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Abstract

Limited natural daylight in Nordic Countries means artificial lighting is a critical factor

in industrial plant production. The electricity cost of artificial lights accounts for a

large percentage of the overall cost of plant production. The optimal use of artificial

lighting in plant production can be formulated as a multi-objective problem (MOP)

to achieve optimal plant growth while minimizing electricity cost. In previous work,

for solving this MOP, a Genetic Algorithm (GA) was used to create a Pareto Frontier

(PF), which contains solutions representing a trade-off for using artificial lighting

against plant production objectives. The PF was updated immediately once a non-

dominated child-solution was found by comparing the dominance with solutions in

the PF. Besides, in addition to the PF, the initial random population is also reused as

a parent source in the evolution process. When the genetic evolution process

terminated, a priority-based selection mechanism was used to select a final solution

from the PF. In this paper, an alternative evolution strategy is proposed and

compared with the previous GA evolution strategy. By this alternative strategy, all

child-solutions are only compared with their parents during the evolution process,

and the non-dominated child-solutions are collected into a candidate list. The PF is

then updated at the end of each generation by comparing solutions on the PF with

the collected candidate solutions. In this alternative strategy, the PF is the only

source of parent-solution during the evolution process. In addition, a posterior

normalization is implemented in the dominance evaluation, and social welfare

metrics (SWs) are applied as an alternative to the priority-based selection mechanism

to avoid the explicit ranking of objectives. The experimental results show that the

proposed alternative evolution strategy outperforms the previous strategy on

dramatically avoiding local minima.

Keywords: Multi-objective optimization problem (MOP), Social Welfare metrics (SWs),

Commercial greenhouse, Multi-objective evolutionary algorithm (MOEA), Genetic

Algorithm (GA)
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Introduction

Greenhouses are complex systems that can provide the required environment for plant

production. Greenhouses are high energy-consuming facilities with approximately 50%

energy consumption cost of the whole production process (Shen et al. 2018). There are

two types of energy consumption in a greenhouse system – the basic energy consumption

and the actuator driving consumption. The basic energy consumption, including artificial

lighting, dehumidification, heating, cooling, etc., accounts for more than 90% of the total

energy consumption in the greenhouse (Kjaer et al. 2011; Hemming et al. 2017). Aside

from this, artificial lighting systems consume approximately 75% of the total energy con-

sumption (Sørensen et al. 2016a; Kjaer et al. 2012). This makes the energy-efficient oper-

ation of artificial light critical in commercial plant production.

Several approaches have defined this as a multi-objective optimization problem

(MOP). In (Aaslyng et al. 2003), a greenhouse climate control system, “IntelliGrow,”

was suggested to reduce energy consumption by optimizing the use of heating and

artificial lighting according to natural irradiance while maintaining the performance in

plant production. The authors committed experiments of IntelliGrow on two

greenhouses in Denmark for 6 months and compared the results of the experiments

with historical data from plant production at the site. Comparing energy consumption

during the use of IntelliGrow with the energy use recorded in historical data suggested

that IntelliGrow was able to reduce energy consumption drastically. However, when

IntelliGrow calculates the optimal climate control parameters, such as CO2 concentra-

tion and temperature, only the irradiance that is obtained from natural light is consid-

ered. Thus, the contribution from artificial light is not considered in the optimization.

Further, the optimization in IntelliGrow does not consider the physical properties of

the installed hardware, such as the effectiveness of the ventilation system and the heat-

ing system, which can also affect the optimization in a real scenario.

In (Markvart et al. 2008), a Genetic Algorithm (GA) is proposed to solve the problem.

Their application, DynaLight, models each growth compartment as an optimization con-

text where the optimization goal is to find an optimal schedule for using artificial light,

considering multiple objectives – including objectives that seek to minimize electricity

cost, ensure sufficient artificial lighting for the plants while considering natural irradiation

forecasts and taking into account grower-specific preferences towards the light schedule.

The schedule for the use of artificial lighting is referred to as the light plan. This approach

creates a PF of Pareto optimal light plans (Hashem et al. 2017). In DynaLight, the PF is

updated once a child solution is created through mutation or crossover by comparing the

dominance of this new solution with the current PF. For comparing the dominance, two

comparators are involved: first against the objectives with the highest priority and then

against all of the domain objectives. As a result, only the solutions that are non-

dominated against the highest priority objectives can remain in the PF. In the GA evolu-

tion process, parent solutions are randomly selected from both the initial random popula-

tion and the current PF. Once an optimization epoch terminates, a single solution is

selected from the final Pareto set. This is done using a ranked selection mechanism that

considers the configured importance of the objectives. However, due to the nature of the

selection mechanism, which considers the unnormalized evaluation value from each ob-

jective towards each solution, the ranking has to consider the range of returned, absolute

values from each objective.
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To date, no analysis has been performed of the consequences of this approach con-

cerning the coverage of the PF or the consequences of the selection mechanism. To this

end, this paper introduces an alternative version of DynaLight, DynaLight IND. In

DynaLight IND, all the child solutions created by mutation and crossover and non-

dominated children compared with their parent(s) are collected into a candidate list

during evolution. Then, the PF is updated by comparing the dominance of the solutions

in the candidate list with the current PF after all the evolutions of a generation, rather

than updating PF once a child solution is created. Differentiating with DynaLight, only

one comparator, against all the domain objectives, is utilized in DynaLight IND.

