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Abstract: 10 
In this paper we propose a multi-objective, mixed integer linear programming model to design and 11 
manage the supply chain for biofuels. This model captures the trade-offs that exist between costs, 12 
environmental and social impacts of delivering biofuels. The in-bound supply chain for biofuel plants 13 
relies on a hub-and-spoke structure which optimizes transportation costs of biomass. The model proposed 14 
optimizes the CO2 emissions due to transportation-related activities in the supply chain. The model also 15 
optimizes the social impact of biofuels. The social impacts are evaluated by the number of jobs created. 16 
The multi-objective optimization model is solved using an augmented 𝜖𝜖-constraint method. The method 17 
provides a set of Pareto optimal solutions. We develop a case study using data from the Midwest region 18 
of the USA. The numerical analyses estimates the quantity and cost of cellulosic ethanol delivered under 19 
different scenarios generated. The insights we provide will help policy makers design policies which 20 
encourage and support renewable energy production.      21 
 22 
Key Word: Multi-objective optimization, Hub-and-spoke supply chain, Densified biomass, Augmented 23 𝜖𝜖-constraint method, Rail transportation  24 

 Introduction 1.25 

Fossil fuels, such as oil, coal and natural gas currently represent the prime energy sources in the 26 

world. However, an increasing energy demand, coupled with increasing concerns over the environmental 27 

impact of fossil fuel consumption, have resulted in an increased interest in renewable energy. Some of the 28 

major sources of renewable energy are biomass, solar, and wind. The United States Department of Energy 29 

(2006) has identified biofuels as one of the future powers sources in the USA that will reduce nation’s 30 

dependency on fossil fuels, thereby having a positive impact on the economy, environment, and society. 31 

A variety of biomass feedstocks are presently used to produce biofuel and electricity. According to EIA, 32 

biomass contributes nearly 3.9 quadrillion British thermal units (BTU) and accounts for more than 4% of 33 

total U.S. primary energy consumption (EIA, 2010). Over the last 30 years, the share of biomass in the 34 

total primary energy consumption has averaged less than 3.5% (EIA, 2010). The Energy Independence 35 

and Security Act of 2007 (EISA, 2007) set the Renewable Fuels Standard (RFS) in order to increase the 36 

share of biomass in the total energy production. RFS calls for an increase of cellulosic biofuel production 37 

to 16 billion gallons a year (BGY) by 2022 (USDA, 2008; Biomass Program Multi-Year Program Plan, 38 



2010). The proposed 2014 production volume for cellulosic biofuel is 17 million gallons a year (MGY), 39 

and the proposed range is 8 – 30 MGY (EPA, 2014). Due to policies, such as RFS, it is expected that the 40 

share of biomass in the total renewable energy production will increase in the near future.  41 

 42 

 43 

Figure 1: Increasing growth of biofuels consumption (US DOE, 2010)    44 

Figure 1 presents the expected biofuels production for the period 2011 to 2040. The figure indicates 45 

that the production of cellulosic ethanol is expected to increase and will become a major contributor in 46 

meeting the RFS requirements. Consequently, the number of biofuel plants which produce cellulosic 47 

ethanol is expected to increase in the near future. These plants will need tools to aid their supply chain 48 

design and management decisions, such as, facility location, transportation mode selection, capacity 49 

expansion decisions, etc. One of the main contributions of this paper is the proposed optimization model 50 

which captures product and supply chain characteristics which are specific to biofuel industry. For 51 

example, a number of studies indicate that in order to reduce biomass transportation costs and make 2nd 52 

generation biofuels cost-competitive, we have to invest on large-capacity plants which gain from 53 

economies of scale in production (Hess et al., 2009). Large capacity plants would rely in a larger number 54 

of farms, most of which would be located further away. To decrease transportation costs plants would rely 55 

in using rail and barge for transportation. Additionally, biomass would be processed at the farm prior to 56 

delivery to increases its bulk density, and be transformed into a stable, dense, and flowable commodity, 57 

easier to load and unload, and cheaper to transport. These facts imply that the best design for the in-bound 58 

distribution network design is a hub-and-spoke network structure, which is indeed reflected in this model.     59 

The main objective of many models developed and analyzed in the area of supply chain 60 

optimization, logistics management and transportation systems analysis has been minimizing costs. This 61 

is also the case with the literature related to biofuel supply chains. Most recently, there has been growing 62 

interest to incorporate environmental and social objectives to biomass supply chain models. This trend 63 



makes sense since this is a new industry, thus, there is an opportunity here to do things right from the very 64 

beginning. Another contribution of this paper is providing a model that captures the environmental 65 

impacts of biofuels by estimating CO2 emission due to transportation, biorefinery location, and 66 

biorefinery operations. The model also captures the social impacts of biofuels by estimating the number 67 

of jobs created due to biomass production, preprocessing, transportation, and biorefinery operating.  68 

Other papers in the literature use multi-objective optimization models to capture the economic, 69 

environmental, and social impacts of biofuels (You’s et al., 2012). Different from the literature, this paper 70 

focusses on large-scale, regional biofuel supply chains. Thus, the model captures problem characteristics 71 

which become evident when you analyze large-scale supply chains. For example, based on current 72 

practices, the use of unit train to deliver biomass becomes cost competitive when transportation distances 73 

are longer than 100miles (Gonzales et al. 2013). The model we propose captures important details about 74 

rail transportation, such as, existing rail network structure and available capacities, non-linear railway cost 75 

function, and hub location costs. As a result, the model we propose can help policy makers evaluate the 76 

impacts of policies implemented at the Federal level. For example, the US Billion Ton Study led by the 77 

Oak Ridge National Laboratory indicates that there is enough biomass in the U.S. to meet the RFS goals 78 

set by EPA. The question is whether biomass can be collected and delivered to biofuel plants in a cost 79 

competitive manner. Studies like our can be used to evaluate the potential of meeting the RFS goals at the 80 

national level.    81 

A contribution of this paper is the development of a case study which was developed using a 82 

number of reliable data sources (see Section 5). Thus, the results from the numerical analysis are very 83 

insightful. The results provide estimates of the delivery cost of cellulosic ethanol, unit emissions due to 84 

supply chain activities, and the number of new jobs created in this industry. The relationships revealed 85 

provide insights which help policy makers design policies that support renewable energy production.     86 

Finally, the mathematical model we propose is a challenging multi-objective linear mixed integer 87 

programming (MILP) model. We used an augmented 𝜖𝜖-constraint method to solve this multi-objective 88 

problem and generate a set of Pareto optimal solutions. We use lexicographic optimization to obtain the 89 

ranges of 𝜀𝜀1 and 𝜀𝜀2. Doing this provides us with better estimates of the Pareto frontiers.  90 

 Relevant literature 2.91 

The model we propose is on-line with the following streams of research in the area of supply chain: 92 

biomass supply chain and logistics management, transportation cost analysis, hub-and-spoke network 93 

design problem, and multi-objective optimization. Next we provide a summary of these streams of 94 

research and identify our contributions.  95 



The biomass supply chain optimization literature presents a number of deterministic and stochastic 96 

models. The deterministic models are extensions of the facility location model. These models are used to 97 

identify biorefinery sittings (Ekşioğlu et al., 2009; Parker et al., 210; Bai et al., 2011; Kim et al., 2011a; 98 

Papapostolou et al., 2011; Roni et al., 2014a; Marufuzzaman et al., 2014). Some deterministic models are 99 

used to identify the number, capacity and location of biofuel plants in order to make use of the available 100 

biomass in a particular region in a cost efficient manner. The stochastic research on biomass supply 101 

chains uses extensions of the two-stage, location-transportation stochastic programming model to identify 102 

biorefinery sittings (such as, Cundiff et al., 1997; Huang et al., 2010; Kim et al., 2011b; Chen and Fan, 103 

2012; Gebreslassie et al., 2012).         104 

The literature on biomass transportation cost analysis is focused on estimating truck; rail and barge 105 

transportation costs (Gonzales et al., 2013; Roni et al., 2014b). A study by Mahmudi and Flynn (2006) 106 

investigate biomass transportation by rail. A study by Ekşioğlu et al. (2011) investigate rail and barge 107 

transportation costs for biomass. Other works related to biomass logistics costs analysis are the ones by 108 

Kumar et al., 2007; Sokhansonj et al., 2006; Jacobson et al., 2014; Ren et al., 2015. 109 

The hub-and-spoke design problem is conventionally called the hub location problem (Campbell, 110 

2012). A number of extensions of the hub location problem are found in the literature. These extensions 111 

are proposed in order to capture issues that arise when managing this supply chain, such as, non-linear 112 

economies of scale, traffic management, transportation mode selection, and congestion. The existing 113 

literature can be divided into two major groups, the single hub (SH) and the multiple hubs (MH) location 114 

problem. In a SH location model, the routing of the flow to/from a non-hub node is done through the hub. 115 

In a MH setting, the routing of the flow to/from a non-hub node is done through multiple hubs. Thus, 116 

flow initiated from a non-hub node traverses a number of hubs before reaching its final destination. 117 

Mixed integer programs (MIP) are used to model the problem to represent the fixed hub location costs, 118 

and nodes-to-hub allocations (Skorin-Kapov et al., 1996; Campbell, 2012). Due to computational 119 

challenges faced when solving these large sized MIP models, a number of different heuristic approaches 120 

have been design to solve the problems. For example, Chen (2007) developed a hybrid Simulated 121 

