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Abstract— Distribution is one of the major sources of carbon emissions and this issue has been addressed by
Green Vehicle Routing Problem (GVRP). This problem aims to fulfill the demand of a set of customers using a
homogeneous fleetof Altemative Fuel Vehicles (AFV) originating from a single depot The problem also includes
a set of Alte mative Fuel Stations (AFS) that can serve the AFVs. Since AFVs started to operate very recently,
Alte mative Fuel Stations servicing them are very few. Therefore, the driving span of the AFVs is very limite d. This
makes the routing decisions of AFVs more difficult. In this study, we formulated a multi-objective optimization
modelofGreen Vehicle Routing Proble m with two c onflic ting objective func tions. While the first objective of our
GVRP formulation aims to minimize total CO, emission, which is proportional to the distance, the second aims to
minimize the maximum traveling time of all routes. To solve this multi-objective problem, we used E£-constraint
method, a multi-objective optimization technique, and found the Pareto optimal solutions. The problem is
formulated asa Mixed-IntegerlinearProgramming (MIIP) modelin IBM OPLCPIEX. To testourproposed method,
we generated two hypotheticalbutrealistic distribution cases in Izmir, Turkey. The firstcase study focuseson an
innercity distribution in Izmir, and the second case study involves a regional distribution in the Aegean Region
of Turkey. We presented the Pareto optimalsolutions and showed thatthere is a adeoffbetween the maximum
distiibution time and carbon emissions. The results showed thatroutes become shorter, the numberofgenerated
rutes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the maximum
traveling time decreases. We also showed that as maximum traveling time decreases, the solution time
significantly decreases.

Index Terms— Green Vehicle Routing Problem, Alte mative Fuel Vehicles, £- Constraint, Multi- Obje c tive
Optimization, Pareto O ptim a lity

I NTRODUCTION

Factors such as technological developments, globalization and population growth have certain
effectson the corporate strategyofcompanies. In the 1990s, the effectsofglobalization caused the
competition to rise [1]. Therefore, fims were required to keep the price levels at a minimum. This
situation forced many firms to lowerintemalcostsin orderto increase profits. The conceptof Supply
Chain Managementwasdeveloped and studied forcompanies to minimize theiroperationalc osts.

The main objective of Supply Chain Management is to provide the required products to the
customers atthe right time, at the right place,and ata low price. Thisgoalcan onlybe attained by
effectively managing supply chain operations while minimizing operational costs. A basic supply
chain would consist of suppliers, manufacturers, wholesalers (or distrlbutors), and retaiers. An
flustration of a simple supply chain structure consisting of suppliers, manufacturers, distrib uto s,
retailers, and customersis given in Figure 1.

Companies try to find the best way of improving their supply chain management by optimally
planning theiroperations, such as strategic planning, demand planning, warehousing and logistic s
planning, manufacturing planning, inventory control, purc hasing, and transportation planning. All
these topics involve different decision processes. Forexample, in strategic planning, deciding the
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location of factories and warehouses is the main focus, while in transportation planning finding the
best the distrbution plan among suppliers, manufacturers, retailers and end customersisthe goal

Supply Chain Management
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Raw Materials Manufacturer Distributor Retailers Customers

Figure. 1. A typicalsupply chain

Determination of a good transportation plan is difficult because the road infrastructure changes
constantly due to the addition of new roadsorthe existence ofroadworks. n addition, the varety of
products hasincreased based on customerdemands and it makes shipping activities even more
difficult by forcing companiesto find an optimalway ofdeliveriesin orderto minimize the distance,
the fuelusage, CO, emission, and therefore maximize their pro fits.

Companies try to find more efficient ways to reach their customers from their depots and satisfy
demand at the right time at the minimum cost. The Vehicle Routing Problem (VRP) addresses this
issue. Vehicle Routing Problem isa generalization of Traveling Salesperson Problem (TSP) and it aims
to reduce the transportation costs, avoid delivery delays, satisfy customer expectations, save fuel,
and reduce envimnmental effects. Therefore, the VRP is very important for delivery costs and
envimnmental effects. Figure 2 shows an example of VRP where the distrbutions to the customers
are operated from a single depot using multiple routes (and vehic les).