Through these modifications, DynaLight IND can enhance the coverage of PF. Besides,

DynaLight IND accelerates the computational speed by reducing the computational

cost by only involving the current PF as the parent source. The purpose is to analyze

the impact of the previous GA evolution strategy on the coverage of the PF. Further, an

alternative selection mechanism that uses posteriori optimization normalization (Umair

et al. 2019) is employed in DynaLight IND to enable the ranking of objectives inde-

pendent of the nature of their evaluation function.

Simulations using equal environment parameters across DynaLight and DynaLight

IND have been conducted to compare the found Pareto sets and the final selected solu-

tion between the two implementations. The results of the experiments show that

DynaLight IND can enhance the PF coverage up to 600 times compared to that of

DynaLight. Further, the use of the alternative selection mechanism enables the selection

of a final solution from the PF set independent of objective evaluation function nature

with comparable qualities to that of the original rank order selection mechanism while

adhering to the Separation of Concerns principle.

The remaining part of this paper is organized as follows. In section “Problem descrip-

tion,” the multi-objective problems (MOPs) concerned in this paper is introduced. Section

“Approach” introduces the changes made to DynaLight, including changes made to the

evolution implementation of GA and the use of a posteriori normalization combined with

Social Welfare metrics (SWs) (Chevaleyre et al. 2006) to enable selection from the Pareto

set without considering the nature of the objective functions. Section “Experimental con-

figuration” introduces the experiments conducted with the two versions of DynaLight,

and section “Results” presents the results of those experiments. The experimental results

are analyzed and compared in section “Discussion,” and the conclusion of this paper is

stated in section “Conclusions.”

Problem description

In this section, the architecture of the lighting system in commercial greenhouses is

introduced, and the multi-objective problem associated with its operation is explained.

Artificial lighting system of greenhouses

Figure 1 illustrates the concepts of the lighting system in a commercial greenhouse. The

lighting system is comprised of a data pool component, the optimization application (here,

DynaLight or DynaLight IND), hardware facilities, and the hardware controller component,

which also contains a climate computer, aside from the controllers, that is used to send
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control parameters to the hardware controllers and for monitoring purposes (Albadi and

El-Saadany 2008; Ma et al. 2020; Warde 2015).

The data pool collects data relevant to the greenhouse system. These data constitute

data from the local sensors, including indoor- and outdoor temperatures, the internal

humidity and local photosynthetically active radiation (PAR) values as well as relevant

external data such as weather forecasts and electricity prices. DynaLight uses this infor-

mation as an input used in optimization to an optimal plan for using artificial light,

which ensures cost-effective use of electricity while maintaining the quality of the plant

production.

The output of DynaLight is a light plan containing actuation points for the artificial

lights. The light plan is represented by a switching schedule; that is, a sequence of ON

and OFF status signals. This sequence of switch signals for the artificial lights is sent to

the climate computer. The climate computer converts the switch status to a drive signal

to control the lamps in the greenhouse (Anthony Howard et al. 2020).

Objective definition

In DynaLight and DynaLight IND, objectives are expressed as evaluation functions that

evaluate a suggestion for a light plan by returning a cost. The target of individual objec-

tives is to minimize the cost of the corresponding evaluation function. The MOP con-

cerned by DynaLight includes seven independent objectives (Sørensen et al. 2016a;

Rytter et al. 2012). The form of the MOO for this problem is shown in Formula (1).

min f m Xð Þ;m∈ 1;M½ � ð1Þ

s. t. X = [x1⋯xn⋯xN], xn = {0, 1}, n ∈ [1,N], where, fm(X) denotes the mth objective.

M = 7, which means there are seven objectives are involved in this MOP. X corresponds

to a light-plan and xn is the artificial light status of the nth hour and N ∈ [1, 72] is the

size of vector X. As the light-plan is scheduled for every 72 h, N represents the number

of remaining hours in a 72 h schedule period. The details of the individual objectives

are explained below.