Annealing heuristics, Silva and Cunga (2009) developed a number of Tabu Search heuristics, Cunha and 122 

Silva (2007) developed a hybrid Genetic Algorithm and Simulated Annealing-based heuristics, Camargo 123 

et al. (2008) present a Benders Decomposition-based solution approach and Labbe and Yaman (2004) 124 

propose a Lagrangean Relaxation-based approach. For an extensive review of this problem see Alumur 125 

and Kara (2008), Tunc et al. (2011).   126 

A limited number of papers in the literature propose multi-objective optimization models for the 127 

biofuel supply chain design and management. For example, Zamboni et al. (2009) present a MILP model 128 

that simultaneously minimizes the supply chain operating costs and GHG emissions due to supply chain 129 



activities. Perimenis et al. (2011) provide a decision support tool to evaluate biofuel production pathways. 130 

This tool integrates technical, economic, environmental and social aspects along the entire value chain of 131 

biofuels starting from biomass production to biofuel end-use. Mele et al. (2009) address the problem of 132 

optimizing the supply chains for bioethanol and sugar production. Their bi-criteria MILP model addresses 133 

economic and environmental concerns. The model minimizes the total cost of managing the supply chain 134 

network, and minimizes the environmental impact over the entire product life cycle. El-Halwagi et al. 135 

(2013) incorporate safety concerns into the biorefinery location selection and capacity management 136 

problem. They establish tradeoffs between costs and safety issues using Pareto curves. You and Wang 137 

(2011) study the optimal design and planning of biomass-to-liquids (BTL) supply chains under economic 138 

and environmental criteria. You et al. (2012) address the optimal design and planning of cellulosic 139 

ethanol supply chains under economic, environmental, and social objectives.  140 

Multi-objective integer linear programs have been solved using exact and heuristics solution 141 

approaches. An exact algorithm identifies the whole set of non-dominated solutions for the problem. 142 

Heuristics approximate, identify bounds for the set of non-dominated solutions. For example, Abounacer 143 

et al. (2014) propose an 𝜀𝜀-constraint method to generate an exact Pareto frontier of a complex three 144 

objective location-transportation problem. The following is a list of exact methods. Zhang and Reimann 145 

(2013) provide a simple augmented 𝜀𝜀-constraint method to generate all non-dominated solutions for a 146 

multi-objective integer programming problem. Kirlik and Sayın (2014) propose an algorithm to generate 147 

all non-dominated solutions for multi-objective discrete optimization problems with any number of 148 

objective functions. Jozefowiez et al. (2012) provide a generic branch-and-cut algorithm. Mavrotas 149 

(2009) and Mavrotas and Florios (2013) propose enhancements of the augmented 𝜀𝜀-constraint method. 150 

The non-exact methods use metaheuristics (Yuan and Wang, 2009; Laumanns et al., 2006), 151 

approximations (see Köksalan and Lokman, 2009), greedy search algorithms (Özdamar  and Wei, 2008; 152 

Chang et al., 2014), goal programming (Vitoriano  et al., 2011; Li et al. 2012), and fuzzy multi-objective 153 

programming (Sheu, 2010) in order to find non-dominated solutions.  154 

The work by You et al. (2012) is closely related our study. Different from You et al. (2012) who 155 

focus on analyzing the state of Illinois, this work focusses on large-scale (region-based) supply chain 156 

modeling and captures problem characteristics which become evident when one analyzes large-scale 157 

supply chains. Our modeling approach and solution methodology are substantially different.   158 

 Problem Description and Formulation  3.159 

3.1 Supply Chain Structure for Biofuel Delivery  160 

The proposed structure of the supply chain follows the Advanced Supply System concept proposed by the 161 

Idaho National Laboratory (INL) (2014). This system uses preprocessing of biomass to mitigate density 162 



and stability issues that prevent biomass from being handled in high-efficiency bulk dry solid or liquid 163 

distribution systems. Advanced supply system relies on densifying biomass at local preprocessing 164 

facilities before delivering to a biorefinery and before long distance transportation.  165 

Figure 2 presents a supply chain consisting of four local preprocessing facilities, two depots, one 166 

biofuel plant, one terminal for biofuel blending and storage, and two customers. Preprocessing facilities 167 

are located at farms. These facilities deliver biomass to depots through truck shipments. If a preprocessing 168 

facility is located within 75 miles of a biofuel plant, it is assumed that the facility has the option of 169 

shipping directly to the biofuel plant bypassing the depots. This assumption is supported by studies that 170 

find truck transportation of biomass is not cost efficient beyond 50 miles (Brower, 2010). This 171 

transportation option is not made available to facilities located further away from a plant in order to 172 

reduce the problem size.    173 

Depots are rail ramps (or ports) where truck shipments of biomass are consolidated. High-174 

volume, long-haul shipments are delivered from depots to biofuel plants by rail (or barge). It is expected 175 

that a biofuel plant will have railway access to handle the large amount of biomass required to operate at 176 

high capacity. Thus, depots represent the first hubs and biofuel plants represent the second hubs in this 177 

supply chain. The final product, cellulosic ethanol, is shipped to a bulk terminal or a redistribution bulk 178 

terminal from where it is then delivered to customers. Bulk terminals are typically blending facilities 179 

where cellulosic ethanol is stored until it is blended with gasoline. Depending on the volume shipped and 180 

transportation distance either truck or rail is used for cellulosic ethanol delivery. Typically, rail is used for 181 

distances longer than 75 miles. From the bulk terminal, shipments of cellulosic ethanol are delivered by 182 

truck and in smaller quantities to gas stations.  183 

 184 

Prep. 
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Figure 2: Supply chain network structure. 185 

3.2 Model Formulation 186 

We propose a mixed integer linear program (MILP) to model this supply chain design and 187 

management problem. This model is an extension of the facility location model since it identifies 188 

locations for depots, and biofuel plants based on information about investment costs, transportation costs, 189 

etc. Let 𝐺𝐺(𝑁𝑁,𝐴𝐴) denote the supply chain network, where, 𝑁𝑁 represents the set of nodes and A represents 190 

the set of arcs. Set N consists of subset P which represents the set of preprocessing facilities, subset D 191 

which represents the set of depot, subset B which represents the set of potential biofuel plant locations, 192 

subset L which represents set of bulk terminal locations and subset C which represents set of customers. 193 

Set A consists of subset T1 which represents the set of arcs that connect preprocessing facilities to depot, 194 

T2 which represents the set of arcs that connect preprocessing facilities to biofuel plant, subset T3 which 195 

represents the set of arcs that connect biofuel plant to the bulk terminal, subset T4 which represents the set 196 

of arcs that connect bulk terminal to the customer, subset R1 which represents the set of arcs that connect 197 

depots to biofuel plants and subset R2 which represents the set of arcs that connect biofuel plants to the 198 

bulk terminals. Let  𝑇𝑇 = {𝑇𝑇1⋃𝑇𝑇2 ∪ 𝑇𝑇3 ∪ 𝑇𝑇4} and  𝑅𝑅 = {𝑅𝑅1 ∪ 𝑅𝑅2} . The transportation mode used along 199 

arcs in 𝑇𝑇 and 𝑅𝑅 are truck and rail respectively. 200 

Cost Objective: 201 

The costs along arcs in T are linear, and there are no upper bounds on the amount shipped using 202 

these arcs. For truck transportation, we consider that a fixed cost (𝜃𝜃𝑇𝑇) occurs per mile and per ton shipped 203 

due to fuel consumption. Additionally, a fixed cost (ϑ𝑇𝑇) occurs per ton loaded/unloaded in the truck. Let 204 𝑑𝑑𝑖𝑖𝑖𝑖 denote the distance traveled along arc (i, j) ∈ T, then, transportation cost per ton shipped along this arc 205 

are equal to 𝑐𝑐𝑖𝑖𝑖𝑖 =  ϑ𝑇𝑇 + 𝜃𝜃𝑇𝑇 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖. Let 𝑋𝑋𝑖𝑖𝑖𝑖 be the amount shipped along arc (i, j), then the total 206 

transportation cost along this arc is 𝑓𝑓�𝑋𝑋𝑖𝑖𝑖𝑖� = 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 (Searcy et al., 2007). 207 

Total transportation cost along an arc in R is of a multiple-setup structure as described by Equation 208 

(1). In this equation, 𝛹𝛹𝑖𝑖𝑖𝑖  is the fixed cost for loading/unloading a unit train, 𝑐𝑐𝑖𝑖𝑖𝑖 is the unit 209 

transportation cost per ton shipped along (i, j), 𝑣𝑣𝑖𝑖𝑖𝑖 is the capacity of a unit train (i, j), and n is the 210 

number of unit trains used (Roni, 2014b).  211 

 𝑓𝑓�𝑋𝑋𝑖𝑖𝑖𝑖� =  ⎩⎪⎨
⎪⎧ 0                                𝑖𝑖𝑓𝑓       𝑋𝑋𝑖𝑖𝑖𝑖 = 0Ψ𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖                      𝑖𝑖𝑓𝑓       0 < 𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖𝑖𝑖

2 ∗ Ψ𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖                         𝑖𝑖𝑓𝑓       𝑣𝑣𝑖𝑖𝑖𝑖 <  𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 2 ∗ 𝑣𝑣𝑖𝑖𝑖𝑖⋮
n ∗ Ψ𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖          𝑖𝑖𝑓𝑓   (𝑛𝑛 − 1) ∗ 𝑣𝑣𝑖𝑖𝑖𝑖 <  𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛 ∗ 𝑣𝑣𝑖𝑖𝑖𝑖     (1) 212 