Fgure. 2. An example of the VRP

Green Vehicle Routing Problem (GVRP), fiust proposed by Edogan and MillerHooks [2], focuses on
the envimnmental aspects of the VRP. The use of vehicles creates pollution, wastage of fuel and
traffic congestion. In the United States, 97% of energy for transportation involves the usage of
gasoline. Throughoutthe word, new methodsto reduce transportation pollution have been planned
and implemented. For instance, municipal corporations, public enterprises, voluntary association,
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and private companiesare altering theirtraditionalfleetsoftruc ks to Alte mative Fuel Ve hicle s (AFVs)
that use non-petroleum fueltypessuch asbiodiesel, elec tricity, and hydrogen. Thisis done mainly to
minimize the negative impacts on the envionment and adapt to the cument envimnmental
regulations. Green Vehicle Routing Problem includes a homogeneous fleet of AFVs and a set of
Altemative Fuel Stations (AFSs) and aimsto minimize totaldistance traveled by the vehicles.

In this study, we developed a Multi-Objective Green Vehicle Problem (MOGVRP) by extending the
GVRP. The problem hastwo c onflic ting objec tivesthatare minimizing CO, e mission and the maximum
traveling time of the routes. These two objectives are conflicting because asthe maximum traveling
time decreases, moutes become shorter and the number of routes increases. Therefore, the total
carbon emission, which is proportional to total distance, increases. We modeled the problem asa
Mixed-Integer linear Pogramming (MIIP) model and used Epsion Constraint Method to solve this
multiobjective problem by using IBM OPLCPIEX. We also tested ourmodelon two hypotheticalbut
realistic case studies in zmir, Turkey. The first case study focuses on an inner-city distribution in Izmir,
and the second case study involves a regional distribution in the Aegean Region of Turkey. We
obtained the distancesand durationsamong loc ations (c ustomers, alte mative fuelstations, and the
depot)byusing Google Maps. We showed thatthere isa tradeoffbetween the maximum distrib ution
time and carbon emissions and presented the Pareto optimalsolutions.

This study isorganized as follows. In Sec tion 2, the relevant VRP lite rature is summarzed. In Section 3,
the problem formulationispresented. Section 4 explainsthe solution methodologiesused in ourstudy.
The results and manageral insights are provided in Section 5. The conclusion and future work are
given in Sec tion 6.

Il IITERATURE REVIEW

Green Vehicle Routing Problem was first proposed by [2] as an extension of the Vehicle Routing
Problem and aims to minimize the total distance of deliveries to a set of customers using a
homogenousfleet of altemative fuelvehiclesthatare originating from a single depot. kisimportant
to point out that Altemative Fuel Stations are also added to the problem with the sole purpose of
serving AFVs. Ourstudy extends GVRPbyadding anotherobjective o f minimizing the maximum travel
time of the routes and therefore tuming it to a multiobjective problem. In another GVRP study, [3]
hasdesigned a simulated annealing heuristic based exact solution to solve the GVRP.

Pollution is an issue that hasan impacton the envionnment; therefore, extensions of VRP relating to
minimizing the negative effects of pollution were investigated in various studies. This line of research
specifically namesthe problem asthe Pollution-Routing Problem (PRP) and the majorstudiesare [4],
[5], [6], and [7]. The Pollution-Routing Problem is a recent extension of the Vehicle Routing Problem
which decides the optimal routes for a set of vehicles to serve a number of customers while
managing the speed ofeach vehicle oneach route in orderto minimize fuelc onsumption, e mission
and drver costs. Bektas and Iaporte [4] intorduced a more extensive objective function that
accounts forthe traveldistance, the totalamount of emissions, travel times, fuel consumption, and
distrbution costs. Demir et al [5] presented an Adaptive Iarge Neighborhood Search (AINS)
algorthm, which integrates the classical AINS scheme with a specially designed vehicle speed
optimization algorithm forsolving the PRP. A heterogeneousfleet of vehicles wasadded to the PRP
by [6]. The main goalof[6] isto minimize the sum of vehicle fixed costs and routing costs where the
latterincludes the cost of fueland CO, emissions, and drivercost. Demiret al [7] proposed a bi-
objective PRP to minimize fuelconsumption and totaldrving time . In their study, the combination of
AINSand a speed optimization procedure were used to solve the bi-objective PRP.

