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Abstract

The use of unmanned aerial vehicles (UAVs) was intro‐
duced to  monitor  a  traffic  situation  and the  respective
cruise route optimization problem was given.  Firstly,  a
multi-objective optimization model was proposed, which
considered two scenarios: the first scenario was that there
were enough UAVs to monitor all the targets, while the
second  scenario  was  that  only  some  targets  could  be
monitored  due  to  a  lack  of  UAVs.  A  multi-objective
evolutionary  algorithm  was  subsequently  proposed  to
plan  the  UAV  cruise  route.  Next,  a  route  planning
experiment, using the Microdrones md4-1000 UAV, was
conducted and a UAV route planning case was studied.

The experiment showed that the UAV actual flight route
was almost consistent with the planned route. The case
study  showed  that,  compared  with  the  initial  optimal
solutions, the optimal total UAV cruise distance and the
number of UAVs used in scenario 1 decreased by 41.65%
and 40.00%, respectively. Meanwhile, the total UAV cruise
distance and the number of targets monitored in scenar‐
io 2 reduced by 15.75% and increased by 27.27%, respec‐
tively.  In  addition,  a  comparison  study  with  other
algorithms was conducted, while the optimization results
were  also  improved.  This  demonstrated  that  the  pro‐
posed UAV cruise route planning model was effective.

Keywords Unmanned Aerial Vehicle, Route Planning,
Multi-objective Optimization, Traffic Monitoring

1. Introduction

Multi-source and abundant traffic information is the
foundation of traffic management and transportation
planning. Due to limited budgets, some urban roads and
many rural roads in China are not installed with any fixed
traffic detectors. Therefore, it is difficult to take effective
measures to monitor traffic situations and detect traffic
incidents due to the lack of traffic information. Given their
unique advantages of mobility, flexibility and wide view,
UAVs have been used widely in the fields of meteorology,
environment monitoring and traffic monitoring [1, 2, 3].
Hence, in this paper, a UAV is introduced to collect road
traffic information and detect traffic incidents.

After cruise route planning takes place, a UAV flies to the
road targets where its camera will take pictures of the road
traffic situation. Then, traffic parameters (such as road
density, vehicle queuing length and vehicle speed) are
extracted from the UAV video by traffic image processing
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technology. In turn, traffic incident detection and traffic
congestion analysis can be conducted based on the extract‐
ed traffic parameters. However, maximum flight distance
of a UAV is always limited; for example, the maximum
flight time for most existing civil UAVs with a battery is no
more than 25 minutes. In addition, due to insufficient
budgets, the number of UAVs available is always limited;
therefore, it is essential to plan the UAV cruise route by
minimizing the cruise cost as much as possible.

The UAV cruise route optimization problem had been
studied previously. Hutchison formulated the UAV cruise
route optimization problem as the travelling salesman
problem (TSP), adopting a simulated annealing algorithm
to optimize the shortest UAV cruise route [4]. Tian et al.
considered the time window of targets and formulated the
UAV cruise route planning problem as a single objective
problem, then adopted a genetic algorithm to optimize the
UAV cruise route [5]. Yan et al. selected road segments as
monitored targets, although only one UAV was employed
to monitor these targets for traffic information collection;
the optimization problem was then formulated using the
TSP, with a genetic algorithm employed to optimize the
shortest route [6]. In summary, the above-mentioned
studies deploy UAVs to monitor all targets with the aim of
minimizing the UAV cruise cost, while formulating the
UAV cruise route planning problem as a single objective
optimization problem, even though none of them considers
the influence of multi-objective optimization on UAV
cruise route planning.

Meanwhile, Liu et al. proposed a multi-objective UAV
cruise route optimization model for traffic surveillance,
which considered the impact of time windows and multi-
surveillance on route planning, as well as aimed to mini‐
mize the total UAV cruise distance and the number of
UAVs used [7]. Liu et al. [8] considered the length of road
segments and developed a new UAV route planning
optimization model for road segment traffic surveillance.
In summary, the above studies make an assumption that,
with enough UAVs, all targets can be monitored. That said,
due to insufficient budgets, the number of UAVs available
is always limited, such that not all targets can be monitored
by UAVs in this situation. Generally, the scenario in which
UAV route planning involves an insufficient number of
UAVs is seldom considered. Additionally, UAV flight
route accuracy between the planned route and the actual
flight route is seldom discussed.

