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A multi-omic analysis of MCF10A cells provides a
resource for integrative assessment of ligand-
mediated molecular and phenotypic responses
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The phenotype of a cell and its underlying molecular state is strongly influenced by extra-

cellular signals, including growth factors, hormones, and extracellular matrix proteins. While

these signals are normally tightly controlled, their dysregulation leads to phenotypic and

molecular states associated with diverse diseases. To develop a detailed understanding of the

linkage between molecular and phenotypic changes, we generated a comprehensive dataset

that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of

MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB

and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these

ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been

curated and made publicly available for community-wide analysis and development of novel

computational methods (synapse.org/LINCS_MCF10A). In illustrative analyses, we demon-

strate how this dataset can be used to discover functionally related molecular features linked

to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource

for the broader scientific community to mine for biological insights, to compare signals

carried across distinct molecular modalities, and to develop new computational methods for

integrative data analysis.
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The function of cells and their organization into tissues is
controlled by interactions between cell-intrinsic molecular
networks and cell-extrinsic signals, while dysregulation of

these signals is associated with various diseases1. Extracellular
ligands activate cell surface receptors to modulate chromatin,
RNA, and protein networks that induce changes in multiple
cellular phenotypes including viability2, growth rate3, motility4,
polarization, and differentiation state5. Disease-specific studies—
especially those focused on cancer—have concentrated on
understanding phenotypes related to disease progression, resis-
tance mechanisms, therapeutic vulnerabilities, and molecular
predictors of response6–15. Several canonical signaling pathways
have been linked to distinct normal and disease-associated cel-
lular phenotypes, including MAPK16, JAK/STAT17, WNT18, and
TGFB19. However, a detailed mapping of the linkage between
multi-modal molecular and phenotypic responses underlying cell
state regulation, developmental processes and diverse diseases is
lacking.

Two general approaches have been used to explore the role of
extracellular signals in modulating cellular and molecular phe-
notypes. One approach involves systematic large-scale perturba-
tion of panels of immortalized cell lines, which has yielded
libraries of response signatures6,8–11,13,20–22. The other approach
involves more focused assessment of phenotypic and molecular
changes in more complex model systems, including engineered
organoids23,24, flies25, worms26,27, fish28 and mice29. Together
these studies indicate that comprehensive multiomic assessment
of perturbation responses is critical for gaining insights into
molecular-phenotype relationships. From this work, module
analysis of multiomic molecular data has proven a powerful
approach to identify co-regulated molecular features associated
with normal30–33 and disease-associated34 phenotypes. Such
data-driven approaches require comprehensive, systematically-
generated datasets, and in recognition of this, multiple data
generation consortia have emerged over the past 20 years,
including ENCODE35, TCGA36, GTEx37, and HuBMAP38.

The Library of Integrated Network-based Cellular Signatures
(LINCS) consortium39 study presented here is a large-scale, cell
line-based perturbation experiment designed to examine the
molecular and phenotypic responses of normal cells to pertur-
bations. Its uniqueness lies in the coordinated measurements of
many different cellular and molecular responses to biologically
relevant ligands that, when studied together, can be used for
systems-level analysis of microenvironmental responses. Here we
focused on the well-characterized human mammary epithelial
MCF10A cell line40,41, which is a nontransformed cell line that
exhibits many of the key hallmarks of epithelial biology, including
migration42,43 and organoid formation44,45. It is also easily
manipulated in a variety of assays including live-cell imaging46,
knock-down41, and chemical perturbation47, and therefore is
commonly used for cell biology studies. The combination of
molecular and cellular properties, as well as its wide adoption in
the biomedical research community, provided the rationale for
using MCF10A in these studies. Importantly, the focus on a single
cell line provided a controlled cell-intrinsic genetic context, which
afforded molecular and temporal density in experimental mea-
surements and assessment of multiple perturbations across a
variety of assays. We studied responses to six ligands that activate
different canonical signaling pathways of biological and clinical
relevance, enabling comparison of distinct molecular and phe-
notypic effects. These data are publicly available for community
study at synapse.org/LINCS_MCF10A. The following sections
describe and evaluate the information content of the LINCS ME
perturbation dataset and present illustrative analyses showing
how the dataset can be used to (a) elucidate molecular and cel-
lular phenotypes that are influenced by the binding of specific

ligands, (b) identify ligand-induced signatures that can be mined
for biological insights, (c) discover candidate causal or functional
relationships between molecular features with module analysis,
and (d) identify molecular programs that control specific cellular
phenotypes.

Results
Approach to generate a LINCS ME perturbation dataset. Eight
laboratories supported by the NIH LINCS program contributed
to the creation and analysis of an MCF10A microenvironment
(ME) perturbation dataset to enable community study of the
molecular mechanisms engaged by microenvironmental signals to
modulate specific cellular phenotypes (Fig. 1a). Figure 1b shows
the experimental and computational steps involved in the crea-
tion of the database. The process began with screening and
selection of ligands that strongly modulated phenotype. Both
phenotypic and molecular responses to ligands were then mea-
sured over time and integrated computationally to identify the
phenotypes and molecular modules engaged by each ligand.
Figure 1c shows the experimental design in which multiple
endpoints were measured at several time points after the intro-
duction of ligands. The ligands and experimental assays are
summarized in Fig. 1d.

The elucidation of phenotype-associated molecular networks
requires study of multiple ligands that modulate cell behaviors
through varied signaling pathways. To identify a panel of high-
impact ligands, we performed two high-throughput microenvir-
onment microarray (MEMA) screens of 3024 combinations of
63 soluble ligands and 48 insoluble extracellular matrix
proteins48; one screen with and another without EGF, a typical
component of MCF10A growth medium40. We focused on
collagen-1 as the insoluble extracellular matrix component and
identified EGF, HGF, and OSM as ligands that increased growth
in the absence of EGF, while BMP2, IFNG, TGFB decreased
growth in the presence of EGF (Supplementary Fig. 1a, b). These
ligands target highly expressed receptors that are members of
different canonical receptor classes (Supplementary Fig. 1c).
Dose-response experiments identified the ligand doses necessary
to yield maximal changes in cell numbers (Supplementary Fig. 1d
and e). Inclusion of EGF in combination with BMP2, IFNG, and
TGFB ensured sufficient cell numbers for molecular profiling.