Equation (1) presents a piecewise linear cost function. In order to incorporate this function within 213 

the objective function of the MILP model presented below, we introduce integer variables 𝑍𝑍𝑖𝑖𝑖𝑖. These 214 

variables represent the number of unit trains moving along arc (i, j). Thus, 𝑓𝑓𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖� = Ψ𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖. 215 

Total transportation costs in this supply chain are: 216 

                                     TRC = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 +(𝑖𝑖,𝑖𝑖)∈𝑇𝑇 ∑ (𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 +𝛹𝛹𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖)(𝑖𝑖,𝑖𝑖)∈𝑅𝑅                                            (2) 217 

Hub location costs represent the investment costs necessary to build the infrastructure in support of 218 

loading/unloading unit trains at a depot. Let 𝑊𝑊𝑖𝑖 be a binary variable which takes the value 1 when node 219 𝑖𝑖 ∈ 𝐷𝐷 is used as a depot, and takes the value 0 otherwise. Let 𝜍𝜍𝑖𝑖 be the fixed investment cost at node 220 𝑖𝑖 ∈ 𝐷𝐷. Total hub location costs are HC = ∑ 𝜍𝜍𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖∈𝐷𝐷 . Let 𝜚𝜚𝑖𝑖𝑖𝑖 be the fixed investment costs to build a 221 

biofuel plant of capacity k (𝑘𝑘 ∈ 𝐾𝐾) at node 𝑖𝑖 ∈ 𝐵𝐵. Let β𝑖𝑖𝑖𝑖 be a binary variable which takes the value 1 if 222 

node 𝑖𝑖 is selected as biofuel plant location, and takes the value 0 otherwise. Total biofuel plant location 223 

costs are BC = ∑ ∑ 𝜚𝜚𝑖𝑖𝑖𝑖β𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  .  224 

In this formulation we consider that the system is penalized for not meeting demand. Let  𝜋𝜋𝑖𝑖 225 

represent demand shortage and let 𝛼𝛼𝑖𝑖 represent the corresponding penalty cost at customer i. Then, 226 

expression ∑ 𝛼𝛼𝑖𝑖𝑖𝑖∈𝐶𝐶 Π𝑖𝑖 represents the penalty for not meeting demand.  227 

The cost objective function minimizes the total of transportation cost, hub location costs, and a 228 

penalty costs for unmet demand, and it is defined as follows: 229 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚: TC = � 𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 +
(𝑖𝑖,𝑖𝑖)∈𝑇𝑇 � �𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛹𝛹𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖�

(𝑖𝑖,𝑖𝑖)∈𝑅𝑅1 +� �𝑐𝑐𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + λ𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖�
(𝑖𝑖,𝑖𝑖)∈𝑅𝑅2

+ � 𝜍𝜍𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖∈𝐷𝐷   + � � 𝜚𝜚𝑖𝑖𝑖𝑖β𝑖𝑖𝑖𝑖𝑖𝑖∈𝑖𝑖𝑖𝑖∈𝑖𝑖 + �𝛼𝛼𝑖𝑖𝑖𝑖∈𝐶𝐶 Π𝑖𝑖 
Environmental Objective 230 

The model captures CO2 emissions which result from fuel combustion due to transportation in the 231 

supply chain. The model also captures CO2 emissions due to constructing and operating biofuel plants, 232 

and operating the hubs. We consider that the emission function is linear with respect to quantities shipped 233 

and quantities processed in facilities (Argo et al., 2013). Let 𝑚𝑚𝑖𝑖𝑖𝑖 represent CO2 emission per ton per mile 234 

shipped along arc (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴. Let 𝜖𝜖𝑖𝑖𝑖𝑖  represents CO2 emission per ton processed at the biofuel plant located 235 

in 𝑖𝑖 ∈ 𝐵𝐵. Let 𝜇𝜇𝑖𝑖 represents CO2 emission for establishing a hub in 𝑖𝑖 ∈ 𝐷𝐷. The following environmental 236 

objective minimizes total emissions in the supply chain. 237 

 𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚: 𝑇𝑇𝑇𝑇 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝑇𝑇,𝑅𝑅 + ∑ 𝜇𝜇𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖∈𝐷𝐷 + ∑ ∑ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐷𝐷 β𝑖𝑖𝑖𝑖𝑖𝑖∈𝑘𝑘              (3) 238 

 239 



Social Objective 240 

The social benefits of this supply chain are measured by the number of accrued local jobs. Jobs are 241 

created to support biomass and biofuel transportation, biofuel plant construction and operation and hub 242 

operation. The number of transportation jobs created is linear and depends on the transportation distance, 243 

and quantity shipped.  The number of job created due to biofuel plant construction and operation depends 244 

on the production capacity of the plant. The number of jobs created due to hub operation is fixed (NREL, 245 

2013). Let 𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇  represent the number of transportation jobs created, let 𝑝𝑝𝑖𝑖𝐷𝐷 represent the number of job 246 

created due to hub operations, and let 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖  represent the number of job created due to construction and 247 

support operations of biofuel plant i. Then, the social objective function is defined as follows: 248 

max𝑆𝑆𝐵𝐵 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖𝑖𝑖 +(𝑖𝑖,𝑖𝑖)∈𝑇𝑇 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇𝑍𝑍𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝑅𝑅1
+ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇𝑌𝑌𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝑅𝑅2

+ ∑ 𝑝𝑝𝑖𝑖𝐷𝐷𝑊𝑊𝑖𝑖𝑖𝑖∈𝐷𝐷 + ∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐷𝐷 β𝑖𝑖𝑖𝑖𝑖𝑖∈𝑘𝑘      (4) 249 

 250 

The MILP Model   251 
 252 

Table A.1 in Appendix A summarizes the parameters, and decision variables declared in this model. Next, 253 

we present the multi-objective MILP problem formulation. We refer to this as formulation (P).   254 𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚: (𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π),𝑇𝑇𝑇𝑇(𝑋𝑋,β,𝑊𝑊,Π)) 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚: (𝑆𝑆𝐵𝐵(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π)) 

Subject to: 

(P) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐷𝐷⋃𝑖𝑖 ≤  𝑠𝑠𝑖𝑖                                       ∀ 𝑖𝑖 ∈ 𝑃𝑃 (5) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑃𝑃 −�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑖𝑖 = 0                             ∀ 𝑖𝑖 ∈ 𝐷𝐷 (6) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑃𝑃𝑃𝑃𝐷𝐷 −�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐿𝐿 = 0                         ∀ 𝑖𝑖 ∈ 𝐵𝐵 (7) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑖𝑖 −�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶 = 0                             ∀ 𝑖𝑖 ∈ 𝐿𝐿 (8) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐿𝐿 + Π𝑖𝑖 = 𝑔𝑔𝑖𝑖                                    ∀ 𝑖𝑖 ∈ 𝑇𝑇 (9) 

𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖 ≤ 0                                     ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅1 (10) 

 𝑋𝑋𝑖𝑖𝑖𝑖 −   𝜏𝜏𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 0                                  ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅2 (11) �𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑃𝑃 − 𝑢𝑢𝑖𝑖𝑊𝑊𝑖𝑖 ≤ 0                                ∀ 𝑖𝑖 ∈ 𝐷𝐷 (12) 
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 257 

 258 

 259 

 260 

 261 

 262 

Constrai263 

nts (5) indicate 264 

that the amount of biomass shipped from a preprocessing facility is limited by its availability. Constraints 265 

(6)-(8) are the flow balance constraints at depots, biofuel plants, and bulk terminals respectively. 266 

Constraints (9) indicate that customer demand could be satisfied through shipments from terminals or the 267 

market. These equations also measure demand shortage. Constraints (10) and (11) set an upper limit on 268 

the amount of biomass shipped using rail cars. Constraints (12) set a limit on the storage capacity of a 269 

hub. Constraints (13) set a limit on the capacity of a biorefinery. Constraints (14) set a limit on the 270 

number of biofuel plants at a particular location. Constraints (15) and (16) are the non-negativity 271 

constraints. Constraints (17) and (18) are binary constraints. Constraints (19) and (20) are the integrity 272 

constraints. 273 

 Solution Approach 4.274 

In this section we describe the approach used in order to generate the set of Pareto optimal solution 275 

for our MILP problem. The set of Pareto optimal solutions is also known as the set of efficient, non-276 

dominated, non-inferior solutions. These are solutions for which we cannot improve the value of one of 277 

the functions without deteriorating the performance of the rest of the objective functions. The two main 278 

approaches used in the literature to solve a multi objective problem are the weighted sum method and the 279 

ε- constraint method. Works (Mavrotas, 2009; Steuer, 1986; Miettinen, 1998) point out that the ε -280 

constraint method is advantageous over the weighting sum method. This is mainly due to the fact that the 281 

ε-constrained method is computationally efficient. The ε- constraint method optimizes one of the 282 

objective functions. The remaining objectives are incorporated in the constraint set as shown below. We 283 

refer to this as formulation (Q).   284 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑃𝑃⋃𝐷𝐷 −�𝑞𝑞𝑖𝑖𝑖𝑖β𝑖𝑖𝑖𝑖𝑖𝑖∈𝑘𝑘 ≤ 0                ∀ 𝑖𝑖 ∈ 𝐵𝐵 (13) 