There are a variety of extensions to the classical Vehicle Routing Problem in the literature, such as
multidepot, time-windows, and heterogeneousfleet.
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The multi-depot vehicle routing problem (MDVRP) is the problem of delivering goods to a set of
customers with a set of vehicles originating from severaldepots.  was initially presented by [8]. In
anotherstudy, [9] applied the MDVRP in the healthcare sectorusing a heterogeneousfleetin which
a set of heterogeneous vehicles (each belonging to a different facility) providing transportation
services to patients. There are different vehicle types with different fleet sizes located in multiple
healthcare facilties. Variable Neighborhood Search and Tabu Search algornthms were used to solve
the problem in [9]. Anotherexample isproposed by [10], which includes time windows of customers
and a fleetofvehiclesused forthe delivery and installation ofelec tronics. Thisisan important subject
in the literature because transportation of installation servicesisa requirement formany companies
that manufacture or sell products that are difficult to set up. Furthemtmore, [11] aimed to provide
militaristic solutions for unmanned vehicle routing. A set of mixed ground and aeral vehicles at
several depots traveling to certain targets were considered in their study and a branch-and-cut
algorthm wasdeveloped. Crevier, Cordeau,and Ilaporte [12] presented a varant ofthe MDVRP by
including intermediate depots to aid the vehicles to replenish. T solve the problem, a he urnistic
combining the Adaptive Memory Principle and a Tabu Search method was developed. Various
he uristic solution methodologiespresented by [13], [14], [15], and [16] to solve the MDVRP.

The Vehicle Routing Problem with Time Windows (VRPIW) is a significant variation of VRP. n VRPIW,
a vehicle must visit each customerwithin a specific time interval The VRPIW was introduced to the
literature by [17]. The modelofthisstudy aims to minimize route durations. [18] formulated the VRPTW
asa setpartitioning problem and solved the problem by using column generation. Furthermore, [19]
formulated a MultiObjective Genetic Algorithm for VRPIW. In their study, the first objec tive is to
minimize the total distance while the second is to minimize the number of vehicles used. [20]
proposed Vehicle Routing Problem with Soft Time Windows and Stoc hastic Travel imes where time
windows of the customers are large. The objective function of the model considers both
transportation cost and service cost and Thbu Search method wasused to solve the model Ieung
et al [21] extended the VRPIW by considering simultaneous pick-up and delivery. In their study,
customers require both pick-up and delivery servic es within the specified time windows. The main
objective is to minimize the totaldistance traveled by the vehicles.

VRP with the heterogeneous fleet (HVRP) includes multiple vehicle types with different capacities,
fixed and variable costs. The main purpose ofthe HVRP is to minimize totalvarable routing cost and
the vehicle fix costs. Angelelli and Mansini [22] proposed an HVRP with two-dimensional loading
constraints. The problem considerstwo-dimensionalloading configuration of productsaccording to
their sizes. A Smulated Annealing heurstic with a local search (SA_HLS) was used to solve the
problem. Belfiore and Yo shizaki [23] extended the HVRP by considering time windows of customers
and developed a Thbu Search algorithm to solve it. Furthermore, [24] developed an HVRP with time
windows and split deliveries. They proposed a Scatter-Search (SS) apprmach to solving the model
Jair et al [25] proposed the HVRP with time windows and multiple products where customers
demand different types of products. In their study, an Ant Colony Optimization algorithm was
developed to solve the problem.