The participating LINCS consortium laboratories performed
systematic and large-scale analyses of epigenomic, transcriptomic,
proteomic and phenotypic responses to each ligand at several
time points during a 48H period after treatment (Fig. 1b, d, and
e). Experiments were carefully planned to minimize technical
artifacts that are sometimes associated with large-scale experi-
ments, such as cell line drift, variation in reagents, and protocol
differences; a detailed description of considerations can be found
in Methods. Cells for all analyses were grown and treated at
OHSU and the treated cells or lysates were distributed to
participating laboratories for analyses, except for those analyzed
using cyclic immunofluorescence (CyCIF)49,50. Cells for CyCIF
were grown and treated at HMS using cells, culture media and
ligands supplied by one laboratory at OHSU to minimize
experimental variation51 (Fig. 1e). For each assay, MCF10A cells
were plated on collagen-1-coated cell culture dishes in their
standard growth medium, which contains the growth factors EGF
and insulin40. After attachment, the growth medium was replaced
with medium lacking EGF and insulin, and cells were then treated
with the ligand panel at optimized concentrations (Fig. 1d).

Samples were collected before and after treatment over the 48H
time period beginning with a time 0H sample (referred to as
control: CTRL, Fig. 1d). Cellular responses were measured using
live-cell imaging, four-color fluorescence imaging and CyCIF49,50.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03975-9

2 COMMUNICATIONS BIOLOGY |          (2022) 5:1066 | https://doi.org/10.1038/s42003-022-03975-9 | www.nature.com/commsbio

https://www.synapse.org/LINCS_MCF10A
www.nature.com/commsbio


Molecular responses were assessed for changes in protein
expression with reverse phase protein arrays (RPPA);52 chroma-
tin profiling using an Assay for Transposase-Accessible Chroma-
tin using sequencing (ATACseq) and global chromatin profiling
(GCP);53 RNA expression using RNAseq and the L100020

transcriptomics panel designed to assess the levels of 1000 RNA
transcripts. Samples for the different assays were collected in
three experimental collections of at least three biological
replicates each (Fig. 1e). Logistical and cost constraints resulted
in some assays being applied to only a subset of time points.
Rigorous quality assessment (see Methods) of all data led to the
elimination of ~5% of samples (44/814). The resultant data and
metadata are available at: synapse.org/LINCS_MCF10A.

Overview of the ligand-induced cellular and molecular
responses that comprise the LINCS ME perturbation dataset
Cellular responses. We quantified four-color immunofluorescence
images from cells 24H and 48H after ligand treatment to assess
cell clustering, cell density, shape, DNA content, and expression
of proteins related to differentiation state, which revealed a
constellation of changes following each treatment that were
quantified with image analysis (Fig. 2a, b and Supplementary
Data 1). CyCIF collected at all time points revealed additional
changes in cell state and pathway activity. Consistent with our
MEMA screen, HGF, OSM and EGF increased cell numbers and
EdU incorporation (a measure of proliferation). BMP2 and TGFB

significantly suppressed growth relative to the EGF condition;
IFNG also reduced growth (Fig. 2c, d and Supplementary Data 1).
HGF, OSM, and IFNG+ EGF upregulated KRT5 expression, a
marker of basal differentiation state in mammary epithelial cells54

(Fig. 2e and Supplementary Data 1). OSM caused cells to form
tight clusters (Fig. 2f and Supplementary Data 1). Lastly,
TGFB+ EGF induced evenly distributed cells with increased size,
quantified as an increase in the distance to neighboring cells
(Fig. 2g and Supplementary Data 1). Together, these ligands
constitute a powerful set of perturbations to probe molecular and
phenotypic networks.

Analysis of live-cell images showed the emergence of each
phenotype following ligand treatment (Supplementary
Movies 1–7). OSM induced cells to undergo collective migration,
a unique phenotype among the tested ligands. We assessed cell
migration by tracking individual cells across the 48 hour time
period and quantified migration as the total distance traversed by
each cell lineage (Fig. 2h and Supplementary Data 2, 3). In all
ligand conditions, cell migration increased compared to the PBS
condition, but to varying degrees: HGF-treated cells migrated the
least while TGFB+ EGF induced the greatest migration (Tukey’s
HSD, p-value < 9×10−7). Together, the live cell imaging and
migration analyses show the dynamic emergence of distinct
phenotypic responses by each of the ligand treatments.

Molecular responses. The responses to ligands involved numerous
features in each of the molecular datasets. Here we demonstrate

Fig. 1 Overview of experimental approach to assess the impact of microenvironmental factors. a Map of LINCS data generation and analysis centers.
b Schematic illustrating the experimental and analytical approaches to link molecular and cellular phenotypes. c Schematic of the experimental design, cell
culture protocol, and sample harvest time points. d The experimental treatments, dosages, and assays deployed to generate the LINCS ME perturbation
datasets. e Summary of the assays, time points, and features for the three experimental collections.
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some of our key observations through analysis of the RPPA
proteomic dataset as an exemplar use-case. We assessed the
modulation of canonical signaling proteins downstream from
each ligand (Fig. 3a and Supplementary Data 4). These included:
IRF1, a transcriptional target of STAT1 downstream of IFNG;
pSTAT3, a signaling pathway component for OSM; and phos-
phorylation of MET, the receptor for HGF. PAI-1 provided an
assessment of SMAD transcriptional activity, which is down-
stream of TGFB and BMP2. Additionally, phospho- HER2 pro-
vided a readout for conditions that contained EGF in the media.
Each of these features were modulated as expected based on prior
literature, validating the robustness of the dataset.

Unsupervised hierarchical clustering of the RPPA data set
revealed dynamic changes in the protein landscape over time,
with some responses shared by multiple ligands and others that

were uniquely induced (Fig. 3b and Supplementary Data 5). All
treatments that included EGF induced proteins related to growth
factor signaling (e.g. pS6). The PBS condition, which lacks added
growth factors, showed protein changes associated with reduced
proliferation (e.g. decreased pRB) and induction of apoptosis (e.g.
cleaved caspase 7), indicating that absence of growth factor
signals strongly modulates phenotypic and molecular state.

To gain a high-level view of the six molecular assays, we
performed Uniform Manifold Approximation and Projection
(UMAP)55 dimensionality reduction for all ligand-induced
responses (Fig. 3c). Most assays showed ligand-specific effects,
as observed by samples from the same ligand treatment tending
to group near one another. In addition, most datasets showed
evolution over time from the starting state to another distinct
state, captured by early time points clustering near the center of
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Fig. 2 Ligand treatments induce diverse phenotypic responses. a Representative immunofluorescent images of ligand-induced cellular phenotypes at
48H. MCF10A cells were stained with Cell Mask to visualize cytoplasm. b Cartoon showing the image-based cellular phenotypes assessed from the
immunofluorescence and live cell imaging assays. c–g Boxplots summarizing cellular phenotypes at time 0H (CTRL) and 48H after ligand addition from 8
biological replicates. Individual datapoints represent well-level means normalized to 0H. Circles are from collection 1 and triangles are from collection 2.
The interquartile range is indicated by the box, with whiskers extending to no further than 1.5 times the interquartile range. Note that EdU positive
proportion was not measured at 0H. Data in Supplementary Data 1. h Accumulated cell migration (colored lines) from 0-48H for 25 cell lineages
(individual cells and one of their progeny if they divided). Circles indicate mitotic events. The solid black lines indicate the population average; the dotted
gray line shows the average TGFB+ EGF induced migration at 48H, which was the treatment that induced the greatest increase in cell migration. Data in
Supplementary Data 2, 3.
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the UMAP and later time points for each ligand appearing in
different UMAP regions. Principal Component Analysis revealed
similar findings, though the variance was manifest in multiple
components.

