, enable us to reduce the domain 
of the objective functions according to the prefer- 
ences of a decision maker. Then, we can impose 
a goal gs for similarity, which stop minimization 
of the similarity in solutions for which goal gs has 
been reached. 

3. The measure L (number of different fuzzy sets) i s  
considerably reduced by the rule set simplification 
technique. So, we do not define an explicit objec- 
tive function to minimize L. 

According to the previous remarks, we finally consider 
the following optimization model: 

(9) Minimize fi = M S E  
Minimize fi = mas(gs ,S )  

At the end of the run, we consider the following a poste- 
riori articulation of preferences applied to the last pop- 
ulation to obtain the final compromise solution: 

1. Identify the set X' = {z;, . . . , z;} of non-domina- 
ted solutions according to: 

Minimize fi = M S E  

Minimize f3 = M 

2. Choose from X' the most accurate solution s:; re- 
move x; from x'; 

3. If solution xi is not accurate enough or there is no 
solution in the set X' then STOP (no solution sat- 
isfies); 

4. If solution x; is not transparent or compact enough 
then go to step 2; 

5. Show the solution xi' as output. 

Minimize fi = S (10) 

Computer aided inspection shown in Figure 1 can help 
in decisions for steps 2 and 3. 

6. Experiments and results 

In this section, the multi-objective EA is applied to the 
identification of a fuzzy model for the preswre dynam- 
ics of a laboratory fed-batch fermentor. With a constant 
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input air flow-rate, the pressure in the fermentor tank 
(variable y) is controlled by the opening of the outlet 
valve (variable U). B a d  on simplified assumptions, 
a first-principle physical model can be derived for this 
process. The setting of the outlet valve results in a cer- 
tain transient behavior of the pressure, which can be de- 
scribed by a first-order nonlinear differential equation. 
As shown in [22], a fuzzy linear model provides a sim- 
ple and elegant solution to the problem. In this way, the 
process can be represented by means of a TS rule set of 
the following form: 

Lfy(k) is Ai and u(k) is Bi then 
y(k + 1) = ~jy(k) + b;u(k) + q, i = 1,. . . , M. 

This rule baqe represents a nonlinear first-order regres- 
sion model y(k + 1) = f ( y ( k ) ,  u (k) ) ,  where y(k) and 
~ ( k )  are the pressure and the valve position at time 
k, respectively. The membership functions of the an- 
tecedent Ai and Bi, as well as the consequent param- 
eters ai, bi and ci are estimated from the data by the 
proposed multi-objective EA, by using the optimization 
model (9) (9s = 0.3, mu2 = 5 )  and the proposed a 
posteriori decision strategy. 

The following values for the parameters of the EA were 
used in the simulations: population size 100, crossover 
probability 0.8, mutation probability 0.4, number of 
children for the preselection scheme 10, minimum num- 
ber of individuals for each number of rules minNS = 
5, and maximum number of individuals for each num- 
ber of rules mazNS = 20. All crossover and mutation 
operators are applied with the same probability. The EA 
stops when the solutions satisfy the decisor maker. 

We compared our results, with those obtained by the 
two different approaches proposed in 1211 and [41. So- 
lution in [21] is obtained by means of hyperplanar fuzzy 
clustering (Gustafson-Kessel’s algorithm [9]) with pro- 
jections of the fuzzy clusters in each domain and mak- 
ing the extensional hull of the fuzzy sets obtained to ap- 
proximate them by trapezoidal fuzzy sets. The obtained 
solution is transparent and compact, containing 3 rules 
and 6 fuzzy sets with mean squared error 4.516 . loW4. 
In [41, in order to obtain the coeficient of the linear con- 
sequent using the recursive least-squares algorithm (or 
a stationary Kalman Filter), the grade of membership of 
the data to the antecedent of the fuzzy rules is consid- 
ered using directly the grade of membership of the data 
to the fuzzy clusters found in product space of input- 
output variables. Moreover as in this kind of model 
we are searching for local linear models presents in the 
data, a modification we have adopt is not to use only 
a Fuzzy C-Means algorithm, but as an inicialization to 
a Gustafson-Kcssel fuzzy clustering algorithm. In this 
way, this algorithm is adequate to detect the fuzzy par- 
titions that better fulfill the assumption of fuzzy linear 

No. rules No. fuzzy sets MSE S 
1 1 9.989.10-4 0.0 
2 4 4.845.10-~ 0.235 
3 5 2.778 0.248 
4 6 2.470 0.232 
5 7 2.306. 0.232 

Table 1 .  Non-dominated solutions according 
t o  (IO) obtained with the multi-objective EA. 

models. The obtained solution is compact but non trans- 
parent, containing 4 rules and 4 n-dimensional fuzzy 
sets, with mean squared error 6.4 - Solution in this 
paper is obtained with a single multi-objective EA and it 
has been chosen among different alternatives, which is 
an advantage for an appropriate decision process. Non- 
dominated solutions according to (10) are summarized 
in Table 1, with an indication of the number of rules, 
number of different fuzzy sets, obtained MSE for train- 
ing data and similarity S of the fuzzy sets. The accu- 
rate, transparent and compact solution with 2 rules, 4 
different fuzzy sets, mean squared error 4.845 . loe5 
and similarity 0.235 is finally chosen with the proposed 
a posteriori articulation of preferences, This solution is 
showed in Figure 1 by means of different graphics for 
the obtained model. Figure l(a) shows the local model, 
the surface generated by the model is shown in Figure 
l(b), fuzzy sets for each variable are showed in Figure 
l(c), and finally, the prediction error is showed in Figure 
l(d). 

7. Conclusions and future research 

This paper remarks *some initial results in the combina- 
tion of Pareto-baA multi-objective evolutionary algo- 
rithms and fuzzy modeling. Criteria such as accuracy, 
transparency and compactness have been taken into ac- 
count in the optimization process. Some of these cri- 
teria have been partially incorporated into the EA by 
means of ad hoc techniques, such as rule set simplifica- 
tion techniques. An implicit niche formation technique 
(preselection) in combination with other explicit tech- 
niques with low computational costs have been used to 
maintain diversity. These niche formation techniques 
are appropriate in fuzzy modeling if excessive amount 
of data are required. Excessive computational times 
would result if sharing function were used. Elitism is 
also implemented by means of the preselection tech- 
nique. A goal based approach haq been proposed to help 
to obtain more accurate fuzzy models. Results obtained 
are good in comparison with other more complex tech- 
niques reported in literature, with the advantage that the 
proposed technique identifies a set of alternative solu- 
tions. We also proposed an easy decision process with a 
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posteriori articulation of preferences to choose finally a 
compromise solution. 

One of the main differences between the proposed EA 
and other approaches for fuzzy modeling is the reduced 
complexity because we use a single EA for gerrerat- 
ing, tuning and simplification processes. Moreover, hu- 
man intervention is only required at the end of the run 
to choose one of the multiple non-dominated solutions 
found by the EA. 

In our future works we will consider other and more 
complex fuzzy modeling test problems in order to check 
the robusmess of the EA, other measures to optimize 
transparency, e.g., similarity in the consequent domain 
instead or together with of the antecedent domain, scala- 
bility of the algorithm, and applications in the real word 
by means of research projects. 
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Figure 1.  Accurate, transparent and compact 
fizzy models for the preessure dynamics of a 
laboratory fed-batch fermentor. 
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