�β𝑖𝑖𝑖𝑖𝑖𝑖∈𝑘𝑘 ≤ 1                                             ∀ 𝑖𝑖 ∈ 𝐵𝐵 (14) 

𝑋𝑋𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛                                                  ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 (15) 𝜋𝜋𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛                                                    ∀ 𝑖𝑖 ∈ 𝑇𝑇 (16) 𝑊𝑊𝑖𝑖 ∈ {0,1},                                              ∀ 𝑖𝑖 ∈ 𝐷𝐷 (17) β𝑖𝑖𝑖𝑖 ∈ {0,1},                                             ∀ 𝑖𝑖 ∈ 𝐵𝐵,𝑘𝑘 ∈ 𝐾𝐾 (18) 𝑍𝑍𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍+                                                  ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅1  (19) 𝑌𝑌𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍+                                                  ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅2 (20) 

min𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π)      (Q) 

            Subject to:                      (5)-(20) 
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 286 

 287 

 288 

 289 

The values of 𝜀𝜀1 and 𝜀𝜀2 are bounds set on the value of the environmental and social benefit 290 

objectives. Traditionally, the ε- constraint method requires identifying upper and lower bounds – in other 291 

words, defining a range - for each objective incorporated in the constraint set. Calculating these ranges for 292 

TE and SB is not a trivial task (Isermann and Steuer, 1987; Reeves and Reid, 1988; Steuer, 1997). 293 

Moreover, the optimal solution of formulation (Q) is guaranteed to be an efficient solution for (P) only if 294 

both constraints (21) and (22) are binding (Miettinen, 1998; Ehrgott and Wiecek, 2005). Otherwise, there 295 

is an alternative optimal solution to this problem, and the solution obtained from solving formulation (Q) 296 

is not efficient. Such a solution is a weakly efficient solution. 297 

In this paper we apply a novel version of ε- constraint method known as the augmented ε- 298 

constraint method (Mavrotas and Florios, 2013; Mavrotas, 2009) in order to find the Pareto optimal 299 

solutions. In this method the ranges of 𝜀𝜀1 and 𝜀𝜀2 are calculated using the Lexicographic optimization 300 

method. The efficiency of the solution found is guaranteed since the reformulated ε- constraint model 301 

uses appropriate slack or surplus variables.  302 

4.1 Lexicographic optimization to obtain the ranges of 𝜺𝜺𝟏𝟏 𝐚𝐚𝐚𝐚𝐚𝐚 𝜺𝜺𝟐𝟐 303 

The Lexicographic optimization method starts by ranking the objective functions based on their 304 

priority level. The function with highest priority makes the top of the list. In our problem, the total cost 305 

function has the highest priority, followed by the total emission and the social benefit functions. Next, 306 

based on the Lexicographic optimization method, we optimize the following 3 problems, and calculate 307 

corresponding objective function values. The 1st problem to optimize is:  𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚:  𝑇𝑇𝑇𝑇 s.t. (5)-(20). The 308 

solution to this problem is (𝑋𝑋∗,𝑍𝑍∗,𝑌𝑌∗,β∗,𝑊𝑊∗,Π∗),  and the corresponding objective function value is 309 𝒇𝒇𝟏𝟏𝟏𝟏 = 𝑇𝑇𝑇𝑇(𝑋𝑋∗,𝑍𝑍∗,𝑌𝑌∗,β∗,𝑊𝑊∗,Π∗). The solution found is then used to evaluate the objective function values 310 

for the total emission (𝒇𝒇𝟐𝟐𝟏𝟏) and the social benefit (𝒇𝒇𝟑𝟑𝟏𝟏) functions. The 2nd problem optimized is: 311 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚:𝑇𝑇𝑇𝑇 s.t (5)-(20) and the additional constraint 𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π) = 𝒇𝒇𝟏𝟏𝟏𝟏 +  𝛿𝛿1. Where 𝛿𝛿1 is a 312 

very small number. We increase the value of 𝛿𝛿1 from 0 to some small positive number in order to obtain a 313 

feasible solution to this problem. Adding this constraint guarantees that the new solution found optimizes 314 

TE while maintaining the value of the cost function (TC) at its lowest possible value. We denote this new 315 

solution by �𝑋𝑋�,𝑍𝑍�,𝑌𝑌� ,β� ,𝑊𝑊� ,Π��. The corresponding objective function value is  316 𝒇𝒇𝟐𝟐𝟐𝟐 = 𝑇𝑇𝑇𝑇(𝑋𝑋�,𝑍𝑍�,𝑌𝑌� , β� ,𝑊𝑊� ,Π�). The solution found is then used to calculate the objective function values for the 317 

            𝑇𝑇𝑇𝑇(𝑋𝑋,β,𝑊𝑊,Π) ≤  𝜀𝜀1            (21) 

            𝑆𝑆𝐵𝐵(𝑋𝑋,β, Z, Y,𝑊𝑊,Π) ≥ 𝜀𝜀2     (22) 



total cost function (𝒇𝒇𝟏𝟏𝟐𝟐) and the social benefit function (𝒇𝒇𝟑𝟑𝟐𝟐). Finally, the 3rd problem optimized is: 318 𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝐵𝐵(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π) s.t (5)-(20) and two additional constraints: 𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π) = 𝒇𝒇𝟏𝟏𝟐𝟐 +  𝛿𝛿1,   and  319 𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π) =  𝒇𝒇𝟐𝟐𝟐𝟐 −  𝛿𝛿2.  Where 𝛿𝛿2 is a very small positive number. We increase the values of 𝛿𝛿1 320 

and 𝛿𝛿2 from 0 to some small positive numbers to obtain a feasible solution to this problem. We denote 321 

this new solution by �𝑋𝑋�, �̿�𝑍,𝑌𝑌� , β� ,𝑊𝑊� ,Π��. The corresponding objective function value is 322 𝒇𝒇𝟑𝟑𝟑𝟑 = 𝑆𝑆𝐵𝐵�𝑋𝑋�, �̿�𝑍,𝑌𝑌� , β� ,𝑊𝑊� ,Π��. The solution found is then used to calculate the objective function values for the 323 

total cost function (𝒇𝒇𝟏𝟏𝟑𝟑) and the emission function (𝒇𝒇𝟐𝟐𝟑𝟑). At the end of implementing the Lexicographic 324 

optimization method we construct the payoff table shown in Table 1.  325 

Let 𝑠𝑠1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑀𝑀𝑀𝑀 (𝒇𝒇𝟐𝟐𝟏𝟏, 𝒇𝒇𝟐𝟐𝟐𝟐, 𝒇𝒇𝟐𝟐𝟑𝟑), 𝑠𝑠2𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑀𝑀𝑀𝑀 �𝒇𝒇𝟑𝟑𝟏𝟏, 𝒇𝒇𝟑𝟑𝟐𝟐, 𝒇𝒇𝟑𝟑𝟑𝟑�, 𝑠𝑠1min = 𝑚𝑚𝑖𝑖𝑛𝑛 (𝒇𝒇𝟐𝟐𝟏𝟏, 𝒇𝒇𝟐𝟐𝟐𝟐, 𝒇𝒇𝟐𝟐𝟑𝟑), 𝑠𝑠2min =326 𝑚𝑚𝑖𝑖𝑛𝑛 �𝒇𝒇𝟑𝟑𝟏𝟏, 𝒇𝒇𝟑𝟑𝟐𝟐, 𝒇𝒇𝟑𝟑𝟑𝟑�. We use these values to create a range for the values that 𝜀𝜀1 and 𝜀𝜀2 can take during the 327 

optimization.  We divide this interval into k equal subintervals in order to obtain good estimates on the 328 

values of 𝜀𝜀1 and 𝜀𝜀2. The benefit of using the Lexicographic optimization method is to identify a range of 329 

values that 𝜀𝜀1 and 𝜀𝜀2 can take. These values provide a dense representation of the efficient set.      330 

 331 

Table 1: Payoff table generated by Lexicographic optimization method 332 

Optimization  

Problems 

Objective function values for 

TC function TE function SB function 

Problem 1 

𝒎𝒎𝒎𝒎𝒎𝒎: 𝑇𝑇𝑇𝑇 𝑠𝑠. 𝑡𝑡𝑡𝑡. (5)-(20) 

Find: (𝑋𝑋∗,𝑍𝑍∗,𝑌𝑌∗, β∗,𝑊𝑊∗,Π∗) 𝒇𝒇𝟏𝟏𝟏𝟏 = 𝑇𝑇𝑇𝑇(𝑋𝑋∗,𝑍𝑍∗,𝑌𝑌∗, β∗,𝑊𝑊∗,Π∗) 

𝒇𝒇𝟐𝟐𝟏𝟏 =  𝑇𝑇𝑇𝑇(𝑋𝑋∗,𝑍𝑍∗,𝑌𝑌∗, β∗,𝑊𝑊∗,Π∗) 𝒇𝒇𝟑𝟑𝟏𝟏 = 𝑆𝑆𝐵𝐵(𝑋𝑋∗,𝑍𝑍∗,𝑌𝑌∗, β∗,𝑊𝑊∗,Π∗). 

Problem 2  𝒇𝒇𝟏𝟏𝟐𝟐 = 𝑇𝑇𝑇𝑇(𝑋𝑋�,𝑍𝑍�,𝑌𝑌� , β� ,𝑊𝑊� ,Π�) 

𝒎𝒎𝒎𝒎𝒎𝒎: 𝑇𝑇𝑇𝑇 𝑠𝑠. 𝑡𝑡𝑡𝑡. (5)-(20) 𝑇𝑇𝑇𝑇 = 𝒇𝒇𝟏𝟏𝟏𝟏 + 𝛿𝛿1. 