Assessment of assay variance. We applied the Measuring Asso-
ciation between VaRIance and Covariates method to system-
atically assess the fractional variance explained by ligand, time,
and replicate56,57. In brief, we first performed principal compo-
nent analysis to reduce the dimensionality of each data set while
preserving the variability. Next, we quantified the total variance
explained by each covariate (ligand, time, replicate) by summing
the weighted variances of all statistically significant principal
components (PCs). For example, in the RPPA dataset, the signal

in the first PC was dominated by ligand while the second PC was
dominated by time point (Fig. 3d and Supplementary Data 6). We
reasoned that PCs with an eigenvalue of less than 0.7 were
unlikely to significantly correlate to any covariates and discarded
these from the analysis. Summing across all significant PCs from
the RPPA dataset revealed that 35% of the variance could be
attributed to ligand and 13% to time point (Fig. 3e and Supple-
mentary Data 6). Variance explained by multiple co-variates is
represented by overlap in the Venn diagram. Overall, 44% of the
variance in the RPPA dataset could not be explained by one of
these factors, suggesting signal in the data attributable to other
factors, such as changes shared by multiple ligands. Similarly, all
other assays carried signal attributable to ligand treatment,
although to varying degrees: RNAseq (63.1%) and ATACseq

Fig. 3 Six molecular assays reveal diverse dynamic responses to treatments. a Line graphs show dynamic responses for 12 proteins measured in the
RPPA assay under the different ligand treatments. b Heatmap of protein abundances as measured by RPPA. Rows represent abundance of 295 (phosphor)
proteins and are median-centered and hierarchically clustered. Columns represent individual replicate samples, ordered by treatment and time. Callouts
show the 12 proteins from panel A. c UMAPs for each of the six molecular assays. Each dot represents data from an individual sample and is the
2-dimensional embedding of all features measured in the assay. Color indicates ligand treatment and size indicates time point. d Plot of the first two
principal components (PCs) of RPPA assay. Variance in PC1 and PC2 is largely driven by ligand treatment and experimental time point, respectively. Data in
Supplementary Data 6. e Analysis of RPPA covariates reveals the proportion of variance explained by sample replicate, experimental time point, and ligand
treatment for each of the top seven principal components of the RPPA dataset. (f) Stacked bar graph shows a comparison of the information content
contained within each molecular assay. Data in Supplementary Data 7.
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(43.3%) contained the greatest ligand-associated signal while GCP
(0.1%) contained the least (Fig. 3f and Supplementary Data 7).
Datasets with both early and late time points (RPPA, GCP,
CyCIF) carried signal attributable to time. There was limited
variation attributable to replicates across all assays, indicating
modest biological and technical variation.

Identification and analysis of ligand-induced molecular sig-
natures. Here we present a systematic assessment of molecular
signatures induced by each ligand and provide examples of how
these signatures can be analyzed and mined. Specifically, we focus
on IFNG+ EGF to examine the temporal evolution of responses
across modalities and to identify immune-related molecular
features.

Identification of ligand-induced signatures. To create molecular
signatures of ligand responses, we identified features from each of
the 6 data types that were differentially expressed at 24H and 48H
time points relative to the CTRL sample (q-value <0.01, |logFC | ≥
1.5) (Fig. 4a and Supplementary Data 8). Features were classified

as unique if they were modulated by a single treatment or shared
if they were induced by more than one treatment (Supplementary
Data 9 and 10). All treatments induced both unique and shared
molecular responses. IFNG+ EGF, TGFB+ EGF and OSM
induced the greatest shift in molecular state, as measured by the
total number of features induced across the RNAseq, ATACseq,
GCP, CyCIF and RPPA assays. In contrast, EGF, HGF and
BMP2+ EGF showed more modest effects, consistent with
maintenance of MCF10A cells in a pre-treated state. Cross-
correlation analysis of the molecular responses revealed that 24H
and 48H responses were strongly correlated for each ligand and
that responses to ligands from related families (BMP2/TGFB,
OSM/IFNG, EGF/HGF) were more similar to one another than to
other family classes (Fig. 4b and Supplementary Data 11).

Motivated by our observation that the ATACseq and RNAseq
datasets carried the strongest ligand signals, we more deeply
interrogated these responses. We analyzed ATACseq transcrip-
tion factor binding motif enrichment, a measure of transcription
factor activity, and found that IFNG+ EGF and TGFB+ EGF
induced the greatest number of enriched motifs. For example,
TGFB+ EGF induced SMAD, TEF-1, MAF and CREB motifs,

Fig. 4 Assessment of ligand-induced molecular change. a Barplot showing the number of features significantly modulated by each ligand treatment at
24H or 48H. Shading indicates whether induced features are unique to a particular treatment (dark) or induced by multiple treatments (light). Numbers
above bars indicate the number of features uniquely induced over the total number of features induced. Data in Supplementary Data 8. b Heatmap showing
pairwise correlations between molecular features induced by each ligand. Ligand responses from similar families are more highly correlated than those
from unrelated families. c UpSet plot showing overlaps of induced transcription factor motifs among ligand treatments calculated from ATACseq data at
24H or 48H. Column heights represent the number of transcription factor motifs induced by the ligand(s) indicated with filled dots. Data in Supplementary
Data 12. d Hallmark Geneset enrichment scores computed from RNAseq data at 24H.
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while TGFB+ EGF and OSM both induced changes in RUNT
(Fig. 4c and Supplementary Data 12). Gene set enrichment
(GSEA) analysis58 of the RNAseq dataset revealed a unique
complement of gene programs associated with response to each
ligand treatment (Fig. 4d and Supplementary Data 13).

