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Anastasios G. Bakirtzis , Fellow, IEEE, and João P. S. Catalão , Senior Member, IEEE

Abstract—The large-scale integration of wind generation in
power systems increases the need for reserve procurement in order
to accommodate its highly uncertain nature, a fact that may over-
shadow its environmental and economic benefits. For this reason,
the design of reserve procurement mechanisms should be recon-
sidered in order to embed resources that are capable of providing
reserve services in an economically optimal way. In this study, a
joint energy and reserve day-ahead market structure based on
two-stage stochastic programming is presented. The developed
model incorporates explicitly the participation of demand side re-
sources in the provision of load following reserves. Since a load
that incurs a demand reduction may need to recover this energy
in other periods, different types of load recovery requirements are
modeled. Furthermore, in order to evaluate the risk associated
with the decisions of the system operator and to assess the effect
of procuring and compensating load reductions, the Conditional
Value-at-Risk metric is employed. In order to solve the resulting
multi-objective optimization problem, a new approach based on
an improved variant of the epsilon-constraint method is adopted.
This study demonstrates that the proposed approach to risk man-
agement presents conceptual advantages over the commonly used
weighted sum method.

Index Terms—Augmented epsilon-constraint method, condi-
tional value-at-risk, day-ahead market, demand side reserves, load
recovery, risk management, stochastic optimization, wind power.
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with the Instituto de Engenharia de Sistemas e Computadores—Investigação
e Desenvolvimento, Instituto Superior Técnico, University of Lisbon, Lisbon
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I. INTRODUCTION

A. Motivation and Background

L
ARGE-SCALE integration of renewable energy sources

(RES) in power systems plays a central role in ambitious

programs initiated by leading countries around the world, such

as the regional greenhouse gas emission control schemes in the

U.S. and the 20/20/20 targets in the European Union [1].

Among the different RES options, wind capacity is expected

to increase significantly in the future [2], [3]. Despite the po-

tential environmental benefits that arise from the widespread

adoption of wind power generation, its uncertain nature may

jeopardize the security of the power system and pose new chal-

lenges to system operators (SO) [4]–[7].

In order to accommodate the wind power volatility, apart

from the traditionally required ancillary services (i.e., regula-

tion, contingency reserve etc.), increased additional amount of

load following reserves must be generally procured to match

the total production and consumption [8]. Interestingly empir-

ical facts from some particular markets, such as the German

energy market, concur that on some occasions the integration of

RES can be supported by alternative means. In fact, since 2008,

the capacity of RES in Germany has grown from 27 GW to 78

GW, yet over the same period, the amount of balancing reserves

procured by the Transmission System Operators (TSOs) was

reduced by 15%. Hirth and Ziegenhagen [9] highlighted this

issue which is known as the “German Paradox”, providing also

several candidate factors that could have overcompensated the

expansion of renewables: improved forecasting tools, reduced

frequency of power plant outages, more cost-aware behavior of

TSOs, cooperation of TSOs in reserve sizing and sufficient in-

traday market liquidity. Recently Ocker and Ehrhart [10] argued

that there are two main reasons that can explain this “paradox”.

First, the introduction of a common balancing market between

the four German TSOs in the period 2009–2010 and the foun-

dation of the International Grid Control Cooperation (IGCC) in

2011 led to a significant reduction in reserve procurement in

Germany, induced by the augmentation of the balancing area.

Second, market design adaptations which allowed more flexible

wind trading closer to real-time have improved the liquidity of

the intraday market. Based on this evidence Ocker and Ehrhart

suggested that the increasing penetration of renewables can be
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managed by implementing such national and international mea-

sures, without necessarily increasing the amount of operational

reserves. Nevertheless, this would require the harmonization of

European balancing power markets which are currently char-

acterized by large discrepancy in market design and renewable

energy integration [11]. In addition to that, the liquidity of the

different intraday markets varies significantly across Europe.

For instance, in contrast with the relatively liquid German intra-

day energy market, the amount of energy traded in the Nordic

intraday market accounts only for about 1% of the total con-

sumption [12]. Finally, on many occasions it is not possible

to augment the balancing area due to geographical restrictions.

This is the case for non-interconnected power systems such as

the ones in islands in which the magnitude of the problems

related to the integration of RES depends on their penetration

level in the production mix, while their mitigation is reflected

by the flexibility of the power system [13].

Until recently, the required reserve services have been al-

most exclusively procured by the generation side. However,

several types of demand side resources are technically capable

of providing ancillary services and especially, the recently pro-

posed flexibility reserve which responds to large and unexpected

wind and solar ramp events [14]. The utilization of demand side

resources to provide flexibility reserves alleviates the adverse

environmental, technical and economic impacts of regulating

the highly volatile wind power generation using fast-response

conventional generators. However, one of the main barriers to

introducing demand response (DR) in the operational practice

is its justification as a valuable system addition in comparison

with other technologies. Strbac [15] argued that the value of

DR lies both in system operation and development. This means

that the status of the system and the flexibility of the generation

mix are important criteria to assess the value of DR. As a result,

systems that are stressed, i.e., that operate close to their capac-

ity limits and have a relatively inflexible base load generation,

the contribution of DR to integrating greater amounts of RES

generation could be significant.

Many SOs, especially in the U.S., have taken steps towards in-

tegrating demand side resources by initiating market-based pro-

grams that allow the participation of demand response providers

(DRP) [1]. A DRP may be an individual load (i.e., a large con-

sumer) or an aggregation of loads that are technically qualified

(in terms of response time, minimum level of curtailment etc.)

to participate in a specific DR program. DRPs are allowed to bid

on load curtailments. If the bids are accepted, the DRPs are paid

for committing to be on standby. In case the load curtailments

are indeed required during the actual operation of the power sys-

tem, the participants are notified by the SO and are paid for the

energy reduction they provide. More details regarding existing

demand side participation programs in the U.S. markets may be

found in [16]. However, despite the fact that the implementation

of various demand side participation programs in the U.S. has

proven beneficial in many aspects, demand response (DR) is

currently available only in a few European countries [17].

The integration of demand side resources into electricity

markets has also drawn the attention of the technical literature.

Several studies investigate the participation of demand side

resources in the procurement of energy and reserve services.

Seminal studies [18]–[20] have developed pool based mar-

ket structures considering the participation of demand side

resources into the energy and reserve markets. However,

these models are deterministic. The economic effect of price

responsive demand on energy only markets was investigated in

[21] and [22]. A more detailed deterministic model of demand

side participation in the day-ahead energy market was presented

in [23]. There are also studies that evaluate the contribution

of demand side resources to contingency and load following

reserves [24]–[27]. Nevertheless, these studies do not consider

the effect of wind power penetration on reserve procurement.

The exploitation of demand side resources to support the

integration of RES, especially wind power, has been studied

in [28]–[31]. However, these studies do not investigate the ef-

fect of DR on the risks associated with the operational cost

of the system. Risk-aware stochastic programming based deci-

sion making has been widely applied to portfolio optimization.

Recently, risk-constrained optimal offering strategies for mi-

crogrid aggregators [32], wind power producers [33], [34] and

virtual power plants [35] have been proposed, considering also

the participation of DR in the mitigation of the risk associated

with the distribution of profits. Nevertheless, although stochas-

tic programming has been also applied to market clearing and

unit commitment formulations [36], investigating the risk that

is embedded in the decisions of the SO under the presence of

renewables’ related uncertainty, the potential benefits of DR

and pinpointing potential limiting factors is a topic that has

not been studied extensively in the relevant literature. For in-

stance, in [37] a stochastic programming model was presented

in which demand side resources may provide load following and

contingency reserves, disregarding the risk associated with the

decisions of the SO. Also, in [1] and [2], demand side resources

were employed to facilitate the integration of wind power, em-

ploying deterministic reserve criteria. In [38] a stochastic load

model of an industrial consumer participating in load following

reserves procurement under high wind power penetration was

presented. However, this study also neglected the quantification

of the risk in the decision making of the SO.