“PAR sum balance” objective

The “PAR sum balance” objective aims to calculate the PAR balance between the PAR

sum based on a light plan and the PAR goal in a period. The balance is calculated over

a five-day-period defined by current day, two past days and two future days. “Current

day” here represents the exact date that the simulation starts. Generally, there are two

Fig. 1 System overview of the considered greenhouse setting
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sources of PAR in greenhouses: Natural irradiation and artificial light. The associated

objective function is defined as:

f 1 Xð Þ ¼ Phist þ Pexp þ Part

� �

−Pgoal ð2Þ

Phist ¼
X

n−1

i¼1

pi ð3Þ

Pexp ¼
X

N

j¼n

p j ð4Þ

Part ¼ PSON−TN light

X

N

n

xn ð5Þ

where, f1(X) represents the PAR balance between the PAR sum and the goal in the

five-day-period. The 5 days cover the historical 2 days, the current day and the future 2

days. Phist is the historically achieved PAR in the greenhouse. Phist is the PAR sum of

each hour from all sources in the past period in the greenhouse compartment. In a real

situation, Phist is collected by the local sensors. The historical period involves the past 2

days and the past hours in the current day. Pexp is the sum of the expected PAR in the

future. This includes the future 2 days and the remaining hours in the current day. Pexp

is the indoor PAR that is converted from the outdoor natural PAR, which is collected

from the weather forecast provider Conwx. Part is the PAR that is provided by the arti-

ficial lights in the future hours in the light-plan period, which covers (N − n + 1) hours.

The converted PAR from artificial lights is impacted by the light type and the number

of lights. In this problem, PSON − T represents the PAR amount that a SON-T light pro-

vides, which is the type the artificial lights in this problem; Nlight is the number of lights

that are installed in the greenhouse compartment. Pgoal represents the five-day goal of

PAR, which is described in Formula (6).

Pgoal ¼ Nperiod � Pday ð6Þ

where Nperiod = 5 and Pday is the PAR goal per day.

“Sufficient PAR sum” objective

The aim of the objective “Sufficient PAR sum” is to determine whether the PAR sum of

a light plan solution can fulfill the PAR goal in a period or not. The evaluation results

of this objective are Boolean values, which are defined in Formula (7). If the PAR bal-

ance is non-negative, it means the according solution can satisfy the period goal.

f 2 Xð Þ ¼
0; f 1 Xð Þ≥0
1; f 1 Xð Þ < 0

�

ð7Þ

The calculation of f1(X) is presented in Formula (2). The difference is that for

this objective, Nperiod = 3 in the calculation of Pgoal in Formula (6). Thus, the

“Sufficient PAR sum” objective focuses on the PAR goal for the current day as well

as two days into the future.
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“Fixed Light Hours” objective

The “Fixed Light Hours” objective allows domain experts to influence the outcome of

the optimization directly. This objective aims to determine whether a solution fulfills

the status requirement of artificial lights at the fixed light hours as configured by a

grower. The cost value of this objective f3(X) ∈ R is calculated by the light status of an

individual hour in the light-plan X XOR the fixed light schedule Xfix, which is denoted

in Formula (8).

f 3 Xð Þ ¼ X⊕X fix ð8Þ

Therefore, if the light plan does not equal the corresponding schedule requirements

at specific hours, f3(X) is non-zero. The light-plan must fulfil the requirement of fixed

hours, so only the solutions that have zero evaluation cost of this objective are accept-

able choices from the final Pareto set.

“Light interval” objective

Many greenhouse compartments use SON-T lights for providing artificial light to the

plants in the compartment. SON-T lights cannot tolerate frequent changes of switch

status due to the physical properties of the light. In this case, the smallest frequency of

change of the switch status is 5 min. “Light Interval” objective aims to make sure that

the lights are not toggled more frequently.

The evaluation function is in Formula (9).

f 4 Xð Þ ¼ x1⊕xcurr ð9Þ

The evaluation result of f4(X) is a Boolean value. When the simulation interval is set

to shorter than 5 min, in the current one-hour-slot, the evaluation result f4(X) is zero if

x1 in X is the same as the current light status xcurr. x1 indicates the light status for the

current hour in the light plan. Otherwise, the evaluation result returns one. Only the

light-plan solutions with the same switch status with the current light status for the

current one-hour slot are considered acceptable selections from the final Pareto set.

“Minimum Light Switches” objective

This objective aims to prolong the lifetime of the electrical equipment, such as the light

bulbs, the switch system, etc., by minimizing the switching frequency. The cost of this

objective f5(X) is the number of the light status changes in a light-plan solution, which

is represented in Formula (10).

f 5 Xð Þ ¼
X

N−1

i¼1

xi⊕xiþ1 ð10Þ

“Cheap light” objective

The “Cheap Light” objective aims to minimize the electricity cost of a light plan. The

Nordic Countries allow access to a spot market with hourly variation in electricity

prices for large electricity consumers. In such a context, the electricity cost of switching

on light varies from hour to hour. The aim of this objective is to select the cheaper

solutions. The evaluation function is provided in Formula (11).
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f 6 Xð Þ ¼ PSON−TN light � X � Pel ð11Þ

As in Formula (5), PSON − T and Nlight represent the PAR amount that a SON-T light

provides and the number of installed lights, respectively. Pel = [p1⋯pi⋯pN]
T
,i ∈ [1,N],

where pi represents the electricity price of ith hours.