Ligand signatures that are strongly anti-correlated with drug-
induced transcriptional signatures suggest environmental condi-
tions that a therapeutic inhibitor could reverse and therefore may
serve as a sensitizing signal, for example by inhibiting a ligand-
activated pathway. Alternatively, if a ligand activates a pathway
not affected by drug, this could serve as a possible bypass pathway
to mediate resistance, which is captured as non-correlated
responses. To test this, we compared our ligand signatures
against the LINCS L1000 database59 of drug and other chemical
response signatures (Fisher exact test, q-value<0.2). While some
therapeutic inhibitor signatures were correlated with multiple
ligands, the responses to most ligands were associated with a
unique complement of inhibitor signatures (Supplementary Fig. 2
and Supplementary Data 14). For example, TGFB+ EGF,
BMP2+ EGF, and EGF were negatively correlated with SRC
inhibition, indicating that these ligands induce similar pathway
activation along the SRC signaling axis. EGFR/JAK inhibitors
were negatively correlated with OSM, suggesting that cells grown
in OSM-rich environments may be particularly sensitive to JAK
inhibition. All together, these findings indicate that extracellular
ligands activate some of the same molecular programs as
therapeutic inhibitors and that the impact of environmental
signals on cellular and molecular state is an important
consideration for identification of effective therapeutic regimens.

Identification of molecular features induced by IFNG. We analyzed
responses to IFNG+ EGF to illustrate how the LINCS ME per-
turbation dataset can be used to study the molecular mechanisms
associated with ligand responses across time. IFNG is a soluble
cytokine secreted by cells of both the innate and adaptive immune
systems and has become increasingly scrutinized, owing to
interest in understanding the role of the immune system in
diverse pathophysiologies60 as well as cancer immunotherapies.
IFNG+ EGF treatment induced dynamic changes in canonical
IFNG signaling molecules measured across assays and time,
including: rapid nuclear translocation of STAT1, the resultant
induction of IRF1 followed by upregulation of PDL1 at the
membrane as well as associated epigenetic changes (Supplemen-
tary Fig. 3a–f). These findings indicate that the LINCS ME per-
turbation dataset enables the encoding of a stimulus to be traced
across time and molecular modalities.

We observed that 66/202 Pathcards Reactome IFNG super-
pathway features61 were among the most strongly modulated by
IFNG+ EGF treatment, indicating the induction of multiple
known signaling responses (Supplementary Fig. 3g). To gain
deeper insight into the ability of IFNG to influence both adaptive
and innate immune responses through altering cytokine produc-
tion by malignant cells, we compared the MCF10A IFNG+ EGF
signature, the IFNG superpathway, and a curated cytokine gene
list62. This comparison identified 15 cytokines not already
included in the IFNG superpathway, suggesting additional
cytokines produced by malignant cells in response to IFNG that
may interact with various immune cell subsets, including:
CSF163,64, IL1565, IL12A66, CCL267, and CXCL268. This
demonstrates how the LINCS ME dataset can be mined to gain
biological insights into immune-related signaling and to prioritize
molecular features for future study.

Discovery of candidate functional relationships between
molecular features. We reasoned that the patterns of robust

multi-omic molecular changes induced across the panel of ligands
could be analyzed together to discover coordinately regulated
molecular programs. Importantly, our use of multiple ligands that
perturb cells along various phenotypic and molecular axes
enabled distinct molecular programs to be disentangled. Below we
summarize our assessment of the relationships between different
modalities, our approach to identify coordinately regulated bio-
logical modules, and also illustrate the utility of the modules to
provide insights into the molecular programs active across diverse
tissues.

Identification of coordinately regulated modules. We assessed
coordinated responses in the RPPA, RNAseq, L1000, and
ATACseq datasets by comparing molecular cognates across
datasets that could be mapped through gene names (e.g. Cyclin
B1 in RPPA and CCNB1 in RNAseq). This revealed broad con-
cordance, indicating conserved responses across molecular
modalities (Supplementary Fig. 4). For example, the relationships
between RPPA and RNAseq showed several patterns: linear
correlation (CCNB1, DUSP4); ligand-specific effects (PDL1,
JAK2); or no association, which typically reflected only modest
ligand-induced changes in abundance (RPS6, RB1). We assessed
response concordance, which we defined as similar induction
(up- or down-regulation) as compared to the CTRL samples,
which revealed 40/207 features were concordantly up-regulated
and 30/187 features were concordantly down-regulated in the
RNAseq and RPPA datasets. Importantly, we also observed that
2717/3035 features were concordantly unchanged. Next, we
measured Pearson correlation of RNAseq and L1000 gene
expression measurements for matched and unmatched samples
and found that matched samples were on average significantly
better correlated than gene expression profiles from unmatched
samples (Mann-Whitney U test; p < 2.2*10−16, Supplementary
Fig. 4d). In a third cross assay comparison, we found that chro-
matin accessibility was bimodal and that promoter accessibility
was associated with transcriptional expression, consistent with
prior studies69 (Supplementary Fig. 4e). Finally, we compared the
10 most-variant ATACseq transcription factor motifs to single-
sample gene set enrichment scores for the same transcription
factors from CyCIF data and found that they were generally
concordant (Supplementary Fig. 4f).

We next used a systematic approach to identify modules
comprised of coordinately regulated molecular features measured
in the different assays (CyCIF, RPPA, GCP, and RNAseq, and
ATACseq). Specifically, we examined all molecular features that
were induced by at least one ligand (see Fig. 4a) and then scaled
each assay dataset with rrscale, which is a transformation that
normalizes feature distributions, removes outliers, and z-scales
feature values70 (Supplementary Fig. 5). We used gap analysis71

to identify the optimal number of clusters, and then used
consensus clustering with partitioning around medoids (PAM) to
identify stable clusters. To further ensure that the clusters
represented unique expression patterns, we calculated their
pairwise correlations and combined highly correlated pairs,
which yielded a final set of 14 molecular modules for
interpretation (Supplementary Fig. 6a–c).