Finally, although, several risk-constrained unit commitment

formulations have also been proposed in the literature, most of

them focus on the operational risk, i.e., security of the load sup-

ply and uncertainty [39]–[43], while only a few are investigating

the economic risk the SO is exposed to in terms of solving a

probabilistic optimal power flow problem that incorporates vari-

ance and semi-variance as risk metrics [44], [45].

B. Contribution and Organization of the Paper

Determining the optimal levels of reserves in order to allow

for the SO to respond to the deviations of wind power produc-

tion with respect to the amount cleared in the day-ahead market

is a technically and economically challenging task. When ac-

counting for the uncertainty in the wind power production in

order to schedule the optimal levels of reserves using stochastic

programming, the volumes are optimal with respect to the ex-

pectation of operational costs, while other characteristics of the

distribution of the system costs are disregarded, exposing the

SO to financial risks. For this reason, in this study, a risk-aware
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joint energy and reserve day-ahead market structure based on

two-stage stochastic programming is developed. The SO that is

responsible for the clearing of the market may utilize generation

and demand side resources in order to procure load following re-

serves in order to accommodate the uncertain wind production.

Risk management is applicable when decision making is sub-

ject to uncertainty. As it has already been mentioned the notion

of risk aversion is common in studies that deal with invest-

ments and the trading strategy of market participants. This may

be attributed to the fact that risk has a direct influence on the

profitability of an investment or the economic effectiveness of

a market participant. However, the perception of the risks that a

SO has to take mostly focuses on the technical management of

the grid (e.g., energy not served, etc.) and the fact that economic

inefficiencies can, at least to some extent, be socialized. In fact

considering the reliability of the power system while clearing

a joint energy and reserve market introduces a notion of risk

in the daily decision making of the SO, while reserves are the

technical instrument that is used to face such risk. Although it

is not so common, studies that consider the financial risk faced

by the SO due to wind power generation uncertainty can be also

found in the literature [44], [45].

The main contributions of this work are summarized in the

following:
� The risk-averse behavior of the SO in terms of the opera-

tional costs of the system is considered. The formulation

presented in this study is conceptually different from other

risk-constrained unit commitment-based market clearing

approaches in the sense that the focus is mainly on the

economic risks due to the uncertainty in wind power pro-

duction.
� Unlike the majority of the relevant studies in the liter-

ature where risk management is enforced by means of

optimizing a composite objective function where each ob-

jective (e.g., cost/profit and risk metric) is accounted for

with a weighting factor, a multi-objective optimization

approach based on an improved implementation of the

epsilon-constraint method, namely the augmented epsilon-

constraint method (AUGMECON) is proposed in this

study. Simulation results indicate a richer mapping of the

Pareto frontier.
� The contribution of DRPs to reserve procurement is taken

into account. A generic load recovery effect model is devel-

oped in order to preserve the internal energy balance of the

demand side resources participating in reserve provision,

with the aim of investigating its impact on the deployment

of demand side resources, expected cost and risk. The pro-

posed methodology is applied on the insular power system

of Crete, Greece, in order to extract realistic quantitative

results.

The remainder of the paper is organized as follows: in

Section II the optimization model is developed. Then, in

Section III the proposed solution technique is presented.

Numerical results are presented and discussed in Section IV.

Finally, conclusions are drawn in Section V. The main notation

used throughout the paper is alphabetically listed in Tables I–III.

TABLE I
SETS AND INDICES

b Index of transmission lines.
f Index of steps of bidding curves of generating units.
i Index of conventional units.
j Index of demand.
n Index of nodes.
s Index of scenarios.
t Index of time intervals.
w Index of wind farms.
B(n, nn) Set of transmission lines.
Bn

b Set of sending nodes of transmission lines.

Bn n
b Set of receiving nodes of transmission lines.

J 0 Set of inelastic loads.

J 1 Set of demand response providers of type 1.

J 2 Set of demand response providers of type 2.
N x

n Set of resources of type x ∈ {i, w, j} connected to node n.

TABLE II
PARAMETERS

Bb ,n Absolute value of the imaginary part of the transmission
line b admittance (p.u.).

BG
i,f ,t Size of the f -th block of the bidding curve of unit i in

period t (MW).

CG
i,f ,t Marginal cost of the f -th block of the bidding curve of unit

i in period t (€/MWh).

CG ,U
i,t Offer cost of up spinning reserve from unit i in period t

(€/MWh).

CG ,D
i,t Offer cost of down spinning reserve from unit i in period t

(€/MWh).

CD RP ,U
j,t Offer cost of load reduction scheduling from demand j in

period t (€/MWh).

cD RP ,U
j,t Cost of load reduction deployment from demand j in period

t (€/MWh).
Dj,t Nominal load of demand j in period t (MW).
fm ax

b Maximum capacity of transmission line b (MW).

N in
j Maximum allowed number of interruptions of demand j .

P m ax
i Maximum power output of unit i (MW).

P m in
i Minimum power output of unit i (MW).

P W ,m ax
w Capacity of wind farm w (MW).

p Maximum participation of demand side resources (%).

RD RP ,U ,m
j Minimum load reduction of demand j (MW).

RDi Ramp down rate of unit i (MW/min).

RDD RP
j Load pick-up rate of demand j (MW/min).

RUi Ramp up rate of unit i (MW/min).

RUD RP
j Load drop rate of demand j (MW/min).

SDCi Shut-down cost of unit i (€).
SUCi Start-up cost of unit i (€).
Trec

j Duration of the load recovery period (h).

T S Spinning reserve delivery time (min).

V E N S
j Cost of energy not served/not recovered for demand j

(€/MWh).

V S Wind energy spillage cost (€/MWh).
W Pw ,t ,s Random variable — power output of wind farm w in period

t in scenario s (MW).
a Confidence level used in the calculation of CVaRα .
γj Load recovery rate with respect to load reduction of

demand j (%).
∆T Duration of time interval (min).

ξD
j,t Maximum downward modification rate of demand j in

period t (%).

ξU
j,t Maximum upward modification rate of demand j in period

t (%).
πs Probability of scenario s.
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TABLE III
DECISION VARIABLES

CV aRa Conditional Value-at-Risk at a confidence level α (€).

DA
j,t ,s Actual consumption of demand j in period t in scenario s

(MW).
ENRj,s Energy of demand j not recovered in scenario s (MWh).
fb ,t ,s Power flow through transmission line b in period t in

scenario s (MW).

Lsh ed
j,t ,s Load shed from demand j in period t in scenario s (MW).

P G
i,t ,s Actual output of unit i in period t in scenario s (MW).

P sch
i,t Output scheduled from unit i in period t (MW).

P sg
i,f ,t

Output scheduled from the f -th segment of unit i in period
t (MW).

P W ,sch
w ,t Wind power scheduled from wind farm w in period t (MW).

RD RP ,D
j,t Load recovery scheduled from demand j in period t (MW).

RD RP ,U
j,t Load reduction scheduled from demand j in period t (MW).

RG ,D
i,t Down spinning reserve scheduled from unit i in period t

(MW).