“Minimum Artificial Light” objective

The aim of this objective is to minimize the excessive use of artificial light when the

natural light is intense. This comes from the fact that the contribution from artificial

light is significantly lower when outside irradiation is high. As shown in Formula (12),

Nlarger denotes the number of hours in a light-plan solution when the indoor light that

is converted from the natural light is larger than a given level, which is 100 μmol/m2/s

in this case. The lower of f7(X), the more efficient the use of artificial light.

f 7 Xð Þ ¼ N larger ð12Þ

Approach

The overall flow in the optimization process is identical across DynaLight and Dyna-

Light IND. An overview of this process is shown in Fig. 2. The key differences between

DynaLight and DynaLight IND are summarized in Table 1. Changes made to Dyna-

Light IND, including changes to the GA implementation, the posterior normalization,

Relative Importance Graph (RIG), and SWs, are elaborated in this section.

Figure 2 shows that inputs and implementation configurations are collected from the

database and the Internet when the optimization is started. Inputs are comprised of the

Fig. 2 Flow chart of the optimization process
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electricity price forecast, the weather forecast, hardware properties, and sensor data.

Two types of configurations are supported by DynaLight and DynaLight IND: structure

configurations and implementation configurations. Structure configurations determine

which objectives to include in the optimization, the relationship between objectives

(rank for DynaLight and the RIG configuration, along with SW metrics for DynaLight

IND). The implementation configurations are comprised of the environmental require-

ments of a specific context, such as the goal of PAR for 1 day, the interval of

optimization calculation, etc.

Once inputs are gathered and configuration is done, the optimization phase starts.

For each generation of GA calculation, a set of non-dominated solutions are selected

using Pareto optimality (Fonseca and Fleming 1998), which will participate in the next

evolution until the termination conditions are achieved. For DynaLight and DynaLight

IND termination criteria includes the number of generations or a time constraint –

whichever is met first.

After the optimization, the evaluation values provided by each objective to each solu-

tion in the Pareto Set are normalized in DynaLight IND. The utilized posterior

normalization method in DynaLight IND is elaborated later in this section.

For selecting the final solution from the Pareto Set, DynaLight ranks solution based

on their evaluation by the correspondingly ranked objectives. Specifically, solutions that

are best for objectives with rank 0 form a subset, from which the solutions which are

best for rank 1 objectives are selected and so on until only a single solution remains.

For DynaLight IND, the RIG is traversed and each node in the RIG performs a filtering

mechanism similar to that of DynaLight, except here social metrics are configurable at

each node in the RIG.

GA implementation strategy

The evolutionary process of DynaLight and DynaLight IND is shown in Listing 1 and

Listing 3, respectively. The implementation of function “AddNonDominatedSolution-

ToPF” in DynaLight and function “CheckDomin” in DynaLight IND are elaborated in

Listing 2 and Listing 4, respectively. Regarding the strategies of evaluating whether a

Table 1 The comparison of the two versions

Aspect DynaLight DynaLight IND

GA
implementation
strategy

• Updating PF once a new child-solution
is created.

• Two comparators: first against highest
priority objectives and then against all
domain objectives.

• The initial random population is another
parent-solution source aside from the
current PF.

• Collecting all non-dominated child-solutions,
compared with parents, into a candidate list,
then comparing all candidates with current PF
at the end of each generation.

• One comparator: against all domain
objectives.

• The current PF is the only parent-solution
source.

Evaluation
strategy

No normalization Posteriori normalization

Objective
relation

priority Relative Importance Graph

SW Only one SW metric Multiple SW metrics (Adler 2012; Allan and
Feldman 2006; Chang 2000; Varian 2010)
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newly created child solution is non-dominated and can be added to the PF, there are

multiple differences between DynaLight and DynaLight IND.

Firstly, in the function “AddNonDominatedSolutionToPF” of DynaLight, once a new

child solution is evolved, the dominance of it needs to be compared with all solutions

in the current PF (for loop Line 2–15 in Listing 2). However, in DynaLight IND, after a

child solution is evolved by mutation or crossover, the dominance of it is compared

only with its parent(s) (Line 7 and 14 in Listing 3).

Secondly, there are two comparators involved in the dominance evaluation in Dyna-

Light. In the first comparator, the dominance comparison of solutions is performed

against the objectives in the highest priority (Line 3 in Listing 2). Then, in the second

comparator, if the new child solution is non-dominated by the current PF, it is com-

pared against the objectives with lower priorities (Line 9 in Listing 2), respectively. In-

stead, in DynaLight IND, only the dominance comparator against all the domain

objectives is involved (Line 2 in Listing 4).