Therefore, this paper first considers the issues relating to a
limited number of UAVs, UAV maximum flight distance
and multi-objective optimization, as well as proposes a
multi-objective optimization model. In turn, an evolution‐
ary algorithm is proposed to plan the UAV cruise route.
Next, a UAV flight experiment is conducted to verify UAV
fight route accuracy. Finally, a case study is implemented
to validate the effectiveness of the proposed method
compared with other algorithms.

The remainder of this paper is structured as follows. Section
2 proposes a multi-objective optimization model for UAV
cruise route planning. Section 3 proposes an evolutionary
algorithm for solving the UAV route planning problem. In
section 4, a UAV flight experiment is conducted, while a
case study is used to validate the proposed algorithm.
Finally, conclusions and discussions are presented.

2. Modelling

As mentioned above, there are two scenarios for planning
a UAV cruise route, which are concerned with whether the
number of UAVs involved is enough or insufficient. Hence,
two UAV cruise route planning scenarios are given as
follows:

1. Scenario 1

There are enough UAVs to monitor all targets, but we need
to minimize the UAV cruise cost as much as possible. In
this situation, two optimization objectives are considered,
i.e., minimize the total UAV cruise distance and minimize
the number of UAVs used. After optimization, the mini‐
mum number of UAVs monitoring all targets can be
determined.

2. Scenario 2

As the number of available UAVs is limited, only some
targets can be monitored by them. In this situation, we need
to use the available number of UAVs to monitor targets as
much as possible with the minimum cost. Therefore, two
optimization objectives are considered, i.e., minimize the
total cruise distance and monitor targets as much as
possible.

Assuming that the number of targets is Nc and the UAV
base is labelled as “0”, the target set with the UAV base is
denoted as T = {0, 1, ..., Nc}. Meanwhile,
R ={(i, j)| i, j∈T , i ≠ j} is used to represent the route set for
target pairs and dij is used to represent the route’s Euclidean
distance for each target pair (i, j). The number of available
UAVs is denoted as Nv and the UAV maximum cruise
distance is denoted as MD. If the UAV departs from and
returns to the base, but does not visit any target, its cruise
route distance is set as zero.

2.1 Modelling scenario 1

According to the above description, the mathematical
model for scenario 1 is shown as follows:

1. Minimize the total UAV cruise distance:

1
1 0 0,

Min
v c cN N N

kij ij
k i j j i

f x d
= = = ¹

= ×åå å (1)

2. Minimize the number of UAVs used:
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Min
v cN N
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k j

f x
= =

=åå (2)

The constraints are listed as follows:

0
1

1, 1,2,...,
cN

k j v
j

x k N
=

= " =å (3)

Eq. (3) ensures that the UAV takes off from the base.

0
1

1, 1,2,...,
cN

ki v
i

x k N
=

= " =å (4)

Eq. (4) ensures that the UAV flies back to the base.

0, 1
1, 1,2,...,

c vN N

kij c
i i j k

x j N
= ¹ =

= " =å å (5)

0, 1
1, 1,2,...,

c vN N

kij c
j j i k

x i N
= ¹ =

= " =å å (6)

Eqs. (5-6) mean that there is only one UAV is able to arrive
at any given target, while there is only one UAV that can
depart from any given target. Therefore, Eqs. (5-6) ensure
that each target is visited by only one UAV.

0 0,
, 1,2,...,

c cN N

kij ij v
i j j i

x d MD k N
= = ¹

× £ " =å å (7)

Eq. (7) ensures that the UAV maximum cruise distance is
not exceeded.

0
1 1

v cN N

k j v
k j

x N
= =

£åå (8)

Eq. (8) ensures the number of available UAVs is not
exceeded.