RG ,U
i,t Up spinning reserve scheduled from unit i in period t

(MW).

rD RP ,d
j,t ,s Load recovery of demand j in period t in scenario s (MW).

rD RP ,u
j,t ,s Load reduction of demand j in period t in scenario s (MW).

rG
i,t ,f ,s Reserve deployed from the f -th block of unit i in period t

in scenario s (MW).

rG ,d
i,t ,s Deployed down spinning reserve from unit i in period t in

scenario s (MW).

rG ,u
i,t ,s Deployed up spinning reserve from unit i in period t in

scenario s (MW).
Sw ,t ,s Available wind generation spilled from wind farm w in

period t in scenario s (MW).
ξ Value-at-Risk (€).
ui , t Binary variable-1 if unit i is committed in period t.

uD RP ,d
j,t ,s Binary variable-1 if demand j is recovering in period t in

scenario s.

uD RP ,u
j,t ,s Binary variable-1 if demand j is curtailed in period t in

scenario s.
yi , t Binary variable-1 if unit i is starting up in period t.
zi , t Binary variable-1 if unit i is starting up in period t.
δn ,t ,s Voltage angle at node n in period t in scenario s (rad).
ηs Auxiliary variable used in the calculation of CVaR (€).
µj,t ,s Auxiliary variable used to linearize load recovery (MW).

Other symbols and abbreviations are defined where they first

appear.

II. OPTIMIZATION MODEL

In this section the mathematical model of the joint energy

and reserve day-ahead market based on two-stage stochastic

programming from the point of view of a risk-averse SO is

presented. The aim is to determine the optimal energy and re-

serve volumes while guaranteeing that reserves are sufficient

to tackle the plausible realizations of the uncertain wind power

production which is modelled in terms of a finite set of sce-

narios. Three sets of constraints can be discerned. The first

stage constraints involve variables that do not depend on any

specific scenario (here-and-now decisions), while the second

stage constraints describe relationships pertaining only decision

variables that depend on scenario realizations (wait-and-see de-

cisions). In other words, the second stage variables represent the

reaction of the SO to each plausible realization of uncertainty.

Finally, the linking constraints connect the day-ahead market de-

cisions with each specific scenario realization by involving both

scenario dependent and independent variables. It is to be noted

that reserve providers are compensated both for committing to

be on stand-by and for the actual deployment of reserves.

This approach aims to guarantee that within the considered

set of scenarios, energy and reserve volumes are optimally deter-

mined. In practice it is possible that the realization of uncertainty

will not match exactly any of the realizations that are explicitly

considered in the scenario set. Nevertheless, the reserve levels

are sufficient to respond to at least any wind power generation

realization that is higher than the minimum amount of wind

power that is being explicitly considered in the scenario set.

To optimally determine the individual response of each reserve

provider in real-time a rolling decision making approach can

deployed [46]. The output of the generators must be fixed to

the energy output level cleared in the day-ahead market, while

the available reserves from each provider are also fixed to the

cleared reserve volumes. Then, a sequence of optimization prob-

lems has to be solved by the SO at each real-time interval to

define the exact contribution of each provider on the basis of

their reserve deployment costs. Note that since intertemporal

constraints have been taken into account during the determina-

tion of the reserve levels, they do not need to be accounted for

in real-time. Formulating the problem of optimally dispatching

the scheduled reserves in real-time is out of the scope of our

study.

The only source of uncertainty considered is related to the

production of the wind farms since uncertainty associated with

the response of the demand side resources may be neglected,

based on practical evidence [14] that indicate reliable perfor-

mance of DRPs. In addition to that, in cases where the DRP is

either an aggregator of small-scale flexible loads or a large indus-

trial consumer participating directly in the day-ahead market, it

can be assumed–on the basis of the development of regulatory

framework that promotes the non-discriminatory participation

of resources in electricity markets, e.g., the Articles 15.4 and

15.8 of the Energy Efficiency Directive of the European Com-

mission [47]–that they are also balance responsible parties. This

means that guaranteeing the delivery of the service for which

they are committed is not the responsibility of the SO.

In the proposed formulation the SO strives to optimize simul-

taneously both the expected cost and the associated financial

risk. As a result, the proposed two-stage stochastic program-

ming model is in fact a multi-objective problem that needs to

be solved by means of employing a suitable methodology as

described in Section III. An overview of the proposed method-

ology is portrayed in Fig. 1.

A. Objective Functions

1) Expected cost: The primary objective of the SO is to min-

imize the total expected cost of energy and reserve procurement.

The expected cost (EC) comprises a scenario independent

(ECSI ) and a scenario dependent (ECSD
s ) component which

are expounded in (2) and (3) respectively. In (2) the energy pro-

curement cost, the start-up and shut-down costs of generating

units, as well as the generation and demand side reserve pro-

curement costs are taken into account. The cost that emerges

from altering the output of generating units to deploy reserves,
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Fig. 1. Overview of the proposed methodology.

the cost of deploying reserves from DRPs, the penalty of invol-

untary load shedding, the wind spillage cost, as well as the cost

of energy not recovered after the deployment of a DRP load

reduction are considered in (3).

EC = ECSI +
∑

s

πs · ECSD
s (1)

ECSI =
∑

t

[

∑

i

(

∑

f

(

CG
i,f ,t · P

sg
i,f ,t

)

+ (SUCi · yi,t + SDCi · zi,t) +

(

CG,U
i,t · RG,U

i,t

+CG,D
i,t · RG,D

i,t

)

)

+
∑

j

(

CDRP,U
j,t · RDRP,U

j,t

)

⎤

⎦

(2)

ECSD
s =

∑

t

⎡

⎣

∑

i

∑

f

(

CG
i,f ,t · r

G
i,t,f ,s

)

+
∑

j

(

cDRP,U
j,t · rDRP,u

j,t,s + V EN S
j · Lshed

j,t,s

)

+
∑

w

(

V S · Sw,t,s

)

]

+
∑

j

(

V EN S
j · ENRj,s

)

∀s

(3)

2) Conditional Value-at-Risk: Although attempting to min-

imize the expected cost of the operation of the system is ad-

vantageous in comparison with a deterministic approach in

which a perfect forecast for the wind power generation is con-

sidered, the characteristics associated with the distribution of

the outcomes of the individual scenarios are disregarded. As a

result, an acceptable expected cost value may correspond to a

cost distribution in which the probability of facing significant

costs in several scenarios is high. To overcome this ambiguity, a

notion of risk should be incorporated in the optimization prob-

lem. A risk measure is a scalar function characterizing the risk

associated with the obtained expected cost.

There are various perceptions of risk and therefore, several

different risk measures may be used. Extensive discussion on

how to incorporate different risk measures in stochastic pro-

gramming formulations is performed in [48]. The risk measure

employed in this study is the Conditional Value-at-Risk (CVaR)

metric [49] since it presents three important advantages: 1) it is a

coherent risk measure, 2) in contrast with the popular Value-at-

Risk (VaR) metric, it quantifies “fat tails” in the cost distribution

and, 3) it is compatible with a linear formulation.

For a given confidence level α ∈ (0, 1) the V aRa is equal to

the minimum value ξ for which the probability of obtaining a

cost less than ξ is higher than α. It should be noted that ξ is

a variable representing the value of the risk metric and not a

pre-fixed parameter. V aRα is defined by (4).

V aRα = min{ξ : P (s|ECSI + ECSD
s ≤ ξ} ≥ α} (4)

CV aRα is defined as the expected value of the cost of the

scenarios with cost higher than the (1 − α)-quantile of the cost

distribution (V aRα ). The mathematical definition of CV aRα

is given in (5).

CV aRα =

min

{

ξ +
1

1 − α

∑

s

[

πs · max
(

ECSI + ECSD
s − ξ, 0

)]

}

(5)

Risk aversion may be enforced by considering (6) as an ob-

jective function (see Section III) and (7)–(8) as constraints of the

optimization problem. Constraint (7) states that the risk metric

is considered with respect to the expected cost of each scenario.

Finally, (8) states that the auxiliary variable is nonnegative. It

should be noted that the continuous auxiliary variable ηs equals

to the maximum of ECSI + ECSD
s − ξ and 0 according to (5).