Each module represents a unique complement of co-regulated
proteomic, transcriptional, and chromatin features (Fig. 5a and
Supplementary Data 15). Features from each assay were
distributed across modules, indicating that our analytical
approach enabled integration of features measured in diverse
assays (Supplementary Fig. 6d). Each module showed distinct
modulation patterns across the ligands; most modules were
induced by more than one ligand while a few were ligand-specific,
consistent with the findings in Fig. 4. Reactome pathway
enrichment analysis demonstrated that each module induced an
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Fig. 5 Integrated analysis identifies co-regulated molecular modules. a Heatmap showing the 14 integrative molecular modules for each ligand at 24H
and 48H. Features are grouped by cluster. Biological interpretation for modules is indicated on the left; feature callouts for RPPA (R), CyCIF (C), ATACseq
(A) are shown to the right. b Bubble plot shows the top enriched Reactome pathways in each module, computed from RNAseq features. Dot size indicates
the gene ratio; dot color indicates FDR value. c Heatmap showing the five top-ranked ChEA3 transcription factor enrichments computed from the RNAseq
features in each module (pink). Red border indicates transcription factor enrichments with a q-value below 0.2 (FDR-adjusted Fisher’s exact test).
d–g Scatterplots show the relationships between module activity and quantitative phenotypic responses for selected pairs. Dot color indicates the ligand
treatment and dot size indicates the time point. The black dotted line shows the linear fit, and the q-value of the fit is shown at the bottom of the plot.
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array of transcriptional programs (Fig. 5b and Supplementary
Data 16). Transcription Factor enrichment via ChEA372

identified key molecular drivers associated with these modules
(Fig. 5c and Supplementary Data 17). To explore how our
clustering method compared against other published multiomics
approaches73, we performed a Consensus Principal Component
Analysis (CPCA) using the R package MoCluster74, which
showed similar ligand-specific expression patterns (Supplemen-
tary Fig. 6e–i).

Assessment of molecular modules across diverse tissues. Elucidating
the molecular programs operable across different tissue types is
critical for understanding normal organ development and func-
tion and for identifying molecular programs that may go awry in
the case of disease. We assessed RNA expression of the 14 inte-
grated modules in the GTEx non-diseased tissue dataset37 to
identify molecular programs that may be most active in particular
tissue types (Supplementary Fig. 7 and Supplementary Data 18).
We observed tissue-specific activation of the modules. For
example, Module 14+ 16 included features associated with epi-
thelial cell identity such as cytokeratin-7, E-cadherin, claudin-7,
and EGFR, and was upregulated in vagina, esophagus, and skin.
These tissues are comprised principally of stratified squamous
epithelial cells which undergo rapid terminal differentiation as
they migrate from a basal zone to cornified surfaces75–77. This
suggests that deeper analysis of the molecular features coordi-
nately regulated by module 14+ 16 may shed light on key
molecular programs important for differentiation and main-
tenance of epithelial cell state across diverse tissues. Module 2+ 8
was enriched in extracellular matrix organization and collagen
formation pathways. This module was highly expressed in artery
samples, consistent with the observation that the arterial wall
produces a rich and complex extracellular matrix that defines the
mechanical properties of the vessel78,79. Additional features
included in each of these modules may provide additional
insights into their roles in normal and diseased processes in
different tissues.

Investigation of the relationship between molecular modules
and cellular phenotype. Elucidation of the molecular mechan-
isms that control cellular phenotype remains a difficult problem
in systems biology. We illustrate here how the LINCS ME per-
turbation dataset can be analyzed to gain insights into mechan-
isms of phenotype control by linking cellular and molecular
responses. We present two examples: a data-driven discovery of
associations between phenotypic responses and module activity,
followed by a detailed analysis of Module 4 to uncover molecular
features associated with the cell clustering and collective motility
phenotype induced by OSM.

Data-driven discovery of phenotype-module associations. We
performed correlation analysis to identify molecular modules that
were significantly associated with cellular phenotypes measured
by imaging (Fig. 5d–g and Supplementary Data 15). For example,
Module 2+ 8 was positively correlated with ‘Normalized Second
Neighbor Distance’, a metric that reflects both cell size and cell-
cell spatial organization (Fig. 5d, p value = 0.014). Several fea-
tures of this module suggest molecular correlates of this pheno-
typic response, including pathway enrichments in Extracellular
matrix organization and Collagen formation. Additionally, the
transcription factor RUNX2, which was enriched in this module,
has been implicated in modulating cell morphology and cell
spreading80.

We also identified a specific and robust correlation between
Module 10 expression and the fraction of EdU positive cells, a

measure of cell proliferation (Fig. 5g, p value = 0.012). To explore
the putative regulatory components of Module 10, we annotated
genes that code for transcription factors, kinases, non-coding
RNA, and epigenetic regulators (Fig. 6a and Supplementary
Data 19). This analysis revealed a suite of factors previously
shown to play key roles in regulating cell cycle progression,
including the transcription factors: E2F1, FOXM1, MYB, and
TFDP1; and the kinases: AURKA, CDK1, PLK1, and BUB1.
Module 10 RPPA features cyclin B, Wee1, and phosphorylated
RB are canonical cell cycle proteins that showed temporal
dynamics consistent with changes in proliferation, as well as
lesser linked features including FOSL181–83 and PASK84,85

(Fig. 6b and Supplementary Data 4). ChEA3 transcription factor
enrichment72 identified multiple cell cycle-associated transcrip-
tion factors including FOXM1, TFDP1 and E2F isoforms (Fig. 6c
and Supplementary Data 17). Among the most significantly
enriched Reactome pathways were Cell Cycle, DNA replication,
and DNA repair (Fig. 6d and Supplementary Data 16). We
analyzed the top 5 subpathways within each of these Reactome
pathways and found the highest enrichment for G1/S specific
transcription, PCNA-dependent base excision repair, and
unwinding of DNA (Fig. 6e and Supplementary Data 16).
Additionally, Module 10 included 86% (37/43) of the genes in a
functionally-annotated G1/S gene set86, with expression patterns
consistent with changes in EdU incorporation (Fig. 6f). There is
also evidence for DNA damage and potentially for replication
stress in the induction base-excision repair, the G2M checkpoint
and activation of DNA damage checkpoint associated kinases. In
sum, Module 10 contains cell cycle-associated molecular features
from multiple modalities.

To test if the link between Module 10 and cell cycle control
generalized beyond MCF10A cells, we analyzed two publicly
available independently generated breast cancer cell line data sets.
First, we quantified mean Module 10 gene expression scores from
7 breast cancer cell lines treated for 24 hours with a panel of
CDK4/6 inhibitors87. As expected, this showed robust down-
regulation of Module 10 in response to each of the three CDK4/6
inhibitors in the five sensitive cell lines, while the two resistant
cell lines showed only modest changes in Module 10 expression
(Mann-Whitney U test, p-value = 0.028, Fig. 6g and Supple-
mentary Data 15). In a second analysis, we compared Module 10
expression for a panel of 65 breast cancer cell lines10 against cell
doubling time, which revealed a significant correlation, consistent
with the interpretation that Module 10 is functionally associated
with the cell cycle (Fig. 6h, Pearson R=−0.428). All together,
these analyses indicate that our data-driven approach to module
detection can identify coordinately regulated molecular features
associated with quantitative phenotypic responses and that these
findings generalize to independent data sets.