Furthemmore, severalmulti-objec tive modelswere presented in the VRP lite ra ture ([71, [19], [26], [27]).
Forexample, [26] proposed a hybrid meta-heuristic formulti-objective vehicle routing proble ms with
time windows. Their model aims to minimize total distance traveled and the workload imbalance
that is the ratio of distance traveled by a vehicle and load of the vehicle. The multi-objec tive
optimization has also been used for militaristic purposes. Guemero et al [27] proposed a VRP with
soft ttme windows for Autonomous Unmanned Aeral Vehicles (UAVs). The problem has three
objectives that are the minimization of total distance traveled by the UAVs, minimization of the
numberofvehicles (UAVs) and maximization of ¢ usto me r satisfa c tio n.
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IIL PROBLEM DERNIION AND FORMUIATION

The aim ofthe GVRPisto find the optimalmutesofa setofhomogeneous AFV fleetthatdepart from
a single depotin orderto meet the customerdemands. The fuelcapacity of vehicles are set and
Alte mative FuelStationsthatvehiclescan replenish theirfuelare considered in the model In addition,
the maximum traveling time ofa route isincluded in the model

In this study, we developed a Multi-Objective Green Vehicle Routing Problem (MO GVRP) thatisan
extension of the GVRP, which is originally proposed by [2]. The first objective of the problem is to
minimize totalCO, emission thatisproportionalto totaldistance traveled by the vehicles. The second
objective minimize s the maximum traveling time of allroutes. The mathematicalmodelis presented
below.

Se ts:

D SetofDepots

C Setof Customers

Co Setof Depotand Customers: DU C

F Set of Alte mative Fuel Stations

F, SetofDepotand Altemative Fuel Stations: D U F
Setof Al Nodes: D UC U F

E SetofEdges: (vi,vj):vi,vjeV

Parameters:

< CO, emission (in kg) perkm

d; Distance from node ito node j: (i,j) € E

M A sufficiently large number

r Vehicle fuelconsumption rate (liters perkm)

Q Vehicle fueltankcapacity

S; Service time atnode i€V

tij Taveltime (hours) from node ito node j (i,j) € E

Decision varables:
{1 If a vehicle travels from i toj}

x..
Y 0 otherwise
Yj The remaining fuellevelbefore amiving to j. Thisvariable isresetto @ upon visiting a fuelstation
orthe depot
T Amivaltime ofa vehicle atj(departure from the depotisassumed to be zer)

Tmax Maximum traveling time of allroutes

min z X dl-jxij (1)
i,jev’
i#j

min Ty,qx (2)

s.t.
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inj:]., Viel (3)
jev!
J#i
Z xl-j < 1, Vi € FO (4)
jev!
JES!
iji—inj =0, VjEV’ (5)
iev’ iev’
Jj#i JEL

Xoj S M (6)
jevn\{o}

x]-O <m (7)
jevn\{o}
T] 2T1+(tl]+pl)xU—M(1—xU), Vi EV’,]EV’\{O} and i 7‘:] (8)
0 <1y <Thax 9
to; < T < Tax — (Lo + 1)), vj € V'\{0} (10)
y;i Syi—r-dix;+Q(1—x;), VielandieV',i#j (11)
y; =min{r-d;o,7- (dj; + djo)}, vVjeLVIEF (13)
xi,j € {0,1}, Vl,] EV (14)

Objective Function (1) minimizes the total CO, emission while objective function (2) minimizes the
maximum traveling time of all mutes. Constraints (3) ensures that a vehicle amives at a customer
exactly once, while Constraint (4) ensures that a vehicle departs from a customerexactly once.
Constraints (5) is the flow balance constraint. Constraint (6) and (7) limit the numberof available
vehiclesthat may depart from and amive atthe depot. Constraint (8) calculates the time of amival
ateach location. Constraint (9) sets the minimum departure time of the vehicles from the depot to
zero and limits the amvaltimesofvehiclesto the depotto T,,,,. Constraint (10) guaranteesthat the
duration ofeach route doesnotexceed the maximum traveling time. Constraint (11) calc ulates the
vehicle fuellevelwhen it amvesata customer. Constraint (12) guaranteesthat when a vehicle visits
an AFS, the fueltank of the vehicle becomes full Constraint (13) ensures that vehicles have enough
fuelto retum the depotwhen they amive atthe lastcustomerin the route. Lastly, Constraint (14) is the
boundary c onstraint.

IV. MEEHODOIOGY

A.  Multi-Objective Optimization

Without loss of generality, a multiobjective optimization problem can be defined as a minimiza tion
problem ofthe form asshown in (14) through (16).