CV aRα = ξ +
1

1 − α
·
∑

s

πs · ηs (6)

ECSI + ECSD
s − ξ ≤ ηs ∀s (7)

ηs ≥ 0 ∀s (8)

In this study it is considered that wind producers are exempt

from the participation in the market and the wind energy that is

accepted in the day-ahead market is determined by the SO. For

instance this might be imposed by policies that consider RES

generation as must-take. At any rate, costly reserve services

have to be procured from conventional generating units on a

market basis in order to satisfy this requirement in real-time,

a fact that increases the financial risk that the SO is exposed

to. It is to be noted that in markets in which wind producers

are considered as Balance Responsible Parties, they bear the

financial obligation of covering the imbalances that they cause
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through appropriate market mechanisms. In fact this defines

the scope of this work since in such cases risk management

should be rather included in the decision making of the wind

producers rather than of the SO [33]–[35]. Nevertheless, the

proposed day-ahead market model is still be applicable when

SO operators have the balancing responsibility of a number of

relatively small or subsidized RES producers [50].

B. Constraints

1) First stage constraints:

a) Generating units: The bidding curves of the generators

are approximated using a monotonically ascending step-wise

linear marginal function as in [37]. This is enforced by (9) and

(10). The output of a generating unit is constrained between a

minimum and maximum value considering also the scheduled

down and up spinning reserves by (11) and (12), respectively.

The ramping constraints are taken into account by (13) and (14).

Furthermore, the scheduled up and down reserves are limited by

(15) and (16). Minimum up and down time constraints and unit

commitment constraints are also taken into account as in [25].

P sch
i,t =

∑

f

P sg
i,f ,t ∀i, t (9)

0 ≤ P sg
i,f ,t ≤ BG

i,f ,t ∀i, f, t (10)

P sch
i,t − RG,D

i,t ≥ Pmin
i · ui,t ∀i, t (11)

P sch
i,t + RG,U

i,t ≤ Pmax
i · ui,t ∀i, t (12)

P sch
i,t − P sch

i,t−1 ≤ RUi · ∆T ∀i, t (13)

P sch
i,t−1 − P sch

i,t ≤ RDi · ∆T ∀i, t (14)

0 ≤ RG,D
i,t ≤ RDi · T

S · ui,t ∀i, t (15)

0 ≤ RG,U
i,t ≤ RUi · T

S · ui,t ∀i, t (16)

b) Wind power production: Constraint (17) limits the

wind power production that may be scheduled. In this study,

it is considered that the minimum scheduled wind production is

zero and the maximum limit coincides with the installed capac-

ity of the wind farm.

0 ≤ PW,sch
w ,t ≤ PW,max

w ∀w, t (17)

c) Demand response providers: In this study, it is consid-

ered that DRPs may participate in upward reserve scheduling

by rendering a portion of their demand available to be curtailed

under suitable incentives. Furthermore, the fact that the demand

which is curtailed during a given interval may have to be recov-

ered in other periods allows the DRPs to contribute to downward

reserves through appropriate coordination of the curtailment and

the recovery periods. In order to participate in the reserve mar-

ket, the SO may require several parameters to be submitted by

the DRPs together with the demand reduction and recovery costs

such as: maximum demand modification rate, rate of energy re-

covery, load pick-up/drop rate, minimum demand curtailment,

load recovery duration and maximum number of curtailments

per day. Constraints (18)–(20) enforce the reserve scheduling

from the DRPs.

0 ≤ RDRP,U
j,t ≤ min

(

ξU
j,t · Dj,t , RUDRP

j · T S
)

∀j /∈ J0 , t

(18)

0 ≤ RDRP,D
j,t ≤ min(ξD

j,t · Dj,t , RDDRP
j · T S ) ∀j /∈ J0 , t

(19)

∑

j /∈J 0

RDRP,U
j,t ≤

p

1 − p
·
∑

i

RG,U
i,t ∀t (20)

Specifically, (18) states that the upward reserve scheduled by

a DRP is constrained either by the maximum upward demand

modification rate or by the load drop rate. Similarly, the down-

ward reserve as a result of scheduled load recovery is constrained

either by the maximum downward demand modification rate or

by the load pick-up rate (19).

Despite the fact that the utilization of demand side resources

is generally promoted, a SO may impose limits on their con-

tribution to reserves. This market rule is taken into account by

(20) which states that the contribution of DRPs into upward

reserves during a given period cannot exceed p% of the total

scheduled upward reserves during that period. For instance, the

Midcontinent Independent System Operator (MISO) adopted a

limit of 30% (in the summer of 2012) on spinning reserve capac-

ity procurement from DRPs in order to reduce the dependence

on demand side resources for critical ancillary services until

the performance of these resources is proven [51]. The reasons

why a SO may enforce such constraints on the procurement of

services from DRPs can be manifold. For instance, progressive

evaluation of the effect of procuring reserves from the demand

side on the market and the capacity factor of conventional gener-

ation that has been traditionally providing these services might

be desirable. As a result, the reliability of response is not neces-

sarily the major reason for imposing such limitations. The reason

why constraint (20) is enforced in the mathematical formulation

is to highlight the fact that valuating the participation of DRPs

in reserve provision under such conditions might underestimate

positive externalities such as financial risk mitigation for the

SO.

d) Power balance: Equation (21) enforces market power

balance. It is common in the literature and also in real power

systems not to enforce the network constraints in the first stage

[8]. Nonetheless, any market scheme can be implemented within

the proposed formulation.
∑

i

P sch
i,t +

∑

w

PW,sch
w ,t =

∑

j

Dj,t ∀t (21)

2) Second stage constraints:

a) Generating units: Constraints (22)–(24) enforce the

minimum and maximum power output as well as the ramp up

and ramp down limits for the actual generation in each individual

scenario.

Pmin
i · ui,t ≤ PG

i,t,s ≤ Pmax
i · ui,t ∀i, t, s (22)

PG
i,t,s − PG

i,t−1,s ≤ RUi · ∆T ∀i, t, s (23)

PG
i,t−1,s − PG

i,t,s ≤ RDi · ∆T ∀i, t, s (24)
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b) Wind spillage and load shedding: Constraints (25) and

(26) state that the system operator may opt for spilling available

wind production or partially shed inelastic load in order to satisfy

the system constraints. Naturally, this is the last option of the

operator since using such measures bears significant penalties.

0 ≤ Sw,t,s ≤ WPw,t,s ∀w, t, s (25)

0 ≤ Lshed
j,t,s ≤ Dj,t ∀j ∈ J0 , t, s (26)

c) Demand response providers:

1) Reserve deployment:

Constraints (27)–(29) enforce the requirement that a DRP

cannot reduce and increase its consumption simultaneously.

Also, the left hand side of (27) states that a load reduction should

be above a minimum amount of curtailment. Furthermore, (30)

imposes a maximum limit to the number of load reductions that

may be procured by a DRP over a given scheduling horizon.

uDRP,u
j,t,s ·RDRP,U,m

j ≤rDRP,u
j,t,s ≤ RUDRP

j ·T S ·uDRP,u
j,t,s ∀j, t, s

(27)

0 ≤ rDRP,d
j,t,s ≤ RUDRP

j · T S · uDRP,d
j,t,s ∀j, t, s (28)

uDRP,u
j,t,s + uDRP,d

j,t,s ≤ 1 ∀j, t, s (29)

∑

t

uDRP,u
j,t,s ≤ N in

j ∀j, s (30)

2) Energy recovery:

Practical and economic reasons suggest that the provision of

reserves by DRPs should not be viewed as a mere increase or de-

crease in their load. Electrical energy is used in order to facilitate

the activities of a certain sector (i.e., residential, commercial, or

industrial), the primary activity of which is not the participation

in the electricity market. Thus, technical and social constraints

imply that the curtailed energy will have to be provided to the

consumers before or after the interruption occurs. Alternatively,

in economic terms, if the internal load energy balance is not

conserved, then the value that the DRPs assign to electrical en-

ergy is not consistent [21]. In certain cases, depending on the

dynamics of a load that incurs an interruption, more energy than

the amount that has been curtailed has to be provided [24]. The

aforementioned facts suggest that DRP reserve provision is to

be viewed as a redistribution of the demand over time and there-

fore the energy recovery should be appropriately modeled. In

this paper, two different types of load recovery are considered.