Examination of module activity to elucidate the molecular basis of
ligand-induced phenotypic responses. In our final analysis, we
illustrate how the modules can be examined to provide insights
into the molecular basis of complex phenotypic responses. Here,
we focused on OSM, a member of the IL6 cytokine family
implicated in immune function, developmental processes, and
tissue remodeling88. OSM stimulated proliferation and was the
only ligand in our panel that induced collective migration, a
complex phenotype in which individual cells form tight clusters
that undergo migration (Fig. 7a, Supplementary Movies). To date,
the molecular correlates of collective cell migration are not well
understood, and our dataset provides a unique opportunity to
study this behavior.

To gain insight into the molecular features underlying this
unique phenotype, we focused on modules that were strongly
induced by OSM, including Modules 4, 12 and 13
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(Supplementary Fig. 7). Features in Module 4 were of particular
interest, as this module was selectively induced by OSM (Fig. 7b
and Supplementary Data 15). Module 4 includes RPPA features
pSTAT3, P-Cadherin, Connexin-43, and Hif-1-alpha as well as
top-ranked transcription factors ELF3, STAT3, TP63, and FOS
from ChEA3 analysis (Fig. 7c and Supplementary Data 17).

P-Cadherin and Connexin-43 are intriguing, as they are
implicated in the cell adhesion contacts required for mediating
the observed clustering phenotype89,90. Based on the coordinated
changes in STAT3 across modalities, we tested the functional
importance of this axis with Ruxolitinib, a JAK/STAT inhibitor.
We found that addition of Ruxolitinib in the presence of OSM

Fig. 6 Module 10 is associated with cell cycle progression. a Donut plot showing distribution of Module 10 features across assays. Transcription factors
and kinases in the RNA gene set are called out to the right of the plot. b Line plot showing 6 of the Module 10 RPPA features. Data in Supplementary
Data 5. c Plot of the top 10 most significantly enriched transcription factors inferred from the Module 10 RNAseq gene set. Data in Supplementary Data 17.
d Bar plot shows the enrichment of Reactome superpathways from the Module 10 RNA gene set. Data in Supplementary Data 16. e Bubble plot showing the
top 5 enriched Reactome subpathways from the Reactome Cell Cycle, DNA Repair, and DNA Replication superpathways. Dot color indicates q-value; dot
size indicates the number of genes in Module 10 that are found in each gene set. f Heat map showing expression of Seurat G1/S cell cycle genes in Module
10 (37 of 43 genes shared), sorted based on the EdU positive proportion. g Boxplot of mean Module 10 gene expression for a panel of breast cancer cell
lines treated with three CDK4/6 inhibitors for 24H or an untreated control. Cell lines are ordered by abemaciclib GR50 (increasing). The interquartile
range is indicated by the box, with whiskers extending to the minimum and maximum values. Data from Hafner, et al.87. h Dot plot of mean Module 10
gene expression from 65 human breast cancer cell lines graphed against their mean doubling time. Cell lines are colored based on their breast cancer
subtype classification. The line indicates the linear fit across all cell lines, with the 95% confidence interval represented by the gray shaded area. Data from
Heiser et al.10. Figure data in Supplementary Data 15.
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strongly inhibited both the growth of cells and cell migration,
confirming the importance of JAK/STAT signaling in mediating
responses to OSM (Fig. 7d and Supplementary Movies 8 and 9).

To probe more deeply into the Module 4 RNAseq features and
augment our Reactome enrichment findings, we tested for
enriched pathways using BioPlanet91 (Fig. 7e and Supplementary
Data 20). One of the top pathway hits in this analysis was ‘OSM’,
which serves as a validation of the module approach. The most
enriched pathway was ‘complement and coagulation cascades’,
two linked processes driven by a series of proteases to stimulate
innate immunity and blood clotting92. This suggested that
protease activity may be critical for mediating OSM-induced
cluster migration. To examine the role that proteases play in
cluster migration, we treated MCF10A cells with OSM in the
presence of a cocktail of five protease inhibitors and found
reduced cluster migration, indicating the importance of protease

activity in mediating this phenotype (Fig. 7f). We next tested
individual components of the protease cocktail and found limited
effects of aprotinin, E-64, and pepstatin A. However, with
bestatin, an aminopeptidase inhibitor, we observed formation of
cell clusters but a failure of these clusters to migrate and merge
(Fig. 7g). These functional studies developed from the module
analysis implicate aminopeptidase activity as a critical mediator of
OSM-induced collective cell motility in MCF10A cells. Overall,
our approach to leverage responses to multiple perturbations
enabled identification of molecular programs associated with
complex phenotypic responses including cluster migration and
cell proliferation.

Discussion
We leveraged the LINCS Consortium framework to system-
atically quantify the phenotypic and molecular responses of

Fig. 7 Analysis of molecular modules identifies functional relationships between molecular and phenotypic responses to OSM. a OSM induces the
formation of cell clusters that undergo collective migration and merge to form large clusters. Representative tracks of OSM-induced cluster migration are
shown from 24H to 48H after OSM treatment. Cluster outlines are colored by experimental time point. All images are set to the same scale. b Boxplot
shows the mean expression of molecular features in Module 4 for each of the six ligand treatments. The boxplots’ lower and upper hinges correspond to
the first and third quartiles. The median is shown as the center line. The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR
from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the
smallest value at most 1.5 * IQR of the hinge. Data in Supplementary Data 15. c Barplot showing the top 5 enriched transcription factors inferred for the
Module 2 genes in Chea3. Data in Supplementary Data 17. d The JAK/STAT inhibitor Ruxolitinib inhibits cell growth in the presence of OSM. Line graph
shows the relative number of cells across time. PBS (phosphate buffered saline) treatment serves as a control. e Barplot of the top 10 enriched pathways in
Bioplanet using the module 4 RNAseq gene set. Data in Supplementary Data 20. f OSM-induced collective migration is mediated by protease activity. Line
graph shows the accumulated cluster migration distance after OSM+ /− a protease inhibitor cocktail and its individual components including bestatin, E-
64, aprotonin, and pepstatin A. Solid lines show the population average and gray shaded regions indicate 95% confidence intervals of the mean distance
travelled at each time point. g False color phase contrast images at 48H show that bestatin inhibits the formation of large cell clusters when given in
conjunction with OSM. Cells are colored red and the background is colored gray.
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MCF10A mammary epithelial cells after treatment with a diverse
panel of ligands. Analysis of this dataset revealed robust mole-
cular and phenotypic responses and enabled identification of
ligand-specific signatures, integrated molecular modules, and
linkage of phenotypic and molecular responses. These data sup-
port the idea that deeply examining a single model system sub-
jected to a range of perturbations with measurements across
multiple modalities is crucial to understanding complex biological
phenomena.