Thirdly, according to the dominance comparison results, in DynaLight, the current

PF is immediately updated once a non-dominated child solution is evolved through

mutation or crossover (Line 6, 9, 14, 16, and 18 in Listing 1). Once a child solution is

non-dominated and can be added to the PF, the dominated solutions in the PF are re-

moved. Instead, in DynaLight IND, the evolved non-dominated children, compared

with their parents, are added to a candidate list (Line 20 in Listing 3). Only when

reaching the terminal of one generation will the non-dominated solutions in the candi-

date list be added to the PF and the dominated solutions are removed. Therefore, the

PF is not updated until the end of the generation.

Finally, in DynaLight, initialRandomPop (Listing 1) represents the initial random popu-

lation generated for the initial parent population at the beginning of the evolution process,

so the solutions in it are without any dominance checking. Aside from the current PF,

initialRandomPop also participates in the evolution process as a parent-solution source.

Solutions are selected randomly from initialRandomPop as parent-solution(s) for muta-

tion and crossover (Line 7, 15, and 17 in Listing 1). Instead, in DynaLight IND, the current

PF is the only parent-solution source to participate in mutation and crossover (Line 5, 11

and 12 in Listing 3), and initialRandomPop is only utilized for generating the initial PF.

A posteriori normalization

To enable the comparison of the cost, with different ranges, among the objectives in

this MOP, a posteriori normalization has been applied in DynaLight IND (Umair et al.

2019). Here, the value spans of the objective functions for solutions in the Pareto set

are considered to normalize the objective function values on a scale from 0 to 1. This is

different from a priori normalization in that no global knowledge on the search space

is needed upfront and the dynamic properties of the objective functions are preserved

since their span may differ between optimization epochs.

Assuming the sizes of the solution vector S is n, which maps the PF that is generated

by GA, and si ∈ S, where i ∈ [0, n). There are m elements in the objective vector is C,

and cj represents one of the objectives, where j ∈ [0,m). The posterori normalization

can be described as Formula (13).
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q
0 ið Þ
c j

¼
q

ið Þ
c j −qc j� min

qc j� max−qc j� min

ð13Þ

where, qc j� min and qc j� max are the actual maximum and the minimum cost of the PF

against the objective cj. q
ðiÞ
c j is the cost of solution si against objective cj, and q

0ðiÞ
c j is the

posterori normalized cost of q
ðiÞ
c j .

Relative importance graph (RIG)

During selecting the optimal light plan from the PF, the selected solution needs to ful-

fill the objectives that are relatively most important to the overall goals of the system –

here, the production of plants. For example, reducing electricity consumption is more

important than minimizing light switching times but less important than fulfilling the

light requirement in fixed hours. This is because profit gained by favoring cheap electri-

city consumption is higher than the saving achieved through minimizing light switch-

ing, but ensuring the performance of the production is more important than saving

money on electricity.

In DynaLight, the objective relations are denoted by the concept of priority. The pri-

ority is represented by a real number P ∈ R, and the larger P is, the lower priority of a

particular objective is. Hence, P = 0 represents the highest priority. However, since the

objective costs are not normalized for the SW calculation in DynaLight, objectives in

the same priority must have the same cost scales in their objective functions to avoid a

situation where one objective dominates another in the selection process.

In DynaLight IND, the importance relations among the objectives are described by

the relative importance graph concept, which is introduced in [14, 27]. Rab = {r12,…,

rab,…, r(m − 1)m} is the vector of the relations between every two objectives in the sys-

tem, where m is the number of objectives, and rab represents the relation between ca

and cb, where a ∈ [1,m), b ∈ (1,m]. As shown in Table 2, there are three types of rela-

tions between two objectives, which are represented by − 1, 0 and 1.

Once the relative importance relations between every objective are established, a rela-

tive importance graph can be generated accordingly (Umair et al. 2019; Clausen et al.

2020). A RIG is a directed graph, and there are two key elements in it, which can be de-

scribed as RIG = <V, E>. V = {V0,…,Vi,…,Vn} represents the group of vertexes in a

RIG, where i ∈ [0, n] (n ∈N), and there are (n + 1) vertexes in the particular RIG. V0

means the Vertex Root. Ci is the vector of objectives in Vi. There can be one or mul-

tiple objectives in Ci even when the cost scales of objectives which are in the same node

are inconsistent because the costs have been normalized as described in the section “A

posteriori normalization.” All objectives in a specific vertex have the same relative

importance. E = {E01,…, Ejk…, E(n − 1)n} is a group of directed edges which connect

vertexes, where j ∈ [0, n − 1] and k ∈ [1, n], and there are n edges in a particular RIG.

Table 2 Relations between objectives

rab Symbol Definition

−1 ca→ cb Objective a is relatively more important than objective b.

0 ca↔ cb Objective a and objective b are equally important.

1 ca← cb Objective a is relatively less important than objective b.
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The relative importance relationship between two vertexes is represented by an edge

Ejk, which means the edge comes from Vj and goes into Vk, and the objective(s) in Cj

are relatively more important than the objective(s) in Ck.