Find: �𝑋𝑋�,𝑍𝑍�,𝑌𝑌� , β� ,𝑊𝑊� ,Π�� 𝒇𝒇𝟐𝟐𝟐𝟐 = 𝑇𝑇𝑇𝑇(𝑋𝑋�,𝑍𝑍�,𝑌𝑌� , β� ,𝑊𝑊� ,Π�) 

𝒇𝒇𝟑𝟑𝟐𝟐 = 𝑆𝑆𝐵𝐵(𝑋𝑋�,𝑍𝑍�,𝑌𝑌� , β� ,𝑊𝑊� ,Π�). 



Problem 3 𝒇𝒇𝟏𝟏𝟑𝟑 = 𝑇𝑇𝑇𝑇(𝑋𝑋�, �̿�𝑍,𝑌𝑌� , β� ,𝑊𝑊� ,Π�) 𝒇𝒇𝟐𝟐𝟑𝟑 = 𝑇𝑇𝑇𝑇(𝑋𝑋�, �̿�𝑍,𝑌𝑌� , β� ,𝑊𝑊� ,Π�) 

𝒎𝒎𝒎𝒎𝒎𝒎: 𝑆𝑆𝐵𝐵 𝑠𝑠. 𝑡𝑡𝑡𝑡. (5)-(20) 𝑇𝑇𝑇𝑇 = 𝒇𝒇𝟏𝟏𝟐𝟐 +  𝛿𝛿1. 𝑇𝑇𝑇𝑇 =  𝒇𝒇22 + 𝛿𝛿2. 

Find: �𝑋𝑋�, �̿�𝑍,𝑌𝑌� , β� ,𝑊𝑊� ,Π�� 𝒇𝒇𝟑𝟑𝟑𝟑 = 𝑆𝑆𝐵𝐵(𝑋𝑋�, �̿�𝑍,𝑌𝑌� , β� ,𝑊𝑊� ,Π�) 

 333 

4.2 Reformulating the ε- constraint method with appropriate slack or surplus variable 334 

We overcome the problem of generating weakly efficient solutions when using the ε- constraint 335 

method by incorporating the appropriate slack or surplus variables in the constraint set and in the 336 

objective function.  Introducing these variables forces the algorithm to produce only efficient solutions. 337 

The new problem, which we call RMMILP is the following:    338 

min𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π) + 𝛿𝛿(𝑆𝑆1 + 𝑆𝑆2) 

              Subject to:                                     (5)-(20) 𝑇𝑇𝑇𝑇(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π) + 𝑆𝑆1 =  𝜀𝜀1            (23) 

SB(𝑋𝑋,𝑍𝑍,𝑌𝑌,β,𝑊𝑊,Π)− 𝑆𝑆2 = 𝜀𝜀2            (24) 𝑆𝑆1,𝑆𝑆1 ∈ 𝑅𝑅+                                           (25) 

 339 

In the objective function, 𝛿𝛿 is an adequately small number. Typically, 𝛿𝛿 takes values between 10^-340 
3and 10^-6. This reformulation of the ε- constraint method avoids the generation of weakly efficient 341 

solutions (Mavrotas, 2009). We are now ready to present the procedure we develop to solve our multi-342 

objective optimization problem using the augmented ε- constraint method. The procedure is shown in 343 

Figure 3. 344 

 345 

Step 1 Build the payoff table (Table 1) using the Lexicographic optimization method   

Calculate the range of values for 𝜀𝜀1 and 𝜀𝜀2 using the payoff table 

Set number of intervals to k and compute step size by ∆ 𝜀𝜀1 =
𝜀𝜀1𝑚𝑚𝑚𝑚𝑚𝑚−𝜀𝜀1𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 , ∆ 𝜀𝜀2 =

𝜀𝜀2𝑚𝑚𝑚𝑚𝑚𝑚−𝜀𝜀2𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  

 𝜀𝜀1 = 𝜀𝜀1𝑚𝑚𝑚𝑚𝑚𝑚 − ∆ 𝜀𝜀1 

Set the Pareto optimal set Λ =⊘ 

Step 2 For i = 0 to k  do 

       𝜀𝜀2 = 𝜀𝜀2𝑚𝑚𝑖𝑖𝑛𝑛 

  For j = 0  k  do 

       Update the values of 𝜀𝜀1 𝑀𝑀𝑛𝑛𝑑𝑑 𝜀𝜀2 in RMMILP   



       Solve RMMILP 
       If RMMILP feasible Then 

               Add solution to Λ 

       Else  

              Break 

       End If 

       𝜀𝜀2 = 𝜀𝜀2 + ∆ 𝜀𝜀2 
Next j 

        𝜀𝜀1 = 𝜀𝜀1 − ∆ 𝜀𝜀1 
Next i 

Figure 3: A procedure for the augmented ε- constraint method 346 

 Data Collection for the Case Study 5.347 

5.1 Biomass supply  348 

Biomass availability data at the county level was extracted from the Knowledge Discovery 349 

Framework (KDF) database (2012), an outcome of the US Billion Ton Study led by the Oak Ridge 350 

National Laboratory. This data was further processed by INL to identify potential locations for 351 

preprocessing facilities and the corresponding amount of densified biomass available. This paper 352 

considers the biomass available on the following nine states, some located in the Midwest and some in the 353 

West of USA. The selected states are: Iowa, Nebraska, Kansas, South Dakota, California, New Mexico, 354 

Nevada, and Arizona. We focus our analysis in these states because they have substantial amounts of 355 

biomass available for biofuel production (such as, Iowa, Nebraska, Kansas and South Dakota) or are 356 

major users of biofuel (such as, California). The total number of counties considered in this study is 602. 357 

The primary biomass sources considered in this study are agricultural residue originated from primary 358 

crop such as corn, wheat, sorghum, oats, and barley. 359 

5.2 Biofuel demand  360 

We estimate the demand for biofuel at the county level. In order to estimate demand we 361 

investigated the size of population and gasoline consumption in each county. The data about population 362 

size is collected from the 2010 US Census (2010). The data about gasoline consumption is obtained from 363 

the Energy Information Administration (EIA) (2013).   364 

5.3 Rail network data 365 

The data about the US railway network structure was provided by Oak Ridge National Laboratory 366 

(2009). This database consists of 80,486 rail links, and 36,393 unique origin and destination nodes. Of the 367 

36,393 nodes, only 20,686 are rail stations. The data set provides the following information for each rail 368 



link: origin, destination, length, ownership, terrain, number of main line tracks, main track authority 369 

(signal system), interval of passing sidings, speed limit, federal information processing standard state 370 

code (FIPS), and standard point location code (SPLC). Figure 4 summarizes the input data used. The 371 

figure lays out the distribution of available biomass and biofuel demand in the states we are investigating, 372 

and the corresponding rail network. Our model considers this network structure as given and does not 373 

suggest modifications to its structure.  374 

  375 

 376 

Figure 4. A summary of the input data 377 

5.4 Transportation cost 378 

Next we provide details about the structure of truck and rail transportation cost functions. Note that, we 379 

assume full-truck-load (FTL) shipments via truck or rail mainly because of the nature of the products 380 

delivered. Biofuel is a liquid and biomass is bulky, thus, we expect that a truck/rail car will be used for 381 

single-customer deliveries. To minimize the transportation costs, one would deliver FLT shipments.   382 

5.4.1. Truck 383 

In order to estimate the costs of biomass transportation using trucks we use data provided by Searcy 384 

et al. (2007). Searcy et al. (2007) provide two cost components, a distance variable cost (DVC) and a 385 

distance fixed cost (DFC). The distance variable cost includes fuel and labor costs. The distance fixed 386 

cost includes the cost of loading and unloading a truck. These costs were provided for different types of 387 

biomass, such as, woodchips, straw and stover. We used the data provided for woodchips since the 388 

physical properties of densified biomass are similar to woodchips. The DVC of woodchips is estimated 389 

$0.112/ton-mile and DFC is estimated $3.01/tons. Woodchips are shipped using truck with a capacity of 390 



40 tons. Truck transportation costs of biofuel are estimated based on Searcy et al. (2007). Biofuel 391 

transportation is evaluated based on a tandem tanker carrying 40 tons of ethanol. The DVC of ethanol is 392 

estimated $0.08/ton-mile and DFC is estimated $3.86 /tons. This data is used as follows in order to 393 

calculate cij (in $/ton) for (i,j) ∈ T: 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝐷𝐷𝐷𝐷𝑇𝑇 +  𝐷𝐷𝐷𝐷𝑇𝑇 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖. In this equation, 𝑑𝑑𝑖𝑖𝑖𝑖  represents the distance 394 

between locations i and j.  395 

5.4.2 Unit train and single car shipment 396 

The majority of freight transportation in the US is handled by four Class I railway companies. The 397 

two Class I railways that span the West USA are Burlington Northern Santa Fe Corporation (BNSF) and 398 

Union Pacific Railroad Company (UP) (CBO, 2006). Roni (2013) presents a regression analysis of rail 399 

transportation costs using rail waybill data; and uses this data to estimate the variable cost of transporting 400 

densified biomass and biofuel. The regression equations quantify the relationship between variable 401 

transportation unit cost ($/ton) and car type, shipment size, rail movement type, commodity type, etc. 402 