The decision variable is denoted as follow:

( )  UAV 1,route of target pair , cruised by
0,otherwisekij

i j k
x

ìï= í
ïî

(9)

where xkij is a binary variable. If UAV k flies from target i
to target j, then xkij equals 1; otherwise, it equals 0.

2.2 Modelling scenario 2

According to the above description, the mathematical
model for scenario 2 is shown as follows:

1. Minimize the total UAV cruise distance:

1
1 0 0,

Min
v c cN N N

kij ij
k i j j i

f x d
= = = ¹

= ×åå å (10)

2. Minimize the number of unmonitored targets (i.e.,
maximize the number of monitored targets):

2
1 0 1,

Min
v c cN N N

c kij
k i j j i

f N x
= = = ¹

= -åå å (11)

The constraints are listed as follows:

0
1

1, 1,2,...,
cN

k j v
j

x k N
=

= " =å (12)

Eq. (12) ensures that each UAV takes off from the base.

0
1

1, 1,2,...,
cN

ki v
i

x k N
=

= " =å (13)

Eq. (13) ensures that each UAV flies back to the base.

0, 1
1, 1,2,...,

c vN N

kij c
i i j k

x j N
= ¹ =

£ " =å å (14)

0, 1
1, 1,...,

c vN N

kij c
j j i k

x i N
= ¹ =

£ " =å å (15)

Eqs. (14-15) mean that there is, at most, one UAV that
arrives at any given target, while there is, at most, one UAV
that departs from any given target. Therefore, Eqs. (14-15)
ensure that one target is visited by, at most, one UAV, i.e.,
some targets may not be visited by any UAVs.

0 0,
M , 1,2,...,

c cN N

kij ij v
i j j i

x d D k N
= = ¹

× £ " =å å (16)

Eq. (16) ensures that the UAV maximum cruise distance is
not exceeded.

0
1 1

=
v cN N

k j v
k j

x N
= =
åå (17)

Eq. (17) means that the number of UAVs departing from a
UAV base is Nv which ensures that all UAVs are used to
cruise targets.

The decision variable is denoted as follows:

( )  UAV 1,route of target pair , cruised by
0,otherwisekij

i j k
x

ìï= í
ïî

(18)
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where xkij is a binary variable. If UAV k flies from target i
to target j, then xkij equals 1; otherwise, it equals 0.

It can be seen that the second optimization objectives of the
two scenarios are different. Meanwhile, constraints (5, 6, 8)
are also different from constraints (14, 15, 17).

3. Algorithm for UAV Cruise Route Planning

As for multi-objective optimization, different weights are
always given to different objective functions, after which
the  multi-objective  problem  is  converted  into  a  single
objective  problem,  and  this  traditional  optimization
method  is  always  used  to  solve  this  kind  of  problem.
However, the weights are difficult to determine and the
optimization result  is  always bad.  Meanwhile,  different
objectives will influence each other in a complicated way.
Therefore, it is important to find an optimization set for
different objective functions. In this context, some elitist
multi-objective algorithms have been developed, such as
the strength Pareto evolutionary algorithm (SPEA) [9] and
the Pareto archived evolutionary strategy (PAES) [10]. As
elitist strategy, SPEA uses an external population to store
all non-dominated solutions and assigns a fitness to non-
dominated solutions in every generation,  after which it
adopts a deterministic clustering technique to guarantee
the algorithm’s  diversity.  PAES compares  the offspring
with  the  parent:  if  the  offspring  works  better  than  the
parent,  the  offspring  is  adopted  as  the  next  parent;
otherwise, the offspring is deleted. Once the parent and
the offspring no longer dominate each other, an archive
of the best solutions is used to compare the offspring and
the  parent  before  one  of  them is  selected.  In  addition,
other multi-objective evolutionary algorithms have been
used  in  solving  the  multi-objective  optimization  prob‐
lem  [11,  12,  13],  including  the  non-dominated  sorting,
crossover,  mutation  and  tournament  selection  algo‐
rithms.  Based  on  the  aforementioned,  an  evolutionary
algorithm is proposed to plan UAV cruise routes; its flow
chart is shown in Figure 1.