The first type (type 1) refers to a DRP that represents loads ca-

pable of storing (e.g., using batteries, air compressors, products

[22] etc.) or foregoing energy and therefore, the energy recovery

is rather flexible. This type of load recovery is modeled by (31).
∑

t

rDRP,d
j,t,s + ENRj,s ≥ γj ·

∑

t

rDRP,u
j,t,s ∀j ∈ J1 , s (31)

The system operator may procure load reductions from a DRP

of type 1, on the condition that the energy is recovered before

or after the reduction occurs. Note that if 0 ≤ γj < 1 a portion

of energy is not necessarily recovered.

The second type (type 2) describes a DRP with the strict

requirement to recover the reduced energy within T rec
j inter-

vals starting directly after a reduction occurs, while another

interruption cannot be sustained before this period is over (e.g.,

air-conditioning load). The first requirement is fulfilled by the

nonlinear constraint (32), the use of which is further motivated in

Appendix I. Additionally, in order to preserve the mixed-integer

linear programming (MILP) formulation, a reformulation of this

constraint is presented in Appendix II. The second requirement

is enforced by (33). This constraint states that in a period t a

DRP is in the recovery phase (uDRP,d
j,t,s = 1) if a curtailment

has taken place (uDRP,u
j,t,s = 1) up to T rec

j period in the past.

As a result, another curtailment cannot occur because of (27)

and (29). In the special case in which T rec
j = 1, constraint (32)

may be substituted by the simpler constraint (34). Finally, (35)

states that during the first scheduling interval, load recovery is

not possible.

uDRP,u
j,t,s ·

t+T r e c
j

∑

τ =t+1

rDRP,d
j,τ ,s = γj · r

DRP,u
j,t,s ∀j ∈ J2 , t, s (32)

uDRP,d
j,t,s =

t−1
∑

τ =t−T r e c
j

uDRP,u
j,τ ,s ∀j ∈ J2 , t, s (33)

rDRP,d
j,t+1,s = γj · r

DRP,u
j,t,s ∀j ∈ J2 , t, s, if T rec

j = 1 (34)

uDRP,d
j,t,s = 0 if t = 1, ∀j ∈ J2 , s (35)

The constraints that are used to model reserve deployment

and load recovery in this study are generic. Other constraints

such as minimum and maximum duration of an interruption,

load recovery sequence etc. are out of the scope of this paper.

d) DC power flow: The network constraints are consid-

ered for the actual operation of the power system, using a DC

power flow representation. The power balance at each node is

enforced by (36), while the flow through a branch is defined by

(37) and (38). Note that the voltage angle must be fixed at the

reference node.

∑

i∈N i
n

PG
i,t,s +

∑

w∈N w
n

(WPw,t,s − Sw,t,s) +
∑

n∈B n n
b

fb,t,s

−
∑

n∈B n
b

fb,t,s =
∑

j∈N j
n

(

DA
j,t,s − Lshed

d,t,s

)

∀ b, n, t, s (36)

fb,t,s = Bb,n · (δn,t,s − δnn,t,s)

∀b, (n, nn) ∈ B (n, nn) , t, s (37)

− fmax
b ≤ fb,t,s ≤ fmax

b ∀b, t, s (38)

3) Linking constraints:

a) Generating units: Constraints (39)–(41) link the

scheduled power output with the actual power generation and the

scheduled reserve capacity with the deployed reserves, respec-

tively. Moreover, constraints (42)–(44) decompose the deployed
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reserves into the blocks of energy.

PG
i,t,s = P sch

i,t + rG,u
i,t,s − rG,d

i,t,s ∀i, t, s (39)

0 ≤ rG,u
i,t,s ≤ RG,U

i,t ∀i, t, s (40)

0 ≤ rG,d
i,t,s ≤ RG,D

i,t ∀i, t, s (41)

rG,u
i,t,s − rG,d

i,t,s =
∑

f

rG
i,t,f ,s ∀i, t, s (42)

rG
i,t,f ,s ≤ BG

i,f ,t − P sg
i,f ,t ∀i, f, t, s (43)

rG
i,t,f ,s ≥ −P sg

i,f ,t ∀i, f, t, s (44)

b) Demand response providers: Constraints (45)–(47) are

similar to (39)–(41) that hold for the generating units.

DA
j,t,s = Dj,t − rDRP,u

j,t,s + rDRP,d
j,t,s ∀j, t, s (45)

0 ≤ rDRP,u
j,t,s ≤ RDRP,U

j,t ∀j, t, s (46)

0 ≤ rDRP,d
j,t,s ≤ RDRP,D

j,t ∀j, t, s (47)

III. SOLUTION TECHNIQUE

In Section II it was rendered evident that both the objective

functions (1) and (6) that represent the expected cost and the

CV aRα metric value are to be minimized, subject to constraints

(2)–(3) and (7)–(47). Essentially, this is a multi-objective opti-

mization problem (MOOP) with conflicting objectives, which

implies that the set of Pareto efficient solutions is sought. In

this section the classical approach (weighted sum method) to

solve the MOOP is firstly discussed and its drawbacks are high-

lighted. Subsequently, the application of a variant of the epsilon-

constraint method, namely the AUGMECON method to address

the risk management problem of this study is presented.

Meta-heuristics based MOOP solution algorithms are gener-

ally considered to present computational advantages, especially

in the case of large-scale optimization problems with unfavor-

able mathematical properties [52], [53]. However, they return

an approximation of the Pareto frontier (pseudo-optimal Pareto

solutions). On the contrary, AUGMECON is an exact (determin-

istic) solution technique that is capable of mapping the actual

Pareto front for multi-objective MILP problems. Furthermore,

AUGMECON has been proved to be statistically more com-

putationally efficient in comparison with the widely-applied

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for

combinatorial problems such as the radial distribution system

reconfiguration problem [54]. More specifically, due to the de-

pendence of the solutions on the initialization of the algorithm,

many independent runs have to be performed that may be char-

acterized by significantly variable computational time.

A. Classical Approach

The classical approach suggests transforming the MOOP

into a single objective optimization problem by constructing a

composite objective function [55] as in (48).

Minimize (1 − β) · EC + β · CVaRα

s.t. (2)−(3) and (7)−(47) (48)

The parameter β ∈ [0, 1] is a weighting factor that implements

the trade-off between the expected cost and risk aversion. By

varying the parameter β different solutions are obtained and

the efficient frontier of expected cost versus risk is constructed.

This approach is straightforward and easy to implement and

therefore, has been widely adopted in the technical literature

in different power systems problems in which risk needs to be

considered. However, it presents several technical disadvantages

[55]: 1) this method is only usable for convex efficient sets, 2)

a uniformly distributed set of weights does not guarantee a

uniformly distributed set of efficient solutions and as a result,

the mapping of the Pareto efficient set may be insufficient, and

3) the weighted sum method suffers from the fact that there

may be different combinations of weights that result into the

same efficient solution. In practical terms, many more iterations

would be needed in order to discover a given number of unique

efficient optimal solutions.