Equations (26) and (27) are extracted from Roni (2013). These equations represent the relationship among 403 

variable unit cost (y) (in $/ton), railway distance (𝑀𝑀1 given in miles) and car ownership (𝑀𝑀2) for received 404 

moves by BNSF and UP. Note that, 𝑀𝑀2 is an indicator variable, which takes the value 1 if the railcar used 405 

is owned by the railway company, and takes the value 0 otherwise. The adjusted R
2 value for these 406 

regression equations is greater than 95% and p-values for the independent variables are less than 0.01%. 407 

 𝑦𝑦𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵 = −0.65 + 0.015𝑀𝑀1 + 1.96𝑀𝑀2  (26) 408 

 𝑦𝑦𝑃𝑃𝑃𝑃 = 0.78 + 0.0138𝑀𝑀1 + 3.78𝑀𝑀2 (27) 409 

Equations (26) and (27) assume that the type of rail car used is covered hopper and a single railway 410 

moves a shipment from its origin to its destination. The capacity of each rail car is 100 ton. The size of a 411 

unit train operated by BNSF is typically 100 cars. Since it is mainly BNSF that serves the states we 412 

consider in this analysis, we assume that a unit train is 100 cars long.    413 

Equations (28) and (29) are used to estimate the variable unit cost for cellulosic ethanol for single 414 

car shipments. These equations assume that the type of rail car used is tank car with capacity over 22,000 415 

gallons; the rail car is owned by the customer; and a single railway company moves the rail car from its 416 

origin to its destination.  417 𝑦𝑦𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵 = 6.40 + 0.0276𝑀𝑀1         (28) 418 

                                              𝑦𝑦𝑃𝑃𝑃𝑃 = 6.7174 + 0.0239𝑀𝑀1           (29) 419 



5.5 Hub investment costs 420 

Only a few rail ramps are equipped to handle the loading and unloading of unit trains. In addition to 421 

equipment, there are certain infrastructural requirements necessary to handle unit trains. The 422 

infrastructure necessary is typically built by corn elevators, blenders, coal plants, or third-party logistics 423 

service providers.  424 

In this study we consider that unit trains are loaded at rail ramps in case that the facilities exist. 425 

Otherwise, investments are required to build additional sidings. These investments are what we consider 426 

as hub location costs. Table 2 summarizes the typical costs which occur when building a railroad siding. 427 

We consider that one turnout and additional tracks are required. Since in this study we calculate annual 428 

costs of the supply chain, the annual equivalent for these investments is calculated and used. We assume 429 

the lifetime of such an investment is 30 years, and the discount factor is 10%. 430 

 431 

Table 2: Costs related to railway sidings 432 

 433 

5.6 Biofuel plant investment costs 434 

You et al. (2011) provide investment and operating cost for a 45 MGY ethanol productions plant 435 

that uses simultaneously scarification and fermentation technologies. They estimate the investment costs 436 

for build a biorefinery that produces 45 MGY of cellulosic ethanol are $159,400,000. Wallace et al. 437 

(2006) in his study estimates that doubling the size of a biofuel plant increases the investment costs by a 438 

factor of 1.6. We used this factor and interpolate investments costs in order to estimate investment costs 439 

for biofuel plants of different sizes. We use a 20 years project life and a 15% interest rate. The project life 440 

and interest rate is used to calculate the equivalent annual investment costs. In order to be consistent with 441 

the literature, and due to the availability of data, we consider 3 different biorefinery sizes: 60 MGY, 90 442 

MGY and 120 MGY (Searcy and Flynn, 2008; Jacobson et al., 2014). 443 

5.7 CO2 emissions   444 

Emissions due to rail and truck transportations are calculated using the following equation: CO2 445 

emissions (in kg) = (Transport volume by transport mode) * (Average transport distance by transport 446 

mode) *(Average CO2-emission factor per ton-mile by transport mode). The average CO2 emission factor 447 

recommended by the World Resource Institute and World Business Council for Sustainable Development 448 

for road transport operations is 0.297 kg/ton-mile. The average CO2 emission factor recommended by the 449 

Items Costs

Track - rail and ties $717.80/yard
Turnout - allows rail cars to switch tracks $110,000.00



same organizations for rail transport operations is 0.0252 kg/ton-mile. The unit CO2 emission from 450 

biofuel plant operations is provided by a study from Argo et al. (2013). This study shows that the average 451 

CO2 emissions, due to the use of chemicals and enzymes in a biofuel plant, are 2.2 kg/gallon.   452 

5.8 Social impact data 453 

The number of accrued local jobs for biorefinery construction and operations is extracted from the 454 

Jobs and Economic Development Impact (JEDI) model developed by National Renewable Energy 455 

Laboratory (NREL, 2013). JEDI is a tool that estimates the economic impacts of constructing and 456 

operating power generation and biofuel plants at the local and state levels. Table B2 presents the number 457 

of jobs created due to biorefinery construction and operations as extracted from JEDI. Note that, the 458 

number of jobs created is a function of the plant size.   459 

The number of job created in the trucking industry is estimated based on the travel distance and 460 

amount of biomass shipped annually. We assume that a truck can carry a maximum load of 40 tons of 461 

bulk solids, and 8,000 gallons of liquids. The average travel speed is assumed 40 miles/hour. 462 

Additionally, we assume a truck has 2 drivers; there are 40 working hours per week; and 50 weeks per 463 

year. Based on these assumptions, the number of miles traveled by one truck is (40 hours/week)*(50 464 

weeks/year)*(40 miles/hour) = 80,000 miles/year. The number of ton-miles per truck is (80,000 465 

miles/year)*(40 tons) = 3,200,000 tons-miles/year. Thus, the number of jobs created for ton-mile is (2 466 

drivers)/(3,200,000 tons-miles/year). To calculate the number of trucking jobs per ton along arcs (i,j) ∈ 467 

T1∪ T2 (pijT) we multiply (2/3,200,000) with the distance of arc (i,j). We follow a similar approach to 468 

calculate pijT for (i,j) ∈ T3∪ T4. 469 

We assume that each unit train requires two crews. The number of job openings in the railway 470 

industry is calculated based on the distance traveled in each route and the number of unit trains operating 471 

annually. We assume that two jobs per hub will be created in order to operate the hub.   472 

5.9 Data pre-processing  473 

In this section we describe three approaches we follow in order to reduce the size of the problem 474 

investigated without compromising the quality of the solutions found.      475 

Typically, trucks would deliver biomass directly to the biofuel plant when travel distances are short. 476 

For this reason, we did add an arc between a preprocessing facility and a biofuel plant only when the 477 

distance between the two is 75 miles or less. Doing this reduced the number of arcs in the network, and 478 

consequently the problem size. 479 

The data about the US railway network consists of 80,486 rail links, and 36,393 unique origin and 480 

destination nodes. Of the 36,393 nodes, only 20,686 are rail stations. Of the rails stations listed, 11,301 481 



are operated by BNSF, CSXT, NS and UP. Of the 80,486 rail links, 72% of are shorter than 5 miles. 482 

Since a unit train is a dedicated train, it will follow a single path from shipment origin to its destination 483 

without being regrouped in rail ramps along the way. This is why the network structure between depots 484 

and biofuel plant is represented by a bipartite network (see Figure 2). Each arc of this bipartite network 485 

represents the shortest path between a depot and a biofuel plant. We calculated the shortest paths using 486 

the Dijkstra’s algorithm (Ahuja et al., 1993).  487 

Finally, when creating arcs between a biofuel plant and bulk terminals we examine the length of a 488 

path. If the length is less than 75 miles, then we create an arc (i, j) ∈ 𝑇𝑇3; otherwise, we create an arc (i, j) 489 

∈ 𝑅𝑅2. 490 

  Experimental Results 6.491 

The augmented 𝜖𝜖-constraint algorithm is implemented using C++. The IBM CPLEX 12.5.1 Concert 492 

Technology is used to solve the MILP models. All tests were conducted on a desktop computer with Intel 493 

® Core i7 3.1 GHz CPU and 32 GB memory limit, on a windows operating system.  494 

6.1 Comparing the cost minimization and the multi-objective optimization models 495 

In order to evaluate the performance of the models proposed in this paper we create three scenarios. Each 496 

scenario is generated based on the maximum allowable travel distance between a preprocessing facility 497 

and a depot (Table 3). In Scenarios 1, 2 and 3, the travel distance is 10, 30 and 50 miles respectively. That 498 

means, in Scenario 1, an arc is added between a particular preprocessing facility and a depot if the 499 

corresponding travel distance is less than or equal to 10 miles. Therefore, as we go from Scenario 1 to 3 500 

the amount of biomass available to be shipped through the network increases. The motivation for creating 501 

these scenarios is the fact that deliveries to depots will be completed by trucks, and it is not economical to 502 

ship biomass to a depot if the transportation distance is longer than 30 miles. 503 