As  Figure  1  shows,  the  proposed algorithm operations
include feasible UAV route chromosome generation, non-
dominated sorting,  tournament selection,  crossover and
mutation.  For  this  particular  optimization  problem,
feasible  UAV  route  chromosome  generation,  crossover
and mutation are especially proposed in this paper, which
are marked in the grey boxes in Figure 1. The methods
for  generating  a  feasible  UAV  route  chromosome  for
scenarios  1  and  2  are  given  in  sections  3.1  and  3.2,
respectively;  non-dominated  sorting  is  presented  in
section 3.3; tournament selection is presented in section
3.4;  and  crossover  and  mutation  are  presented  in  sec‐
tions 3.5 and 3.6, respectively.

3.1 Feasible chromosome generation in scenario 1

Feasible UAV route chromosome generation should
consider two points: (1) UAV route chromosome represen‐

tation and (2) satisfying UAV route different constraints. A
targeted direct arrangement method [14] is adopted to
depict the UAV route chromosome because it is easy to
represent and code the UAV route chromosome with this
approach. Meanwhile, a sub-route division method is
proposed to generate a feasible UAV route, which is shown
in Figure 2.

Generate an initial UAV route 
chromosome X

Start

Generate a feasible UAV sub-route 
R1 satisfying constraints based on X

Remained X is denoted as R2, 
R2=X-R1; X=R2

X is null?

Output feasible UAV sub-routes

End

N

Y

Figure 2. Algorithm structure of the sub-route division method

A UAV chromosome of eight targets, 3-5-8-2-1-7-6-4, is
used to illustrate the sub-route division method. Firstly,
target 3 is selected as the first target for UAV 1 and then the
length of sub-route 0-3-0 is calculated if the length does not
exceed the UAV maximum cruise distance, then sub-route
0-3-0 is feasible. Next, target 5 is selected as the second
target for UAV 1, after which the length of sub-route 0-3-5-0

Set parameters

Set the size of chromosome population as 

Popsize, and generate initial population P0 with 

Popsize chromosomes as parent population

Convert initial chromosomes of  

parent population into feasible ones  

Calculate the objective values of 

individuals in current population

Sort individuals in non-dominated 

way and determine their ranks

Select tournament individual and 

generate the tournament population

Conduct crossover and mutation for 

tournament population

Generate child population Ct

Generate new population Rt

Rt=Pt Ct

Calculate objective values of 

individuals in Rt

 Calculate ranks and crowding 

distances of individuals in Rt, 

conduct non-dominated sorting

Select the top Popsize 

individuals as the new parent 

population Pt+1 from Rt 

Maximum 

iterations?

End

Start

Iteratio
n

+
1

N

Y

E
litism

 

Figure 1. Evolutionary algorithm flow chart for planning a UAV cruise route
[8, 11]
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is calculated; if the sub-route length exceeds the UAV
maximum cruise distance, the sub-route is not feasible.
Therefore, 0-3-5-0 is the feasible route for UAV 1, which can
satisfy the UAV maximum cruise distance constraint.

The remaining chromosome is then 8-2-1-7-6-4, while the
sub-route division is repeated until any target is input into
a UAV sub-route. Assuming that the route division result
is 0-3-5-0, 0-8-2-1-7-6-0 and 0-4-0, this means that three
UAVs are needed, i.e., sub-route 0-3-5-0 for UAV 1, sub-
route 0-8-2-1-7-6-0 for UAV 2 and sub-route 0-4-0 for UAV
3. It can be seen from the feasible sub-route divisions that
a UAV takes off from and flies back to the base, that each
target is only monitored by one UAV and that the UAV
maximum cruise distance is not exceeded. Based on three
UAV sub-routes, the optimization objective values can be
calculated.

3.2 Feasible chromosome generation in scenario 2

As the number of UAVs is limited, only some targets can
be monitored. The steps for generating feasible chromo‐
somes are listed as follows:

1. Assume that, in scenario 1, the minimum number of
UAVs to monitor all targets is set as m and the number
of UAVs available is n, with n being less than m. In this
situation, we can select n sub-routes from m sub-
routes, i.e., the combination number of generating new
feasible UAV sub-routes is Cm

n.