B. Proposed Approach

The aforementioned problems of the weighted sum method

may be addressed by another well-known MOOP solution

method, namely the epsilon-constraint method, in which one

of the objective functions is optimized using the other objective

functions as constraints, as shown in (49).

Minimize EC

s.t. CV aRα ≤ ē

(2)−(3) and (7)−(47) (49)

By parametrical variation in the right hand side of the con-

strained objective function in (49) the efficient solutions of the

problem are obtained. This approach is advantageous since it

addresses the pitfalls of the weighting method. However, the

main implication associated with the application of this method

is that the parameter vector ē must lie in the range of the ob-

jective functions, else the efficiency of the returned solutions

is not guaranteed and the method may return weakly efficient

solutions, instead. AUGMECON is a variant of the epsilon-

constraint method that retains its advantages and addresses its

disadvantages. Specifically, the ranges of the objective functions

are calculated using lexicographic optimization, the efficiency

of the returned solutions is proven and the use of accelera-

tion techniques enhances the computational efficiency of the

method. These conceptual advantages qualify AUGMECON as

an acceptable exact technique to incorporate risk management

into a stochastic optimization problem. A detailed presentation

of the method can be found in [56]. The application of AUG-

MECON can be decomposed into three distinct steps: use of

lexicographic optimization to define the ranges of the objective

functions, definition of the parameter vector and solution of the

optimization sub-problems.
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1) Lexicographic construction of the pay-off table: The cal-

culation of the range of the objective functions is not trivial. The

common approach is to calculate the ranges using the pay-off

table that contains the results of the individual optimization of

the objective functions. Without loss of generality, considering

two objective functions to be minimized, although the mini-

mum value of the objective functions is easily obtained, the

maximum value is not easily identified. In case of the maximum

value is approximated by the maximum value of the correspond-

ing column, these values may not represent efficient points. This

problem is confronted with the use of lexicographic optimiza-

tion that defines reservation values, i.e., upper limits for the

objective functions. In this case, the values of the pay-off table

Lex (50) are calculated by solving the optimization problems

(51)–(54).

Lex =

[

Lex1,1 Lex1,2

Lex2,1 Lex2,2

]

(50)

Lex1,1 = EC∗ :

(

Minimize EC

s.t. (2)−(3) and (9)−(47)

)

(51)

Lex2,2 = CV aR∗
α :

(

Minimize CV aRα

s.t. (2)−(3) and (7)−(47)

)

(52)

Lex1,2 = CV aR∗
α :

⎛

⎝

Minimize CV aRα

s.t. (2)−(3) , (7)−(47) and

EC = Lex1,1

⎞

⎠ (53)

Lex2,1 = EC∗ :

⎛

⎝

Minimize EC
s.t. (2)−(3) , (7)−(47) and

Lex2,2 = CV aRα

⎞

⎠ (54)

2) Definition of the constraint parameter vector: The deci-

sion maker needs to specify a number P of grid points ep ∈ ē
over which the Pareto efficient frontier is evaluated. The num-

ber of points defines the detail in which the efficient frontier is

represented. If the points are evenly distributed the values ep are

calculated using (55).

ep = ep−1 +
Lex1,2 − Lex2,2

P
, p > 1

ep = Lex2,2 , p = 1 (55)

3) Optimization problem: To guarantee that the solutions

produced at each iteration are indeed efficient, the inequali-

ties constraining the second objective in the original epsilon-

constraint method (49) must be binding. Thus, a transformation

of the inequality constraint of the original method to equality is

used to force the method produce only efficient solutions. The

equivalent optimization problem is presented in (56) in which

ε → 0 and σ is a non-negative slack variable. By parametrically

varying ep in the vector defined by (55), the efficient frontier of

EC versus CV aRα is constructed.

Minimize EC + ε · σ

s.t. CV aRα + σ = ep

(2)−(3) , (7)−(47) and σ ≥ 0 (56)

TABLE IV
GENERATION MIX OF THE SYSTEM

Technology Fuel Number Capacity Marginal Cost
of units [MW] Range [€/MWh]

ICE Heavy fuel oil 6 142 69.96–163.45
Steam Heavy fuel oil 7 196 76.89–166.08
CCGT Diesel oil 1 110 147.75
OCGT Diesel oil 11 299 124.21–284.73
Wind - 31 186 -

IV. NUMERICAL RESULTS

A. Input Data

The proposed methodology is tested on the insular power

system of Crete for a representative day with 626.2 MW peak

load. The HV system of the island consists of 19 buses and

24 branches [57]. The generation mix of the island includes 25

thermal units in 3 power stations across the island exclusively

utilizing diesel and heavy fuel oil. Furthermore, there are 31

wind-farms on the island with a total installed capacity of 186

MW. Technical and economic data of the generation system are

illustrated in Table IV [58]. The generator reserve prices are

considered equal to 25% of the most expensive block of the

marginal energy bidding function of each generator as in [8]. It

is noted that only spinning up and down load following reserves

are assumed to be scheduled by the SO. This simplification is

justified by the fact that the generation mix of the island con-

sists of several fast-start internal combustion engine (ICE) and

open cycle gas turbine (OCGT) units, allowing for the SO to

take corrective actions in real-time. To account for the stochas-

ticity in wind power generation, an initial set of 70 scenarios

is generated by performing 70 forecasts using ARIMA for a

randomly selected day using the ECOTOOL Matlab toolbox

[59] and historical data from the island of Crete, Greece [60].

More specifically, forecasting is performed for the 24 h of a spe-

cific day by considering different ranges of historical data when

fitting the model. Starting from a forecast using the historical

data of the first week in the past, a day is progressively added

to the historical time series to obtain a new forecast, while a

new ARIMA model is fit when adding a whole new week to

the data range. To maintain the tractability of the problem, a

scenario reduction technique based on k-means clustering is to

derive a reduced set of 20 non-equiprobable scenarios depicted

in Fig. 2. More extensive studies on generating and reducing

scenarios, as well as investigating the impact of the number of

scenarios on the quality of the optimization problem solution

for this particular power system can be found in [58] and [61].

The DRPs are considered to have a load pick-up/drop rate

equal to 10 MW/min and can provide reserves at a capacity cost

of 5 €/MWh and an exercise cost of 10 €/MWh [24], unless it is

stated otherwise. The value of lost load and energy not recovered

is set to 1000 €/MWh. The wind spillage cost is neglected in

order to avoid introducing bias in the results. The confidence

level for the evaluation of CV aR is considered equal to 0.99,

except for the cases in which it is differently declared.
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Fig. 2. The reduced set of scenarios used in the simulations.

Fig. 3. Example of load recovery of type 1 (scenario 20).

Fig. 4. Example of load recovery of type 2 (scenario 3).

B. Results and Discussion

1) Types of load recovery: Firstly, the deployment of the

response of DRPs for the two different types of load recovery

is illustrated. At a bus that stands for 15% of the total system

load, a DRP is considered to render available up to 10% of its

nominal load for reserve procurement.

A load recovery rate of 90% is considered. For the case that

the DRP is of type 1 (Fig. 3) the number of interruptions is not

limited, while for the case that the DRP is of type 2 (Fig. 4),

only one interruption is allowed and the load recovery must be

completed within two periods. In both cases the load curtailment

occurs in periods in which the wind power that is available in

Fig. 5. Comparison of the sets of efficient solutions obtained using the clas-
sical and the proposed approach.

a specific scenario is lower than the wind power that is sched-

uled day-ahead, so that the energy deficit is counterbalanced.

The load recovery periods are coordinated in such a way that

they coincide with periods of excessive wind power production.

Especially, in Fig. 3 it may be noticed that during periods 6-7

and 23-24 significant amounts of energy are recovered in order

to limit the curtailment of available wind power.