Figure 3 demonstrates the flow of selecting a final solution from a PF using the gen-

erated RIG. On the first vertex in the RIG, which is indexed as Vertex Root, the per-

formance of all the solutions in the PF are evaluated according to the SW configured

for that node. This generates a subset of solutions that is fed into the next vertex. This

process continues until there is only one solution left in the subset or all the vertexes

have been traversed.

During traversal of the RIG, one of the following three outcomes may be observed:

(1) If there is only one objective in a specific vertex, the SW selection does not

influence the outcome. Instead, only the best solutions from the perspective of the

objective can be added to the subset resulting from the traversal through this node.

(2) If there is only one solution in the solution set at any given point, this solution will

automatically be the best for all objectives in the node. The optimization process

Fig. 3 Flow chart of the selection process of light-plan from PF with RIG
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terminates even if there are vertexes that have not been traversed, as no other

outcome can be expected from any nodes below the reached node.

(3) If there is more than one solution left in the subset of the last vertex in the RIG,

then the final solution will be chosen as a random solution in the set, as all

solutions in the set are considered to be equally good from the perspective of the

objectives in the optimization. Here equally good means the dominance evaluation

of these solutions against the objectives in the current vertex are the same.

Experimental configuration

In this section, the experimental configurations for the simulations on the two versions

of DynaLight are described, including the environmental condition, the simulation con-

figuration and the objective importance relation setup.

Environmental condition

In a commercial greenhouse system, there are several compartments that provide envir-

onmental conditions for different growing stages of plants. The greenhouse model that

is utilized in this simulation represents one short-day compartment of a horticultural

greenhouse system. The key environmental parameters of the greenhouse compartment

model related to lighting optimization are listed in Table 3. The type of artificial lights

is SON-T. The physical feature of SON-T lights determines that the minimum allowed

switch interval is 5 min, which means the lights may be damaged if the switching fre-

quency is higher than twelve times per hour.

The simulation configurations are listed in Table 4. The simulation interval is 5 min,

which means that the optimization is executed once every 5 min. The goal of the ob-

jective “Fixed Light hours” is configured to be dark between 17:00 on the first day to

07:00 on the second day, so the artificial light must be dark in these hours. “?” means

the status of the artificial lights can be either ON or OFF while adhering to this object-

ive. Here, two PAR goals are involved: 10 mol/m2/d and 4 mol/m2/d. Simulations are

carried out on three different days across the two versions. The following dates have

been selected randomly for this purpose: Jan 10, Nov 01 and Dec 20 in 2020. On each

date, the simulations according to the two PAR goals are committed on the two ver-

sions of DynaLight, respectively. When PAR goal is 10 mol/m2/d, it is beyond the max-

imum collected daily PAR sum, including natural and artificial sources, on the

simulation dates. Thus, the cost of the objective “PAR sum balance” always equals one

and the cost of the objective “PAR sum balance” is always larger than zero. When PAR

goal is 4 mol/m2/d, the collected PAR sum of some light-plan can fulfill the goal. That

Table 3 Environmental configuration of short-day compartment

Item Configuration

Size (m2) 100

Light type SON-T

min allowed switch interval (min) 5

Rated power (kW/h/bulb) 400

Artificial PAR (μmol/h/bulb) 100

PAR conversion rate 60%
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is, the costs of objective “PAR sum balance” and “PAR sum balance” can be zero. As a

result, the trade-off results vary across the objectives in each vertex, which means that

the comparison between the two versions of DynaLight can be more comprehensive.

The size of a light-plan solution is 72, which is the light-plan for the next 72 h – today

and the future 2 days.

Objective importance relation

In the DynaLight, the importance of objectives is expressed through an absolute prior-

ity represented by an integer. The lower the value, the higher the priority. If two objec-

tives have the same priority, they are considered equally important and have a similar

nature concerning their objective functions. The priorities of the objectives in the

DynaLight are shown in Table 5.

In order to compare the two selection mechanisms, the RIG in DynaLight IND is

made consistent with the priority configuration in DynaLight, by using the graph

depicted in Fig. 4. In practice, the RIG filters solutions by traversing this graph in a

top-down direction and applying the Total Utility-Based SW. In Vertex Root, three ob-

jectives are involved, which are “Sufficient PAR sum,” “Fixed Light Hours” and “Light

Interval.” This vertex will filter out solutions that do not adhere to these objectives (are

not “best of the Pareto set”). In Vertex 1, trade-off solutions against “PAR sum balance”

and “Cheap Light” are selected according to the Total Utility-Based metric and go to

Vertex 2. In Vertex 2, the solutions that are with the lowest cost against “Minimum

Artificial Light” are selected and transferred to the last vertex. In the last vertex, the

light plans that are with the least times of switches are chosen by the evaluation against

the objective “Minimum Switches.” If there is more than one light plan left after the

Table 4 Simulation configurations

Item Configuration

Fixed light hours [0000000??????????0000000]

Simulation interval (min) 5

PAR goal (mol/m2/day) 10 or 4

Max generation 5000

Population size in a generation 500

Social Welfare metric Total Utility-Based SW (Utilitarian)

Size of light-plan (hours) 72

Table 5 Priority configuration in DynaLight

Objective Priority

Sufficient PAR sum 0

Fixed Light Hours 0

Light Interval 0

PAR Sum Balance 1

Cheap Light 1

Minimum Artificial Light 2

Minimum Light Switches 3
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refining of Vertex 3, the final light plan is selected randomly among them, as the

remaining solutions are considered equal from the perspectives of the objectives.