2. Calculate the two objectives for feasible UAV route
chromosomes.

3. Conduct non-dominated sorting (see section 3.3) for
UAV route chromosomes, after which the chromo‐
some with the lowest rank is selected as the feasible
one.

For example, a UAV route chromosome 0-7-3-2-4-5-6-1-0
can be divided into three sub-routes, i.e., 0-7-3-0 (sub-route
1), 0-2-4-5-6-0 (sub-route 2) and 0-1-0 (sub-route 3). If the
number of available UAVs is two, then the combination
number of possible UAV routes is C3

2 =3: i.e., sub-route 3
and sub-route 2; sub-route 3 and sub-route 1; and sub-route
2 and sub-route 1. If the combination of sub-route 1 and
sub-route 3 has the minimum total cruise distance and the
maximum number of monitored targets, then the two
objective values are only determined by sub-route 3 and
sub-route 1.

3.3 Non-dominated sorting

Non-dominated sorting [11] is used to select the superior
individuals of the population, whose steps are listed as
follows: (1) calculate the two objective values for different
superior individuals; (2) determine which individual has a
preferable domination; and (3) calculate the crowding
distance and Pareto rank for each individual. For minimi‐
zation problems, the individuals with smaller objective

values occupy the lower ranks. If the rank of an individual
is the lowest (i.e., the rank value is 1), it is selected first. If
the rank values of different individuals are the same,
individuals with the greater crowding distance are selected
first.

3.4 Tournament selection

The function of tournament selection [11] is to select prior
individuals and put them into the parent population, which
is helpful to maintain population diversity. The steps in
tournament selection are listed as follows: (1) determine the
tournament pool size (e.g., 10 UAV routes) and the tour‐
nament number in each tournament selection (e.g., two
UAV routes); (2) put the two UAV routes with a high
priority into the tournament pool; and (3) select other UAV
routes with a high priority until the tournament pool is full.

3.5 Order-based crossover

Order-based crossover is adopted in order to reconstruct
chromosomes. Assuming that there are two parent UAV
routes, A=123456789 and B =987654321. Then the matched
sections of A and B should be generated at random: for
example, “34” of A and “76” of B are selected, after which
“76” is put in the front of A, while “34” is put in the front
of B; in turn, we can get two reconstructed UAV routes,
A ' =76|123456789 and B ' =34|987654321. Next, delete the
repeated numbers of A ' and B ', such that, after the order-
based crossover operation, two child UAV routes can be
expressed as A '' =761234589 and B '' =349876521.

3.6 Multiple-exchange mutation

The function of multiple-exchange mutation is to guarantee
the population diversity and improve the local space search
ability. The steps of multiple-exchange mutation are listed
as follows: (1) randomly determine two exchange positions
of a chromosome; (2) determine the number of multiple-
exchanges and conduct a multiple-exchange mutation
operation. For example, multiple-exchange mutation
should be conducted twice in respect of the UAV route
A=123456789. On the first occasion, randomly determine
two exchange positions (e.g., 3 and 6), after which the third
and sixth genes of A exchange their positions, while the
UAV route after one exchange mutation is represented as
A ' =126453789. On the second occasion, randomly deter‐
mine two exchange positions (e.g., 1 and 9), after which the
first and ninth genes of A ' exchange their positions, while
the UAV route after two exchange mutations is represented
as A '' =926453781.

4. UAV Flight Experiment and Case Study

4.1 UAV flight experiment

Besides UAV flight planning, we are also concerned about
whether the UAV flight route accuracy is good enough
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because a UAV flight may be affected by its commensurate
technological performance and environment. To this end,
a md4-1000 UAV cruise route planning experiment was
conducted on the Tongji University campus, China, in 2012,
in order to analyse the difference between a planned UAV
route and an actual fight route. The maximum flight
distance for the md4-1000 UAV is 40km with full battery
capacity, using either remote control or Waypoint auto‐
matic flight modes. Some UAV cruise route planning
pictures are shown in Figure 3.