Clearly, the number of integer variables and number of constraints varies with the three scenarios 504 

described. The largest problem we solved has a total of 212,320 continuous variables, 2,849 binary 505 

variables, 153,466 integer variables and 160,491 constraints. The running time to solve one problem was 506 

anywhere between 10-20min. 507 

A set of metrics are used in order to compare the cost minimization model with the multi-objective 508 

model. On addition to the unit delivery cost of biofuel, emissions and number of jobs created, other 509 

important metrics are: amount of biomass delivered and total amount of biofuel produced; transportation 510 

mode used and transportation cost, number of biofuel plants built and hubs used. A summary of these 511 

metrics is provided in Tables 4-8. In order to identify which of the Pareto optimal solutions of the 512 

multiple-objective model to select for these tables, we followed this logic. Among the Pareto-optimal 513 



solutions generated we selected the one with highest number of jobs created, and then, among those 514 

solutions, we selected the one with the lowest emission levels.     515 

Table 3 compares the two models based on cost, emissions, and number of jobs created. While the 516 

minimum cost model focuses on minimizing costs, the multi-objective model provides solutions which 517 

have a greater positive impact on the environment and create more jobs. The minimum cost model 518 

provides solutions that are 2.31% to 12.66% cheaper. The multiple-objective model provides solutions 519 

that create 449 – 1,186 more jobs, and reduce emissions by 13.78% to 25.48%.     520 

Table 3: Model comparisons based on biomass delivery 521 

Scenario 
Cost Minimization Model Multi-objective Model 

Costs Emissions Jobs Costs Emissions Jobs 
($/gal) (lbs/gal) (nr) ($/gal) (lbs/gal) (nr) 

1 3.38 7.28 4,068 3.87 6.57 5,000 

2 3.39 7.68 4,322 3.47 6.51 5,508 

3 3.28 6.54 3,751 3.55 6.25 4,200 
 522 

Table 4 compares the two models based on the amount of biomass delivered by truck and rail. Hubs 523 

are used to facilitate rail transportation. The multi-objective model relies more on rail transportation. 524 

Emissions are smaller for this transportation mode due to the fact that in each trip, higher volumes of 525 

biomass and biofuel are delivered. To facilitate rail transportation more hubs are utilized.       526 

Table 5 compares the two models based on the total delivery cost of biofuel. This cost consists of 527 

transportation, labor, and investment costs. The unit transportation costs are smaller for the multi-528 

objective transportation since the model heavily relies on rail transportation. More hubs are utilized in 529 

order to minimize truck deliveries and increase access to rail. For this reason, labor and investment costs 530 

are higher, and consequently the total unit cost is higher.           531 

 532 

Table 4: Model comparisons based on biomass delivery 533 

Scenario 
Available 
Biomass 
(in MT) 

Cost Minimization Model Multi-objective Model 

Biomass Delivered  
(in MT) 

Number 
of Hubs 

Biomass Delivered 
(in MT) 

Number 
of Hubs 

Truck Rail Truck Rail 
1 52.99 18.11 3.71 20 4.99     15.10 80 

2 62.92 19.04 3.24 13 3.82 17.14 135 

3 63.45 16.42 6.79 18 4.16 16.03 101 
 534 

Table 5: Model comparisons based on the delivery cost of cellulosic ethanol 535 

 Cost Minimization Model Multi-objective Model 



Scenario Transportation 
cost 

($/gal) 

Other 
costs 

($/gal) 

Total unit 
cost 

($/gal) 

Transportation 
cost 

($/gal) 

Other 
costs 

($/gal) 

Total unit 
cost 

($/gal) 

1 0.60 2.78 3.38 0.41 3.46 3.87 

2 0.56 2.83 3.39 0.40 3.06 3.47 

3 0.61 2.67 3.28 0.42 3.13 3.55 
 536 

Table 6 summarizes the number of biofuel plants open and corresponding sizes, the total production 537 

capacity, the utilization rate of these plants, the biofuel production, and the percentage of RFS goals met 538 

under each scenario. These results are provided separately for each model (Tables 7(a) and 7(b)). The 539 

minimum cost model in order to minimize the total biofuel plant investment costs, and gain from the 540 

economies of scale that come with large production facilities, opens fewer biofuel plants, but of larger 541 

capacity. Consequently, transportation costs to these plants are higher. The multi-objective model opens 542 

smaller sized plants. This mode also invests in utilizing more hubs, therefore, investment costs are higher, 543 

more people are employed; however, transportation costs and emission levels are lower. Since 544 

maximizing biofuel production and meeting RFS goals was not an objective, the multi-objective model 545 

does not try to maximize utilization rates of plants.   546 

Note that, the RFS goals set by EPA were reduced in 2014 below the volumes originally set by 547 

Congress (EPA, 2014). Based on the new goals, in 2014, only 33 MGY of cellulosic biofuel is expected 548 

to be produced. This number increases to 206 MGY by 2016. In 2015, the total RFS requirements are 549 

15.93BGY. The percentages presented in Tables 7(a) and 7(b) are with respect to overall RFS 550 

requirements. Clearly, the requirements set on cellulosic biomass can be met at a unit cost between $3.5-4 551 

per gallon.  552 

Table 6: Model comparisons based on network design 553 

 554 
 555 
 556 

(a) Cost minimization model 557 
 558 

 559 

 560 

 561 

Scenario 
Nr. of  biofuel plants open Total 

capacity 
(MGY) 

Utilization 
(%) 

Biofuel  
production 

(MGY) 

% of RFS 
goals met 60 

(MGY) 
90 

(MGY) 
120 

(MGY) 
1 12 1 3 1,170 85.81% 1,004 6.27% 
2 9 1 4 1,110 94.42% 1,048 6.55% 
3 5 5 3 1,110 90.91% 1,009 6.31% 

Scenario 
Nr. of  biofuel plants open Total 

capacity 
(MGY) 

Utilization 
(%) 

Biofuel  
production  

(MGY) 

% of RFS 
goals met 60 

(MGY) 
90  

(MGY) 
120  

(MGY) 
1 2 2 7 1,140 95.69% 1,091 6.82% 
2 1 2 8 1,200 92.86% 1,114 6.96% 
3 1 3 7 1,170 99.21% 1,161 7.25% 



(b) Multi-objective optimization model 562 

Table B1 in the Appendix lists the location of biorefineries for the cost minimization and multi-563 

objective problems. Figures 5 and 6 present the network structure for the cost minimization and multi-564 

objective models. These are the results from solving Scenario 3. Based on these results, biofuel plants are 565 

located closer to the supply, and therefore, in Iowa, Kansas, Nebraska, and South Dakota. Two biofuel 566 

plants are located in Colorado to be close to customers. Tables B1 and B2 in the appendix present the 567 

specific locations of biofuel plants and the number of jobs created in each state.  568 

 569 

 570 

Figure 5: Network structure for Scenario 3 of cost minimization model 571 
 572 

             573 
 574 

Figure 6: Network structure for Scenario 3 of multi-objective model 575 



6.2 Pareto curve  576 

The Pareto curves in Figures 7-9 present the tradeoffs that exist among economic, environmental and 577 

social objectives. It would be interesting to show the three-dimensional plots for the three objectives 578 

considered. However, creating three dimensional plots requires many points for the vectorization. As 579 

these three objectives are interrelated, we had to identify many weakly efficient solutions to create the 580 

three-dimensional plot. Therefore, we are presenting instead a number of two-dimensional Pareto optimal 581 

solutions. These two dimensional charts represent the tradeoffs between two of the three objectives which 582 

satisfy a threshold level set on the third objective.  583 

Figure 7(a) plots the relationship between the unit delivery for cost and CO2 emissions for different 584 

levels of targeted number of jobs created under Scenario 1. Figure 7(b) plots the relationship between the 585 

unit delivery for cost and number of jobs created for different levels of targeted CO2 emissions under 586 

Scenario 1. Similar plots for Scenario 2 are presented in Figures 8(a) and 8(b), and for Scenario 3, results 587 

are presented in Figures 9(a) and 9(b). 588 

Results from these figures indicate that, for a given job target as the emission level decreases, 589 

delivery cost increases. These relationships are intuitive. To decrease emission levels, biofuel plants 590 

should reduce shipment volumes by truck. This requires investments to increase the number of hubs used 591 

and consequently improve accessibility to railway lines. Another observation is that: as the number of 592 

jobs increases, delivery cost increases as well. Increasing the number of jobs in this system affects labor 593 

costs and consequently the unit delivery cost of cellulosic ethanol.    594 

The shape of the curves presented in Figures 7(a), 8(a) and 9(a) is similar and indicates a negative 595 

relationship between unit costs and unit emissions. That means, reducing CO2 emissions from supply 596 

chain activities increases the cost of delivering biomass. However, the shape of the Pareto curve becomes 597 

flatter when emission levels are between 6 and 8 lbs/gal. That means, reducing CO2 emissions from 8 to 6 598 

lbs/gal (Figure 8a) increases the unit cost by 10 cents. The marginal increase in costs increases as 599 

emission reductions approach 4 lbs/gal. Reductions in emissions could be achieved via imposing an 600 

emission tax, setting an emission cap, etc. Clearly these policies would impact costs in the supply chain. 601 

However, it is often possible to have a great impact on emission reductions with only marginal increases 602 

in costs. 603 

The results in Figures 7(a), 8(a) and 9(a) indicate that, in order to comply with increased restrictions 604 

on CO2 emissions, plants need to rely on rail shipments. For this reason, at low emission levels more hubs 605 

are utilized and the investments on the infrastructure are higher. As emission levels increase, the 606 

restriction on emissions become redundant and do not have an effect on costs anymore. This is the reason 607 

why at high emission levels, increasing emissions does not affect the unit cost.    608 



The results from Figures 7(b), 8(b), and 9(b) indicate a positive relationship between the number 609 

of jobs created and the unit cost. More jobs are created when truck - rather than rail - is used to deliver 610 

biomass. This is mainly because to ship the same amount of biomass, less railroad crew members are 611 

required as compared to truck drivers.  612 

  