Minimize f(x) = (f{(0), f,(X) ...... f,00) (14)
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Subjectto;
g(x)<0 vi=1,...,p (15)
hi(x) = 0Vi = 1,.....,q (16)

Manyrealword optimization problemsinvolve multiple objectives. Snce the objectivesare generally
conflic ting, there isno way to find an optimalsolution which isbestforallobjectives. Instead, there is
a setofoptimalsolutions (ie., Pareto optimal solutions) can be found. Asin (14), a reduc tion in any
objective function value can only be achieved by an increase in anotherobjective function value.
In the Pareto optimal set of solutions, no solution dominates another. By definition, solution A
dominates solution Bif atleast one objective of “A” isbetterthan “B” and the remaining objectives
are atleast asgood asthe onesof “B’. In thisexample, “A” iscalled a non-dominated solution if
there isno othersolution dominates “A”. Note that, the set of Pareto Optimal solutions ¢ ontains only
non-dominated solutions.

The primary goalsin the multi-objective optimization are:

1) Preserving non-dominated so lutions,

2) Inproving progress ofthe algorthm toward the Pareto front,

3) Maintaining so lution dive rsific a tion in the Pareto front,

4) Providing an abundant numberofnon-dominated solutionsto the decision maker.

Multi-objective optimization formulations are applied in various engineering optimization problems.
Minimizing c o st, emission, time, work-in-proc ess and stoc ks and maximizing profit, performance and
customer satisfaction are the examples of multiple conflicting objectives of many reallife
engineering problems. In multi-objective optimization, there isno single optimalsolution buta setof
Pareto optimalsolutionsthatare equallygood. At thispoint,itisthe decisiin makerschoice to select
one ofthe solutions from the Pareto Optimal Solutions set.

In ourmodel, we have two main objectives. Those are minimizing the maximum traveling time ofall
rmutes and minimizing the total CO, emission. To obtain the true Pareto optimal solutions of the
problem, we used &-constraint method.

B e-Constraint Me thod

We applied e-constraint method to analyze the trade-off between CO, emission and maximum
traveling time. e-constraint method is one of the most common optimization methods in the multi-
objective literature. Equations (17) and (18) explains the procedure ofthe e-constraint method.

For a multiobjective optimization problem, as shown in (17), x is the decision variable vector and
fi(x) through f,(x) are the n objectivesofthe problem thatare to be minimized.
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min(f; (x), fo(x) oo fu(x)) (17)

e-constraint method optimize s one ofthe objective functionsby converting the otherobjec tive s into
constraints as shown in (18).

min f; (x)

Subjectto;

f2(0) < ¢

f2(x) < ¢, (18)

The method solvesthe problem iteratively by c hanging the right-hand-side (RHS) ofeach constrained
objective, ¢;, by a smalle value ateach iteration. The iterations start from the upperbound ofeach
objective and end atitslowerbound. Thus, a different solution isobtained ateach iteration.

Various multiobjective approaches were developed in the literature such as NSGA-I, SPEA-I]
MOEA/D and weighted sum method. We have chosen e-constraint method because it has some
advantagesoverthe othermethods. These advantagesofthe e-constraint method are summarized
asfollows:

1- Ik givesthe true Pareto Optimalsolutionsoryieldsa very close approximation,
2- Eachiteration generatesa different solution,

3- The numberofobtained solutionscanbe pre-adjusted by changing the value of¢.

In our problem, we have two objectives: (1) minimization of total carbon emissions, and (2)
minimization of maximum traveling time of allroutes. Equation (19) explains the procedure of the &-
constraint forourproblem. The RHSvalue changesateachiterationtbyan ¢ value. Therefore,each
iteration generates different CO, emission and maximum traveling time values.