 

(a) Md4-1000 UAV 

 

(b) Planned and actual UAV flight route in Google Earth 

Figure 3. UAV cruise route planning experiment

Figure 3(a) shows the md4-1000 UAV, while Figure 3(b)
shows the planned and actual UAV flight routes in Google
Earth. As Figure 3(b) shows, there are two parallel lines on
the campus playground: the upper line represents the
UAV’s actual flight route, while the lower line represents
its planned flight route. It can be seen that the UAV’s actual
flight route was almost consistent with the planned flight
route.

4.2 Case study

Assuming that there are 20 intersections located in a square
area, and the traffic situations of these targets are moni‐
tored by UAVs. Twenty intersections, the UAV base and
the UAVs’ IDs are shown in Figure 4; the length of the
square side is set at 20km. In addition, the number of
available UAVs is set as five, while their maximum cruise
distance is set at 40km.

1. Scenario 1: all targets were monitored by UAVs

The proposed approach was implemented on the MATLAB
platform, with the multi-objective algorithm parameters

set as follows: the chromosome population size was set at
100, the tournament pool size was set at 50, the individual
tournament number in each selection was set at 2, the
maximum iteration was set at 300, the crossover and
mutation rates were respectively set at 0.8 and 0.1, and the
multiple-exchange time of the mutation operation was set
at 5.

The case simulation was implemented 20 times, while the
Pareto optimized solutions are shown in Figure 5(a). Also
in Figure 5(a), 100 squares represent 100 initial solutions,
while 20 crosses represent 20 optimized solutions. The
optimal UAV planned cruise route is shown in Figure
5(b), which shows that the minimum number of UAVs to
monitor all targets was three.

With reference to Figure 5, the resulting comparison of the
initial and optimized optimal solutions is listed in Table 1.

Average
cruise

distance/km

Average
number of
UAVs used

Optimal cruise
distance/km

Optimal
number of
UAVs used

Initial solution 243.43 7.53 182.25 5

Optimized
solution

122.05 3.65 106.35 3

Decrease degree -49.86% -51.53% -41.65% -40.00%

Table 1. Resulting comparison of initial and optimized optimal solutions

As Table 1 shows, compared with the initial solutions, the
average cruise distance and the average number of UAVs
used decreased by 49.86% and 51.53%, respectively, while
the optimal cruise distance and the number of UAVs used
decreased by 41.65% and 40.00%, respectively. This
demonstrated that the two objective values had been
improved significantly. In addition, a comparison study of
SPEA and PAES algorithms was conducted. The optimiza‐
tion was also implemented 20 times, such that 20 optimized
solutions were obtained for both SPEA and PAES algo‐

Figure 4. Distribution of targets and the UAV base [14]
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rithms. The resulting comparison of different algorithms is
listed in Table 2.

Method

Average optimized
solutions

Optimal optimized
solutions

Objective 1 Objective 2 Objective 1 Objective 2

SPEA 128.38 3.87 110.83 3

PAES 131.86 4.05 116.48 3

Proposed
algorithm

122.05 3.65 106.35 3

Decrease
degree with

SPEA
-4.93% -5.68% -4.04% 0.00%

Decrease
degree with

PAES
-7.44% -9.88% -8.70% 0.00%

Table 2. Optimized solution comparison of different algorithms

As Table 2 shown, with the exception of objective 2 (i.e., the
number of UAVs used) in optimal optimized solutions,
other solutions of the proposed algorithm decreased to
some extent compared with SPEA and PAES, this demon‐
strated that the proposed algorithm was effective.

 

(a) Optimized solution and initial solution 

     

(b) Optimal UAV planned route 

Figure 5. Optimization result of UAV cruise route planning

2. Scenario 2: only some targets were monitored by
UAVs

In scenario 1, at least three UAVs were needed to monitor
all targets, if the number of available UAVs was only two,
such that only some targets could be monitored. The
proposed approach was also implemented on the MAT‐
LAB platform, while the algorithm parameters were the
same as scenario 1. Case simulation was also implemented
20 times, while the Pareto optimized solutions are shown
in Figure 6. Also in Figure 6, 100 squares represent 100
initial solutions, while 20 crosses represent 20 optimized
solutions. In addition, there are five individuals in the first
Pareto front, which are labelled as “1”, “2”, “3”, “4” and
“5”. Meanwhile, UAV routes for these five Pareto front
individuals are shown in Figure 7.