In DynaLight IND, after the posteriori normalization, the cost of solutions is con-

verted to a dimensionless quantity that is the ratio against the cost range of a particular

objective. Therefore, the normalized cost against the sub-objectives in an individual

vertex can directly participate in the SW calculation.

Results

Simulations are executed three times for each PAR goal on each date, respectively.

Table 6 shows the comparison results of the PF sets between DyanLight and DynaLight

IND.

In DyanLight IND, due to the average difference of the PF sizes is 0.5% among the

three runs on each date, to compare the coverage of the PF between the two versions

Fig. 4 RIG configuration in DynaLight IND

Table 6 Comparison results

PAR goal
(mol/m2/d)

Simulation
time

Size of PF Comparison results of PF of DynaLight

DynaLight
IND

DynaLight Covered by
DynaLight
IND’s PF

Non-
dominated

Dominated

run1 run2 run3

10 Jan 10 9388 152 96.1% 0 3.9%

Nov 01 15,025 197 148 148 22.8% 0 77.2%

Dec 20 25,357 301 90.7% 0 9.3%

4 Jan 10 1316 2 2 3 0 0 100%

Nov 01 184 2 2 2 0 0 100%

Dec 20 1207 2 9 3 0 0 100%
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of DynaLight, a PF is selected randomly from the three runs of DynaLight IND on each

of the three dates.

When the PAR is 10 mol/m2/d, DynaLight IND selects the same light plan across the

three runs. Regarding DynaLight, the PFs across the three runs are equal on Jan 10 and

Dec 20 accordingly, so one PF of the three runs is selected for the comparison with

DynaLight IND. But the size of the PFs of run 1 is 197, which is different from the PFs

of run 2 and run 3, where the size of the PF is 148 on both occasions. Comparing the

three PFs generated by DynaLight on this date, it turns out that the PFs of run 2 and

run 3 are all contained in the PF of run1. As a result, the PF of run1 is used for the

comparison to give a fair advantage to DynaLight.

When the PAR is 4 mol/m2/d, the selected light plans and the size of the PF are identical

across all runs and dates in DynaLight IND. Therefore, a PF is selected from a random run

on each date for comparison with DynaLight. However, in the simulations of DynaLight,

the light plans and the solutions in the PFs across the three runs are inconsistent from each

other on each simulation date accordingly. As a result, the sizes of PF across the three runs

are all listed, and all the three PF participate in the comparison on each date.

The comparison results are listed in Table 6. Comparing each solution in the PF of

DynaLight, s
ðiÞ
old ð0≤ i < size of PFÞ, with the PF of DynaLight IND, PFIND, and there are

three possibilities of the comparison results

� s
ðiÞ
old is dominated by PFIND.

� s
ðiÞ
old is non-dominated by PFIND, including s

ðiÞ
old can dominate some solutions in

PFIND or being only non-dominated without dominating any solutions in PFIND.

� s
ðiÞ
old .is covered by PFIND.

The light-plan selected by DynaLight and DynaLight IND have been plotted in

Figs. 5, 6 and 7 for each of the three dates. Furthermore, the data of the electricity

price and the forecast of the PAR intensity have been plotted in the same graphs.

The hours that are covered by grey represent the dark hours according to the

requirement of “Fixed light hours.” The step plots represent the switch status of

the artificial lights in light plans. The switch status of a specific hour is ON when

the step value is non-zero, and it is OFF when the step value is zero. In situations

where there is variance in the light plan selected by DynaLight, each of the light

plans has been plotted with a different color dotted line.

In this experiment, the time consumption for the simulation of each generation is

459 ms on average in DynaLight IND, while it consumes 2587 ms on average in Dyna-

Light under the consistent simulation configurations.

Discussion

By analyzing the comparison results in Table 6, when the PAR goal is 10 mol/m2/d, the

sizes of the PF of DynaLight, PFold, across the three runs are the same on each date ex-

cept on Nov 01. However, in all cases, their sizes are much smaller than the sizes of the

comparable PFIND. When the PAR goal is 4 mol/m2/d, the size of PFold is again much

smaller than the size of PFIND in all cases. Further, the solutions contained in the PFs

are inconsistent across the three runs of the simulations of DynaLight.
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All of the solutions in PFold, namely s
ðiÞ
old , are dominated by solutions in the corre-

sponding PFIND under all the PAR goals on each simulation date. When the PAR goal

is 10 mol/m2/d, solutions in PFold are either contained or dominated by solutions in

PFIND on each date. When the PAR goal is 4 mol/m2/d, the solutions in the three runs

are all dominated by solutions in the corresponding PFIND on each date.