(a)                                                                           (b) 613 
Figure 7: Pareto curves for Scenario 1: (a) Unit delivery cost versus CO2 emissions for different targeted 614 
number of job created; (b) Unit delivery cost versus number of job for particular emission target. 615 
 616 
 617 

  

(a)                                                                       (b) 618 
Figure 8: Pareto curves for Scenario 2: (a) Unit delivery cost versus CO2 emissions for different targeted 619 
number of job created; (b) Unit delivery cost versus number of job for particular emission target. 620 
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(a)                                                                          (b) 621 

 622 
Figure 9: Pareto curves for Scenario 3: (a) Unit delivery cost versus CO2 emissions for different targeted 623 
number of job created; (b) Unit delivery cost versus number of job for particular emission target. 624 
 625 

 Conclusion 7.626 

In this paper, we present a multi-objective optimization model for the cellulosic ethanol supply 627 

chain. The model optimizes costs, environmental, and social impacts of this supply chain. The cost 628 

objective represents transportation, facility location, and operations costs. The environmental objective 629 

represents CO2 emissions due to transportation, facility construction, and operations. The social objective 630 

represents the number of new jobs created in order to handle transportation, hub operations, biofuel plant 631 

construction and operations. The multi-objective model is solved using an augmented 𝜖𝜖-constraint 632 

method. This method identifies a set of Pareto optimal solutions. The relationship among the 633 

corresponding objectives is depicted through a number of graphs presented in the paper.   634 

The underlying supply chain has a hub-and-spoke network structure. Such a network structure is 635 

appropriate for the delivery of bulk products, such as biomass, or cellulosic ethanol. In this network, 636 

depots serve as shipment consolidation points where small shipments of biomass from preprocessing 637 

facilities are consolidated into high-volume shipments. High-volume shipments of biomass are then 638 

delivered to biofuel plants by rail. Such a system positively impacts transportation costs, and 639 

consequently, the delivery cost of cellulosic ethanol, and CO2 emissions. Using rail transportation, rather 640 

than truck, for high-volume and long-haul shipments reduces emissions.    641 

The numerical analyses indicate that the goals set by the 2014 RFS for production of cellulosic 642 

biofuel can be met. The minimum cost model does minimize the delivery cost of cellulosic biofuel, but 643 

the multi-objective model has a greater positive impact on the environment and society. The minimum 644 
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cost model invests on building large sized production plants to take advantage of the economies of scale 645 

that come with producing in large quantities. This model does not invest as much in building rail hubs, 646 

and relies on truck transportation. The multi-objective model proposes investments in building more 647 

small sized plants that employ additional workforce. The corresponding supply chain relies on rail 648 

transportation to reduce CO2 emissions, and uses a larger number of hubs to enable the delivery of 649 

biomass.  650 

We plan on extending the work presented in this paper.  We are currently extending the scope of the 651 

case study by investigating the whole USA. Extending the scope of the case study will impact the 652 

problem size. We are developing decomposition-based algorithms to solve efficiently each single-653 

objective optimization models within the algorithm scheme proposed here.      654 
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 Appendix  10.838 

 APPENDIX A839 

Table A1: The definitions of sets, parameters and decision variables used  840 

 

Set definitions 

N set of nodes in supply chain network G(N, A) 

P set of preprocessing facilities 

D set of hub 

B Set of biorefinery locations 

L Set of bulk terminal 

C set of customers 

A set of arcs in G(N, A) 

T1 set of arcs that connect preprocessing facilities to hub 

T2 set of arcs that connect preprocessing facilities to the biorefinery 

T3 set of arcs that connect biorefinery facilities to the blending facilities   

T4 set of arcs that connect blending facilities  to the customer 𝑅𝑅1 set of rail arcs that connect depots to biofuel plants 𝑅𝑅2 set of rail arcs that connect biofuel plants to the bulk terminals 

K set of biofuel plant capacity level indexed by k 

 

Problem Parameters 𝑐𝑐𝑖𝑖𝑖𝑖 unit cost charged per ton shipped along (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 𝑑𝑑𝑖𝑖𝑖𝑖 distance of (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 𝛹𝛹𝑖𝑖𝑖𝑖 reflects a fixed cost for loading/unloading a unit train (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅1 λ𝑖𝑖𝑖𝑖 reflects a fixed cost for loading/unloading a unit train (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅2 

  𝑣𝑣𝑖𝑖𝑖𝑖 represents the maximum capacity of a unit train along arc (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅1 

  𝜏𝜏𝑖𝑖𝑖𝑖 represents the maximum capacity of a rail car along arc (𝑖𝑖, 𝑖𝑖) ∈ 𝑅𝑅2 𝜍𝜍𝑖𝑖 fixed investment cost at node 𝑖𝑖 ∈ 𝐷𝐷 𝑢𝑢𝑖𝑖 Capacity of node 𝑖𝑖 ∈ 𝐷𝐷 

  841 



Table A1 (Continued) 842 

𝜚𝜚𝑖𝑖𝑖𝑖 the fixed investment cost at node 𝑖𝑖 ∈ 𝐵𝐵 with capacity 𝑘𝑘 ∈ 𝐾𝐾 𝑠𝑠𝑖𝑖 supply of biomass at a pre-processing facility 𝑖𝑖 ∈ 𝑃𝑃 𝑔𝑔𝑖𝑖 demand of  biomass at a customer location 𝑖𝑖 ∈ 𝑇𝑇 𝛼𝛼𝑖𝑖 shortage cost at customer location  𝑖𝑖 ∈ 𝑇𝑇 𝑞𝑞𝑖𝑖𝑖𝑖 capacity of biorefinery node 𝑖𝑖 ∈ 𝐵𝐵 is 𝑘𝑘 ∈ 𝐾𝐾 

 

Emission parameters 𝑚𝑚𝑖𝑖𝑖𝑖 CO2 emission per ton per mile  in arc set(𝑖𝑖, 𝑖𝑖) ∈  T1, T2 ,T3,R 𝜖𝜖𝑖𝑖𝑖𝑖 CO2 emission from biorefinery  𝑖𝑖 ∈ 𝐵𝐵 with capacity 𝑘𝑘 ∈ 𝐾𝐾 𝜊𝜊𝑖𝑖 CO2 emission for establishing a hub at node 𝑖𝑖 ∈ 𝐷𝐷 

 

Social factors 𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇  Number of jobs created  per ton  due to transportation activities   in arc (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖  Number of job created for biorefinery  𝑖𝑖 ∈ 𝐵𝐵 with capacity 𝑘𝑘 ∈ 𝐾𝐾 𝑝𝑝𝑖𝑖𝐷𝐷 Number of job created due to locating depot 𝑖𝑖 ∈ 𝐷𝐷 

 

Decision variables 𝑋𝑋𝑖𝑖𝑖𝑖 flow along arc (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 𝑍𝑍𝑖𝑖𝑖𝑖 number of unit trains moving from hub i to biorefinery j 𝑌𝑌𝑖𝑖𝑖𝑖 number of single care moving from biorefinery i to bulk terminal j 𝑊𝑊𝑖𝑖 a binary variable which takes the value 1 if i is used as a hub, and 0 O/W β𝑖𝑖𝑖𝑖 a binary variable which takes the value 1 if i is used as a biorefinery, with capacity k 

and 0 O/W Π𝑖𝑖 demand shortage at customer location  𝑖𝑖 ∈ 𝑇𝑇 
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APPENDIX B 845 

Table B1: Biorefinery locations   846 

Cost Minimization Model Multi-objective Model 

State SPLC City 
Capacity 
(MGY) State SPLC City 

Capacity 
(MGY) 

CO 746413 Blakeland  120 CO 744149 Roydale 60 

CO 748538 Southern JCT 90 CO 746453 Sedalia 120 

IA 536640 Newton 120 CO 746689 Crews 90 

IA 534553 Eldridge  60 IA 533370 Burchinal 90 

IA 549256 McClelland 120 IA 536244 Minerva JCT 60 

KS 592634 Selden 120 IA 537370 Washington 90 

KS 584261 Menoken 90 KS 581577 Muncie 60 

KS 589156 Partridge 120 KS 584261 Menoken 90 

KS 598754 Meade 90 KS 599754 Hugoton 120 

NE 555973 Darr 120 NE 553346 Elkhorn 60 

SD 522530 Selby 120 NE 555973 Darr 90 

    NE 559550 Imperial 120 

    SD 525160 Miller 60 
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Table B2: Number of Job Created due to Construction and Operations of a Biorefinery 848 

State 
Plant size 

(MGY) 

Nr. of 

construction 

jobs 

Nr. of 

operation 

jobs 

State 
Plant size 

(MGY) 

Nr. of 

construction 

jobs 

Nr. of 

operation 

jobs 

KS 

60 89 137 

CO 

60 92 171 

90 112 170 90 116 220 

120 143 186 120 148 250 

NE 

60 93 150 

UT 

60 106 172 

90 118 187 90 133 217 

120 150 207 120 170 242 

IA 

60 91 148 

NM 

60 93 160 

90 115 186 90 117 214 

120 147 205 120 149 230 

SD 

60 98 157 

WY 

60 76 134 

90 124 197 90 96 168 

120 158 218 120 123 186 

CA 
60 86 188 

NV 
60 79 148 

90 109 246 90 100 186 



120 139 286 

120 128 207 
AZ 

60 98 191 

90 123 248 

120 157 286 
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