min Z o8 di]-xl-]-

i,jev’

i#j
s.t. (19)
Tax < RHS; —&,

g =tx*¢

V. RESULTS

We created two different distrbution scenarios: (1) City distribution (izmir, Turkey), and (2) Regional
distrbution (Aegean region of Turkey). Forboth scenarios, we selected the locations of 13 different
customers, 3 fuel stations and 1 depot using Google Maps. Tables 1 and 2 show the names and
coordinates of the selected locations. After obtaining the coordinates of the locations, we
generated the distance and traveling time matrices by using Google Maps Apiin R programming
language. Service times (loading and unloading times) at customers are randomly generated
between 15 and 45 minutes, while the service times of altemative fuel stations are randomly
generated between 5 and 10 minutes. The fuelcapacity of vehiclesis selected as 100 liters for izmir
city case, while itisselected as 500 liters for Aegean region case because we assumed that small-
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sized vehicles are used in inner-city distrbution. ILastly, the numberofavaiable vehiclesisselected
as8.

Table 1. The namesand coordinatesofthe locationsof zmircity scenario

Iocation No Iocation Name Iatitude Iongitude
0 Kemalpasa (Depot) [38.443019 27.382101
1 Utla 38.325408 26.766736
2 Drbal 38.15387 27.3613

3 Buca 38.384972 27.173453
4 Gaziemir 38.325188 27.12748
5 Alsancak 38.440644 27.154587
6 Menderes 38.251641 27.134917
7 Naribahce 38.392787 27.008523
8 Menemen 38.609575 27.068201
9 Foca 38.662059 26.753541
10 Bomova 38.486544 27.212053
11 Camonu 38.102358 27.15145
12 Bademler 38.273696 26.829623
13 Villa Ke nt 38.602069 26.919441
14 Trbali (FuelStation) |38.209473 27.33527
15 Balcova (Fuel 38.397213 27.066138

Sta tion)
16 Menemen (Fuel 38.682503 27.010836
Sta tion)

Table 2. The namesand coordinatesofthe locationof Aegean region scenario

Iocation No Iocation Name Latitude Iongitude
0 Kemalpasa(Depot) 38.443019 27.382101
1 Akhisar 38.934484 27.845407
2 Ayvalk 39.263005 26.732903
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3 De mirc i 39.047515 28.654982
4 Odemis 38.230259 27.971609
5 Aydin 37.849461 27.823558
6 Mugla 37.211026 28.362027
7 De nizli 37.774926 29.078012
8 Usak 38.675099 29.405645
9 Kutahya 39.419277 29.981497
10 Dursunbey 39.586409 28.628718
11 Afyon 38.768686 30.490718
12 Burdur 37.717731 30.281475
13 Susurduk 39.861124 28.153807
14 Civril (Fue 1 Sta tion) 38.300789 29.735007
15 So gutc uk (Fuel 37.496792 28.109612
Sta tion)
16 Kikagac (Fuel 39.273171 27.897975
Sta tion)

The MIIP modelwascoded in IBM CPLEX Optimization Studio and executed in an 8GB RAM, Inte I®
Core™ i7-4510U CPU @2.00 GHz processor linux computer. e-Constraint method is used to obtain
Pareto Optimalso lutions.

Figure 6 shows the Pareto Optimal solutions of the izmir city scenario. 28 non-dominated so lutions
were obtained. The solution with the minimum traveling time is at the one extreme and has
827.234 CO, kg emission and 3.7 hours maximum traveling time. The solution with the minimum total
emissionisatthe otherextreme and has420.084 kg CO, emission and 8.05 hoursof maximum traveling
time.
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Figure. 6. Pareto optimalso lutio ns forizmir City scenario

Figure 7 illustrate sthe optimalmwutesofthese two extreme solutionsoflzmircity scenario.On the map,
Depot, Customers,and Alte mative FuelStationsare numbered. The namesand coordinatesofthese
locationscan be found in Table 1. As shown in Figure 7, the numberofroutesincreases and routes
become shorterasthe maximum traveling time decreases for izmir city scenario. Thus, no alte mative
fuelstation was visited forthe scenario with the lowest Ty,,, value (Fgure 7a), however, five vehicles
were used. In the sc enario with the highest T;,,,, value (Figure 7b), only two routeswere used and the
vehicle refuelsat an altemative fuelstation in the longe st route.