Figure 6. Pareto optimal solution

If we need to monitor as many targets as possible, the
individual “1” of the Pareto front is preferred; its UAV
routes are 0-1-8-7-10-12-2-14-5-0 for UAV 1 and
0-17-11-20-18-3-4-0 for UAV 2. Compared with the initial
optimal solutions, the optimized optimal total cruise
distance falls by 15.75%, whereas the optimized optimal
number of monitored targets increases by 27.27%, which is
shown in Table 3.

Total cruise distance/km
Number of monitored

targets

UAV1 UAV2 Total UAV1 UAV2 Total

Initial optimal
solution

36.92 39.70 76.63 6 5 11

Optimized optimal
solution

32.78 31.78 64.56 8 6 14

Decrease degree -11.21% -19.95% -15.75% +33.33% +20.00% +27.27%

Table 3. Resulting comparison of initial and optimized optimal solutions

In addition, a comparison study of SPEA and PAES
algorithms was conducted with regard to the condition in
which as many targets as possible were monitored. The
optimization was also implemented 20 times, while 20
optimized solutions were obtained for both SPEA and
PAES algorithms. The optimal resulting comparison of
different algorithms is listed in Table 4.
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UAV route(s)
Total cruise
distance/km

Number of
monitored

targets

SPEA
0-5-14-4-18-3-17-20-0
0-2-12-9-10-7-8-1-0

66.76 14

PAES
0-5-14-2-10-9-12-7-1-

0
0-17-11-20-18-3-4-0

67.29 14

Proposed
algorithm

0-1-8-7-10-12-2-14-5-
0

0-17-11-20-18-3-4-0
64.56 14

Decrease
degree with

SPEA
- -3.30% 0.00%

Decrease
degree with

PAES
- -4.06% 0.00%

Table 4. Optimal solution comparison of different algorithms

As Table 4 shows, in the scenario in which as many targets
as possible were monitored, the maximum number of
monitored targets for the each of the three algorithms was
the same, i.e., 14 targets. As for the total cruise distance, the
proposed algorithm performed better than the SPEA and
PAES algorithms, while the decrease degree was 3.30% and
4.06%, respectively.

5. Conclusions

This paper proposed a multi-objective optimization
method to plan UAV cruise routes; a UAV flight experi‐
ment was also conducted. The experiment showed that the
UAV actual flight route was highly consistent with the
planned route; the case study showed that the two objective
values for two scenarios were improved significantly. In
addition, a comparison study with other algorithms was
conducted and the optimization results were also im‐
proved to some extent, which demonstrates that the
proposed method for planning UAV cruise routes is
effective.

 

    

  (a) Pareto individual 1                      (b) Pareto individual 2 

   

(c) Pareto individual 3                       (d) Pareto individual 4 

 

(e) Pareto individual 5 

Figure 7. UAV routes for five Pareto front individuals
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Besides traffic monitoring, UAVs can also be used for
monitoring oil spills at sea and atmospheric pollution. As
for oil spills at sea, UAVs can carry high-resolution cameras
and take aerial surveillance in the affected area continu‐
ously. The affected area can then be filtered out efficiently,
while the drifting and diffusion processes of the oil spill can
be presented, which will be helpful when making proper
decisions to reduce accidental loss. As for atmospheric
pollution, an atmospheric detector can be attached to a
UAV (especially an electricity-powered UAV), after which
the UAV can fly at a certain altitude to collect air pollution
data. If the UAV-based monitoring lasts for several months,
different kinds of air pollution data can be obtained. By
combining the aerial pollution data with the surface data,
more detailed and sophisticated models can be established
to describe the generation and diffusion of air pollution.
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