The robust, multimodal dataset enabled a range of computa-
tional analyses. For instance, the coordinated use of a diverse
panel of molecular assays facilitated comparisons of the infor-
mation carried by each assay and revealed that RNAseq and
ATACseq assays had the greatest ligand-associated signal. Dif-
ferences in information content between assays may be due to:
intrinsic differences in molecular modalities, the signal available
in a particular assay, or differences in the number and diversity of
biologically meaningful features in each assay. These findings
suggest that comprehensive assays such as RNAseq are well-
suited for discovery-based screens or experiments that examine
large panels of perturbagens, whereas targeted assays such as
CyCIF—which can be adapted through inclusion of different
biomarkers—would be expected to excel in more focused
hypothesis-driven studies49,50.

In our integrated analysis, we joined epigenomic, transcrip-
tional and proteomic changes into co-regulated modules. Critical
for this analysis was the use of ligands that stimulate diverse and
partially overlapping pathways, as this enabled identification of
molecular features that were subtly and variably induced by
multiple ligands. We analyzed the modules to identify linkages
between molecular features and phenotypic responses. For
instance, we identified a set of co-regulated molecular features
strongly associated with cell cycle, including both canonical
transcriptional factors, pathways, and proteins as well as features
that have been implicated but not confirmed in cell cycle reg-
ulation, such as PASK84,85. Importantly, we showed that this cell
cycle module, which was derived from integrating all 6 ligand
perturbations, could generalize to independent datasets com-
prised of multiple cell lines. Some modules were semi-correlated
and contained similar biological programs, as indicated by
enrichment of shared pathways and TF programs. Alternate
methods to identify modules that permit partial membership of
individual features may allow a more nuanced identification of
the relationship between molecular features and phenotypic
responses93.

Our findings support the idea that systematically testing mul-
tiple perturbations of a single model system can identify mole-
cular programs that are operable in distinct cellular contexts. We
assert that identification of these generalizable programs was
possible precisely because we used multiple perturbations in a
single model system. However, there are also limitations to this
approach. For example, a molecular or phenotypic response to a
perturbation could be context dependent and may not be
observed in other cell lines or model systems. Further exploration
of additional cell lines using a panel of perturbations could
facilitate identification of the context dependence of the responses
we observed and also would enable refinement of the underlying
regulatory networks. Indeed, in the disease setting, the assessment
of molecular and functional responses in panels of cell lines has
proven a powerful approach to identify biological mechanisms
common to different disease states6,8–11,13,20–22. Additionally, an
expanded set of perturbations, including ligands, small molecule
inhibitors or siRNAs that target other signaling pathways could
help to refine the modules we identified here and could also lead
to identification of additional functional modules and molecular
networks.

Our live-cell imaging studies revealed the induction of phe-
notypic responses in response to ligand perturbation. OSM
uniquely induced MCF10A cells to form tight cell clusters that
underwent collective migration. We used our module analysis to
explore the molecular basis of this complex phenotypic response
and examined modules that were uniquely induced by OSM.
Experimental validation identified functional links between OSM-
induced molecular and phenotypic responses: protease activity
was required for collective cell migration while STAT activation
was required for proliferation. Our findings add to the substantial
literature that implicates proteases in modulating interactions
between cellular and extracellular signals94. Future studies that
examine the role of other Module 4 features will be needed for a
complete understanding of the molecular basis of OSM-induced
collective migration. For example, additional complex phenotypic
responses could be investigated by growing MCF10A cells as 3D
organoids45.

Together, our findings indicate that this LINCS ME pertur-
bation dataset will serve as a robust and valuable resource for
community-wide analysis and exploration. This resource can be
utilized by the broader community to gain deeper insights into
biological processes such as the molecular basis of different
phenotypes, the molecular and phenotypic impact of particular
ligands, and how specific molecular features are modulated by
perturbation. Additionally, these data can serve as a resource for
computational scientists to examine relationships between dif-
ferent molecular modalities, to develop methods for identifying
molecular networks, or to elucidate the temporal relationships
between different types of molecular changes. We also envision
expansion of the dataset to include additional molecular mea-
surements (e.g. single-cell RNAseq, single-cell ATACseq, and
single-cell proteomics) and perturbation with different ligand
combinations. Finally, while MCF10A represents a robust model
of epithelial cell biology, analysis of the phenotypic and molecular
responses observed in other cell models will be important for
establishing broad generalizability of different findings. Our study
provides a blueprint of the considerations for generating large-
scale, high-quality multi-omic perturbation data, and serves as a
reference set against which other cell types could be compared. In
addition, our results could be used to help guide future studies by
informing the optimal assay, perturbation or time point for more
hypothesis-driven studies.

Methods
General considerations. The technical reproducibility of a data resource such as
the one we described here is paramount. To support the development of a robust
resource, we carefully planned all experiments to minimize technical artifacts and
batch effects. Some aspects of the design of this data generation exercise were
piloted in an earlier LINCS-wide study of reproducibility that we published jointly
with co-authors of this manuscript (Niepel, et al. Cell Systems 201951). Specifically,
in this study, we considered the following, which are described in more detail in the
subsequent sections: (1) Cell line evolution (drift): Whenever possible, cell culture
was performed at OHSU to minimize technical variation. Given the nature of the
CyCIF assay, it was necessary for HMS to perform cell culture at their site. To
control for cell line evolution, several cell aliquots were frozen down at OHSU prior
to the start of the experiment. These aliquots were shared with HMS for CyCIF
data generation. For each sample collection (described below), we used a fresh
aliquot of cells and ensured that cells were minimally passaged during sample
generation. (2) Reagent batch-to-batch variation: To minimize variation due to
reagents, common stocks of media and ligands were used for all sample generation
at OHSU and HMS. (3) Cell culture protocols: OHSU and HMS used common cell
culture protocols to minimize technical and biological differences. (4) Experimental
collections: The large number of cells required for each assay necessitated that we
split the gathering of samples into different collections to ensure feasibility of cell
culture, treatment, and harvest. Each collection had at least three biological
replicates that took approximately a month to generate. Details about which assays
were included in each collection are shown in Fig. 1e. To test for consistency across
collections, we performed functional analyses on each of the biological replicates
and found that they were broadly similar. Results of comparison from collections 1
and collections 2 are shown in Fig. 2 and indicate concordant responses.
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Methodological rationale. A comprehensive study of how cells modulate their
cellular and phenotypic responses to extracellular signals is critically important for
understanding a variety of biological processes including cell state control, devel-
opment, and diseases such as cancer. This includes identification of the molecular
networks that are directly modulated, the duration and extent of modulation, how
one perturbation compares to another, and identification of feedback mechanisms.
Additionally, identification of the molecular networks that underlie phenotypic
responses such as cell migration or proliferation remains challenging; for example,
a TGFB network is not synonymous with a proliferation network despite TGFB
treatment modulating proliferation.