% Depot 4 Depot
® Customers ® Customers
Alternative Fuel Stations Alternative Fuel Stations
a) lowest Ty,4 and highe st e mission b) Highest T,,, and lowe st e mission

FHgure 7. The optimalrutesoftwo extreme solutions of Izmirc ity sc e nario

Fgure 8 shows the Pareto Optimal solutions of the Aegean region scenario. 15 non-dominated
solutionswere obtained in thissc enario. The solution with the lowe st T, value generated the highest
CO, emission (3801.779 kg) and 10.7 hours of maximum traveling time. The solution with the highest
Tmax value yielded the lowest CO, emission (2329.912 kg) and 16 hours of maximum traveling time.
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Figure 8. Pareto optimalsolutionsfor Aegean region sc enario

Figure 9 ilustrates the optimalroutes of these two extreme solutionsofthe Aegean region scenario.
On the maps, Depot, Customers, and Altemative Fuel Stations are numbered. The names and
coordinates of these locations can be found in Table 2. According to Figure 9, more routes (five)
were used, routes become shorter, and no altemative fuel station was visited when maximum
traveling time is the lowest (Figure 9a) in Aegean distrbution scenario. Only three routes were used

and one ofthe vehiclesrefueled at an altemative fuel station when the maximum traveling time is
the highe st (Fgure 9b).

& Depot 4 Depot
* Customers ® Custom?rs ]
Alternative Fuel Stations Alternative Fuel Stations

a) lowest T4, and highe st e mission b) Highest T,,,, and lowe st e mission

Fgure 9. Optimalmwutesoftwo extreme solutionsofAegean region sc enario
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As forthe solution times, the mean and standard deviation of solution times are 36.668 and 64.819,
while the minimum and maximum solution times are 1.129 and 340.833 for Izmir city sc enario. The
mean and standard deviation of solution times are 11.327 and 12.808, while the minimum and
maximum solution times are 0.585 and 43.663 forAegean region scenario. As Ty, reduces, solution
time also reducesforboth scenarios.

VI CONCIUSION

The Vehicle Routing Problem isone ofthe mostpopularcombinatoraloptimization problems. The aim
ofthe VRPisto delivergoodsto a setofcustomerswith a fleetof vehiclesdeparting from a depotat
a minimum cost. Ratherthan minimizing cost, the aim of the VRP may also be minimizing e mission,
time, and distance ormaximizing the service level As an extension to the original VRP proble m, the
Green Vehicle Routing Problem focuses on the envimnmental aspects of the VRP. & considers a
homogeneous fleet of Altemative Fuel Vehicles originating from a single depot and uses a set of
Alte mative Fuel Stationsto refuelthe vehicles. k aimsto minimize the totaldistance ofthe routes.

In this paper, we formulated a MultiObjective Green Vehicle Routing Problem by extending the
GVRP. Our multiobjective problem includes two objectives: (1) minimizing the maximum traveling
time ofalloutes, and (2) minimizing the total CO, e mission, which isproportionalto the totaldistance.
These two objectives are conflicting because asthe maximum traveling time decreases, the routes
become shorterand more routes are used. Therefore, the total CO, emission increases. We modeled
the problem asa Mixed Integerinear Pongramming modeland coded in IBM OPLCPIEX. Sinc e the
problem ismulti-objective, we applied e-Constraint method to generate Pareto optimalso lutions.

The proposed method hasbeen tested on two hypothetical but realistic case studies. The first c ase
study considersa city distbution, whereasthe second one addressesa regionaldistrbution. The data
ofthe problem are generated to reflecta reallife distrlbution operation. We determined 13 c ustomers,
three AFSs and one depotlocationsin both scenaros. Results show that CO, emission decreases as
maximum traveling time increases. In addition, mutes become shorter, the number of generated
outes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the
maximum traveling time decreases. Also, as maximum traveling time decreases, the solution time
signific antly decreases. Furthemmore, CPIEX solves the problem very fast for 17 locations. However,
when the numberoflocationsincreases above 20, the solution time starts to increase dramatic ally.
Thus, the future study may consider developing an effective heurnstic algorthm to solve the large
instancesin a shortertime. In addition, extending the problem by c onsidernng different AFV types, the
impactofvehicle load on emission, ormultidepotcan be otherdirec tions forfuture research.
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