The contribution of DRPs to reducing the cost of operating

the system is a function of several interlaced factors including

the amount of wind spillage, the load reduction due to relaxed

energy recovery requirements and, especially, the amount of

reserves that are procured by the demand side. More specif-

ically, the energy cost is affected by the load reduction over

the scheduling horizon as a consequence of partial load recov-

ery and improved wind power integration, which are in turn

affected by the amount of deployed reserve. For the results of

Fig. 3 the expected cost of energy is 1.07% lower than the

baseline case, while the expected reserve procurement cost is

reduced by 29.93%. The same changes in the components of the

expected cost are 0.72% and 37.37%, respectively, in the case

in which 100% of the load that is deployed by the SO needs to

be recovered.

2) Comparison between the classical and the proposed

approach for mapping the Pareto efficient frontier: Although

establishing a direct comparison between the classical and the

proposed approach is challenging, the technical advantages of

the proposed method as regards the consideration of risk man-

agement can be revealed by attempting to map the same set

of Pareto efficient solutions, neglecting the effect of the DRPs

without loss of generality. To generate the same number of so-

lutions, a set of 21 evenly spaced values of β ∈ [0, 1] is used,

while 20 evenly spaced grid points are used for the application

of the proposed approach. The obtained frontiers are presented

in Fig. 5. The following may be noticed:
� The sets of efficient solutions discovered by the two meth-

ods (except for the solution for β = 1 and solution B)

are incomparable since the methods result in two different

mappings of the same Pareto frontier.
� For β = 0 the solution returned by the classical approach

coincides with the extreme solution A returned using
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Fig. 6. Comparison of the sets of efficient solutions for different values of the
load recovery rate.

AUGMECON. However, solution B dominates the solu-

tion obtained for β = 1 since solution B is characterized by

less EC for the same value of CV aR. In other words, for

β = 1 the returned solution is weakly efficient, i.e., for the

same value of CV aR, a solution with a better (lower) value

of EC is returned by AUGMECON. This is an expected re-

sult since the classical approach guarantees the efficiency

of the returns solutions, only as long as the weights are

strictly positive [55].
� Although evenly spaced values are used for both β and ep ,

AUGMECON results in a more even mapping of the Pareto

frontier, returning a unique solution at each iteration. On

the other hand, the application of the classical approach

results in the same solution for β = 0.75, . . . , 0.95. Also,

it can be noticed that a range of 37729 € in terms of EC
and 13496 € in terms of CV aR is left unmapped by the

classical approach because the Pareto frontier between the

solutions obtained by β = 0.70 and β = 0.75 is linear. The

solutions obtained by the classical approach correspond

to a tangent point in the objective space and thus only

the two extreme solutions can be discovered for any β ∈
[0.70, 0.75].

3) Factors that limit the contribution of DRPs to cost

reduction and risk mitigation: In order to reveal different factors

that would limit the capability of the demand side to reduce the

expected cost and mitigate the associated risk when participat-

ing in reserve procurement, a number of factors are investigated.

For these simulations, 47% of the total system load is considered

to be managed by DRPs of type 1 at different buses, rendering

available up to 10% of the demand for reserve procurement.

In Fig. 6, the effect of the amount of the curtailed load that has

to be recovered on the Pareto frontier is demonstrated. With the

decrease in load recovery rate, Pareto frontiers shift downwards

and leftwards, implying a reduction in both the CV aR and

the EC. The mechanism through which the risk aversion is

controlled is the tradeoff between reserve scheduling and wind

spillage.

Based on the results presented in Fig. 7 as the risk aversion

level increases, the SO is willing to spill more wind in order

to avoid procuring costly reserves (solution 1 corresponds to

Fig. 7. Expected wind spillage for different levels of risk aversion and values
of the load recovery rate (sol. 1- sol. 11 correspond to the AUGMECON solution
numbering on an ascending order of risk aversion level).

Fig. 8. Comparison of the sets of efficient solutions for different DRP reserve
scheduling and deployment costs.

the minimum level of risk aversion). Thus, relying on resources

that can both provide less costly reserves to handle wind power

uncertainty in comparison with the generating units and to re-

duce the overall demand leads in decreased expect cost, due to

reduced day-ahead energy cost, and risk, because of less costly

reserve scheduling and higher wind power integration. Due to

the fact that the trade-offs between risk and expected cost are

affected by the cost of procuring reserves, the impact of the par-

ticipation of demand side resources on improving the decision

making of the SO is directly related to the cost of scheduling

and deploying reserves, as indicated by Fig. 8. Reducing the

cost of demand side resources results in more favorable Pareto

frontiers for the SO for the same level of load recovery rate of

90%.

4) Effect of confidence level: The confidence level α is an

indication of the degree of conservatism by which the value

of CVaR is evaluated by the decision maker. In the aforemen-

tioned simulations the confidence level was considered equal

to 0.99. In order to investigate the influence of the selection of

parameter α on the performance of the system, additional sim-

ulations are performed considering that α takes values in the

set [0.90, 0.95, 0.99]. The characteristics of the DRPs are the

same with those considered in Section IV-B3.

The cumulative distribution functions (CDFs) of cost in indi-

vidual scenarios for α = 0.90 and α = 0.99 together with the
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Fig. 9. Cumulative distribution functions (CDFs) of cost in individual scenar-
ios for α = 0.9 and a = 0.99 for sol. 3.

Fig. 10. Expected wind spillage (solid lines) and cost of scheduled reserves
(dashed lines) for different degrees of risk aversion and confidence levels.

values of EC, V aR and CV aR are displayed in Fig. 9. The

CDFs correspond to the third AUGMECON solution on ascend-

ing order of risk aversion level (sol. 3). It may be noticed that

for a lower value of the confidence level both the values of the

EC and the CV aR are reduced. However, the standard devia-

tion of the cost is increased by 12.4%. This is a consequence of

considering a larger number of scenarios for the calculation of

CV aR as the confidence level decreases. Another important

observation is that the CDF that was obtained by optimizing

CV aR0.99 presents a value of CV aR0.9 that is lower by 0.23%

in comparison with the CDF that was obtained by optimizing

CV aR0.9 . The opposite is observed when CV aR0.99 is evalu-

ated on a CDF that was obtained by optimizing CV aR0.90 .

In practice, the degree of conservatism affects the trade-off

between wind spillage and cost of scheduled reserves. The ex-

pected available wind generation spillage is portrayed in a com-

mon diagram with the cost of scheduling reserves in Fig. 10 for

the three different values of the confidence level and different

degrees of risk aversion that are evaluated. It is rendered ev-

ident that for lower confidence levels the amount of expected

wind spillage increase is reduced for increasing levels of risk

aversion. The contrary holds for the scheduled reserve costs.

5) Impact of limitation on the contribution of DRPs in

reserve provision: Finally, the effect of potential rules that limit

the participation of demand side resources in reserve provision

is investigated. In Fig. 11 the efficient frontiers for the cases in

Fig. 11. Comparison of the sets of efficient solutions for different limits to
DRP contribution to reserves.

which the total amount of upward demand side reserves (90%

load recovery rate) are limited to 10%, 20% and 30% of the total

amount of upward reserves are comparatively presented for a

confidence level 0.99.

It is noticed that the presence of rules that limit the partici-

pation of DRPs causes a shift of the efficient frontiers towards

the efficient frontier that corresponds to the case in which the

contribution of DRPs is neglected. Obtaining a more advanta-

geous Pareto frontier may be viewed as a positive effect of the

participation of DRPs on the operation of the power system.