In conclusion, the comparison results indicate that the GA implementation strategy of

DynaLight causes the PF to be incomplete, which means there some non-dominated solu-

tions are missing. The GA implementation of DynaLight IND denotes an improvement in

this direction, as a much broader and more complete PF is generated. Further, the quality

of the Pareto set in DynaLight IND is intact or improved according to our findings.

From Figs. 5, 6 and 7, all the light plans of DynaLight and DynaLight IND are accept-

able, which means they can fulfill the objectives “Fixed light hours” and “Light interval”.

When the PAR is 10 mol/m2/d, on Jan 10 and Dec 20, the light plans are all OFF in the

simulations of DynaLight. This is due to the score calculation of solutions is non-

Fig. 5 simulation results on Jan 10–12. a PAR goal = 10 mol/m2/d. b PAR goal = 4 mol/m2/d
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normalized in Vertex 1, which causes the weights of the objectives “PAR sum balance”

and “Cheap Light” are different although they are in the same vertex. The ranges of

“PAR sum balance” and “Cheap Light” are [0.15, 26.07] and [0.0, 87.20] on Jan 10 and

[0.0, 24.34] and [− 1.15, 58.53] on Dec 20, respectively. Thus, regarding a specific solu-

tion, the cost of “Cheap Light” is always much higher than “PAR sum balance” when

there is no normalization involved. As a result, the solution selection tends towards

fulfilling the objective “Cheap Light” first. In DynaLight IND the normalization that is

introduced in the score calculation ensures that the weight of each objective is

comparable. Consequently, the filtered light plans are the trade-off results against

multiple objectives in a certain vertex.

By analyzing the light plans and the tendency of electricity prices in Figs. 5, 6 and 7,

the status ON in the light plans of DynaLight IND can always select the hours that are

with relatively lower electricity prices in a period and avoid higher electricity prices on

the basis on the requirements of “Fixed light hours”. By comparing the average time

consumption for each evolution generation in the experiments, the optimization speed

Fig. 6 simulation results on Nov 1–3. a PAR goal = 10 mol/m2/d. b PAR goal = 4 mol/m2/d
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of DynaLight IND is 5.6 times faster than DynaLight on average without compromising

the PF coverage under consistent configurations.

Conclusions

This paper elaborates on the different implementation strategies for the two versions of

DynaLight, which is a MOO GA-based platform for optimizing artificial lighting in

greenhouses. Firstly the GA-based MOO platform approach taken by DynaLight in, is

presented and the reasons for developing DynaLight IND are explained. Secondly, the

lighting optimization problem in greenhouse systems is presented and the related ob-

jectives are defined. The paper then presents the approach taken in DynaLight IND to

overcome the potential problems in DynaLight, including an alteration to the GA evo-

lution strategy and an alternative selection mechanism for finding a solution in a Pareto

set.

Simulations have been carried out using the two versions of DynaLight under various

scenarios in order to compare the differences of the two evolution strategies. By

Fig. 7 simulation results on Dec 20–22. a PAR goal = 10 mol/m2/d. b PAR goal = 4 mol/m2/d
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analyzing the simulation results and comparing the results of the two versions, the fea-

tures of the different evolution strategies are discussed and summarized.

Although some proposed concepts in this paper have been explained and utilized in

previous works (Umair et al. 2019; Clausen et al. 2020), such as posterior

normalization, social welfare metrics, and relative importance graph, the previous

works only focused on a specific implementation point of one of the two versions of

the MOO platform DynaLight. In this paper, the entire implementation process of the

two versions of DynaLight is elaborated, including the GA evolution process and the

final optimal light plan selection. By comparing the pros and cons of the two versions

of artificial lighting MOO platforms, this paper contributes to the implementation sug-

gestions regarding improving GA evolution efficiency and increasing computation

speed in general areas.

However, there is still some work in this paper that can be improved in future re-

search. For example, when the optimization interval is required to be a short time

interval, such as 5 min, time-saving for the optimization process is one of the key

points of enhancing the practical properties of DynaLight IND. The solutions to this

issue can be considered from two aspects, that are enhancing the calculation efficiency

and the calculation ability of hardware. Calculation efficiency can be increased through

parallel computing, and calculation ability can be enhanced by using high-performance

computers, such as GPU computers. Another limitation is that the properties of

DynaLight IND are only verified by simulations, but practical experiments have not

been performed. Therefore, some potential issues in practical scenarios, such as the

limitations of hardware, cannot be mapped entirely in simulations, even though the fea-

tures of light bulbs are considered.
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