To quantitatively assess the impact of such constraints each

efficient frontier can be represented by its centroid, i.e., a fic-

titious point that can be found by averaging the coordinates of

all the points it comprises. Subsequently the distance between

the centroid of the efficient frontier corresponding to the case in

which DRPs are not considered as a system resource and each

of the efficient frontiers for different values of p depicted in

Fig. 11 can be calculated as a performance metric. Evidently,

greater distances correspond to more desirable efficient fron-

tiers. For instance, the efficient frontier for the case in which

participation of DRPs is not limited is 2.5 times greater in com-

parison with the efficient frontier for p = 10%. This is an in-

dication that imposing restrictions on the dependence on DRPs

for procuring reserves may significantly hinder the potential

benefits of DR.

C. Computational Statistics

The proposed methodology was implemented in GAMS 24.8

and the optimization problems were solved using CPLEX 12.

All the simulations were performed using a workstation with

two Intel Xeon processors clocking at 2.60 GHz and 128 GB of

RAM memory, running a 64 bit version of Windows.

In order to demonstrate the tractability of the proposed multi-

objective problem formulation, the size of each optimization

sub-problem and indicative computational statistics are pre-

sented. A larger modified system based on the actual power

system of Crete that was described in Section IV-A. is obtained

by replicating the power system and considering an intercon-

nection of limited capacity between the two new areas. The

modified system consists of 50 conventional generating units,

22 aggregated wind-farms, 38 buses and 49 transmission lines.
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TABLE V
COMPUTATIONAL STATISTICS

Case A Case B Case C Case D

Number of continuous variables 511679 541799 1023813 1084052
Number of integer variables 2788 7588 5576 15176
Number of constraints 174917 189757 351226 380905
Pay-off table construction time (s) 114 162 536 823
Sub-problem solution time (s) 31 36 110 343

The following cases are considered:

Case A: Power system of Crete as described in Section IV-A

without considering the effect of the DRPs.

Case B: Power system of Crete as described in Section IV-A

considering the effect of the DRPs (90% load re-

covery).

Case C: Modified power system of Crete without considering

the effect of the DRPs.

Case D: Modified power system of Crete considering the ef-

fect of the DRPs (90% load recovery).

The relevant results are compiled in Table V. The results indi-

cate that a direct solution of the proposed optimization problem

formulation is computationally tractable for real-life power sys-

tems.

V. CONCLUSION

In this study, a risk-aware joint energy and reserve market

structure, incorporating demand side resources was presented.

The mathematical model is based on two-stage stochastic pro-

gramming in order to capture the uncertain nature of significant

wind power penetration, while the risk-averse behavior of the

SO with respect to the expected operational costs was con-

sidered using a novel multi-objective optimization approach,

based on the AUGMECON method. Furthermore, the load re-

covery effect was explicitly taken into account by developing

generic models. Simulations performed for the case of the in-

sular power system of Crete, Greece, allowed drawing useful

insights regarding the advantages from applying the proposed

methodology to risk management and the factors that affect the

beneficial contributions from demand side resources participa-

tion in reserve procurement. The most important observations

may be summarized as follows:
� The application of the AUGMECON method resulted in a

richer mapping of the Pareto frontier in comparison with

the approximation obtained using the classical weighted

sum approach.
� The risk mitigation from the participation of DRPs in re-

serve provision is sensitive to the load recovery require-

ments and the costs related to the deployment of demand

side reserves.
� The mechanism through which the SO can control the risk

embedded in its decisions is the amount of wind that is in-

tegrated in the system by procuring the necessary reserves.

A more elastic demand side leads to higher exploitation of

wind energy at any level of risk aversion.
� The existence of rules that limit the amount of reserves

that may be scheduled by DRPs may underestimate their

contribution to the reduction of operational costs, as well

as positive externalities such as risk mitigation.

APPENDIX I

LOAD RECOVERY OF TYPE 2

In Reference [24] load recovery is modeled using a constraint

that is essentially equivalent to (32) when omitting the multipli-

cation of the left hand side with the binary variable. Although

such a constraint seems straightforward, in fact it can be easily

proven that it is valid only for the case in which T rec
j = 1.

Let us assume that in period τ of scenario s an amount of up

reserve is deployed from DRP j (rDRP,u
j,τ ,s > 0) and that it must

be recovered in the next T rec
j > 1 periods. Without loss of gen-

erality, assume also that γj = 1. Then, in period τ , rDRP,u
j,τ ,s =

rDRP,d
j,(τ +1),s + · · · + rDRP,d

j,τ ′,s + · · · + rDRP,d
j,(τ +T r e c

j ),s . If rDRP,d
j,τ ′,s >

0, τ ′ > τ + 1, then the constraint rDRP,u
j,(τ +1),s = rDRP,d

j,(τ +2),s +

· · · + rDRP,d
j,τ ′,s + · · · + rDRP,d

j,(τ +T r e c
j +1),s , that must also hold, is vi-

olated due to the fact that rDRP,u
j,(τ +1),s , . . . , r

DRP,u
j,(τ +T r e c

j ),s = 0 since

in the recovery period another curtailment is not possible as

stated by (33), unless rDRP,d
j,τ ′,s = 0,∀τ ′ > τ + 1. This implies

that either T rec
j = 1 or alternatively, feasibility is achieved by

recovering all the curtailed load in the first period following the

interruption.

To overcome this limitation, the nonlinear constraint (32) is

introduced. Constraints (29) and (33) assert that if uDRP,u
j,τ ,s = 1,

then uDRP,u
j,(τ +1),s , . . . , u

DRP,u
j,τ ′,s , . . . , uDRP,u

j,(τ +T r e c
j ),s = 0. As a result,

rDRP,u
j,τ ,s = (rDRP,d

j,(τ +1),s + · · · + rDRP,d
j,τ ′,s + · · · + rDRP,d

j,(τ +T r e c
j ),s)

· 1 and rDRP,u
j,( τ +1 ),s = ( rDRP,d

j,(τ +2),s + · · · + rDRP,d
j,τ ′,s + · · · +

rDRP,d
j,(τ +T r e c

j +1),s) · 0 are feasible for rDRP,d
j,τ ′,s > 0,∀τ ′ > τ + 1.

APPENDIX II

MIXED-INTEGER LINEAR REFORMULATION OF (32)

Constraint (32) can be substituted by the set of linear con-

straints (A.1.)–(A.5.) in order to preserve the MILP formulation.

µj,t,s ≤ RDDRP
j · T S · T rec

j · uDRP,u
j,t,s ∀j, t, s (A.1)

µj,t,s ≥

t+T r e c
j

∑

τ =t+1

rDRP,d
j,τ ,s

−
(

1 − uDRP,u
j,t,s

)

· RDDRP
j · T S · T rec

j ∀j, t, s (A.2)

µj,t,s ≤

t+T r e c
j

∑

τ =t+1

rDRP,d
j,τ ,s ∀j, t, s (A.3)

µj,t,s = γj · r
DRP,u
j,t,s ∀j, t, s (A.4)

µj,t,s ≥ 0 ∀j, t, s (A.5)

To achieve the linearization of (32), first the nonnegative aux-

iliary variable µj,t,s which replaces uDRP,u
j,t,s ·

∑t+T r e c
j

τ =t+1 rDRP,d
j,τ ,s

must be bounded. A suitable upper bound is the maximum tech-

nically achievable amount of energy that may be recovered dur-

ing the recovery period that is constrained by the load pickup
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rate (RDDRP
j · T S · T rec

j ). Note that if in period t a curtailment

occurs, then uDRP,u
j,t,s = 1 and from (A.2.)–(A.3.) it is deduced

that µj,t,s =
∑t+T r e c

j

τ =t+1 rDRP,d
j,τ ,s . Alternatively, if no curtailment

occurs, then uDRP,u
j,t,s = 0. In this case (A.1.) and (A.5.) imply

that µj,t,s = 0.
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