These questions on ligand and phenotype networks have been difficult to
address because they require identifying a sufficient range of perturbations that
modify multiple phenotypes in a single cell type, and then using experimental and
quantitative approaches that can isolate the underlying networks from secondary
responses (feedback) and multiple complex phenotypic responses (e.g., migration
and proliferation are both stimulated by EGF). Furthermore, these experiments are
difficult to conduct across cells lines because a ligand perturbation in one cell type
may not be equivalent to a ligand perturbation in a second cell type due to
differences in the receptors that are expressed, the abundance of those receptors,
downstream signaling components, transcription factors, and the underlying state
of the cell. In addition, without a large reference dataset it remains unclear the
number and type of perturbations to analyze, the optimal time points to collect, the
type of assays to measure, and what bioinformatic tools are necessary to integrate
all this information identify these networks. An additional challenge is that it is
inherently difficult to generate comprehensive multi-omic data as it requires
expertise in the collection and analysis of each individual data type as well as
development of methods to integrate data types together.

Motivated by this, we leveraged the LINCS consortium, comprised of multiple
laboratories with diverse expertise, to create a comprehensive dataset on a single
cell type that would be of broad use to the research community to mine for
biological insights, develop novel computational analyses, and to serve as a guide of
considerations for building multi-omic perturbation data sets. To maximize the
richness of the resultant data resource, we decided to test multiple perturbations in
a single cell line, which provides several advantages over testing fewer
perturbations in multiple cell lines. First, this increases experimental tractability as
perturbagens and assay growth conditions need only be optimized for a single
sample, and second, the starting state of cells is the same in all samples, which
enables a range of responses to be compared and leveraged against each other to
isolate individual networks associated with different phenotypic responses. One
disadvantage of using a single cell line is that it is not possible to directly address
what portion of a perturbation response is cell type-specific compared to the
portion that is conserved across multiple cell types. Balancing these considerations
with available resources, we chose to use a single cell type for this study. Our
approach enabled isolation of primary from secondary response; for example, we
were able to identify molecular changes specific to EGF and separate these from
changes associated with secondary effects such as proliferation. This type of
approach has been deployed for deep analysis of other model systems, including
drosopholia11 and c.elegans12,13.

Cell culture methods. To decrease unwanted biological variation and ensure
comparable results across data types, MCF10A cells were frozen in a single batch at
the MD Anderson Cancer Center and used by both OHSU and HMS from the
frozen batch with limited passaging. Cell identity was confirmed by short tandem
repeat (STR) profiling and cells tested negative for mycoplasma.

Two media formulations were used in these experiments. For routine growth
and passaging cells were cultured in growth media (GM) composed of DMEM/F12
(Invitrogen #11330-032), 5% horse serum (Sigma #H1138), 20 ng/ml EGF (R&D
Systems #236-EG), 0.5 µg/ml hydrocortisone (Sigma #H-4001), 100 ng/ml cholera
toxin (Sigma #C8052), 10 µg/ml insulin (Sigma #I9278), and 1% Pen/Strep
(Invitrogen #15070-063). For perturbation experiments, we used growth factor free
media—which we termed experimental media (EM)—that was composed of
DMEM/F12, 5% horse serum, 0.5 µg/ml hydrocortisone (Sigma #H-4001),
100 ng/ml cholera toxin (Sigma #C8052), and 1% Pen/Strep (Invitrogen #15070-
063). For each experiment, MCF10A cells were grown to 50-80% confluence in GM
and detached using 0.05% trypsin-EDTA (Thermo Fisher Scientific 25300-054).
Following detachment, 75,000 cells were seeded into collagen-1 (Cultrex #3442-
050-01) coated 8-well plates (Thermo Fisher Scientific 267062) in GM. Six hours
after seeding, cells were gently washed with PBS and EM was added. Following
18 hours of incubation in EM, cells were treated with ligand in fresh EM media as
follows: 10 ng/ml EGF (R&D Systems #236-EG), 40 ng/ml HGF (R&D Systems
#294-HG), 10 ng/ml OSM (R&D Systems #8475-OM), 20 ng/ml BMP2 (R&D
Systems #355-BM)+ 10 ng/ml EGF, 20 ng/ml IFNу (R&D Systems #258-
IF)+ 10 ng/ml EGF, 10 ng/ml TGFβ (R&D Systems #240-B)+ 10 ng/ml EGF. The
addition of ligand started the experimental clock. Samples were then collected at 1,
4, 8, 24 or 48H following ligand addition as shown in Fig. 1.

Eight-well plates were coated with 20 µg/cm2 collagen-1 in a mixture that
mimicked the buffering and structural characteristics of MEMA spots: 200 µg/ml
collagen-1 (Cultrex #3442-050-01), 10% v/v glycerol (Sigma G5516), 5 mM EDTA
pH 8 (Invitrogen 15575), and 100 mM Tris-HCl pH 7.2 (Sigma T2069) in PBS.
Plates were rocked at RT for 1 h. Remaining coating mixture was gently aspirated

and plates were washed twice with sterile PBS. Wells were allowed to dry
completely by leaving the plate uncovered in a laminar flow hood before being
stored in a benchtop desiccator for a minimum of three days and maximum of six
months before use.

After identification of the 6 ligand treatments, samples were generated over
three collection periods. The first collection was completed at OHSU in the Fall of
2017 when RPPA, RNAseq, ATACseq, L1000, and IF samples were collected. The
second collection was completed at OHSU in the Winter of 2018 and included
GCP, L1000, and IF samples. The third collection was collected at HMS in the
Summer of 2018 and included CyCIF and L1000 samples.

Microenvironment microarray (MEMA). We used previously established high-
throughput MEMA screens to identify microenvironmental factors that strongly
influence growth14,48. The key aspects of the MEMA assay are comprised of a set of
printed insoluble proteins and a panel of soluble ligands. In brief, a panel of 48
insoluble proteins were printed into 8-well cell culture plates with an Aushon
printer, forming 350 um diameter spots on which cells can grow. Each matrix
protein was mixed with collagen I to improve printing and cell attachment, and
printed in ∼15 replicate pseudo-random locations. 22,000 cells per well were added
to replicate arrays and grown in experimental media for 18H. Following this, the
media was exchanged and appropriate concentrations of a panel of 63 soluble
ligands were added to each well. To account for the influence of EGF on MCF10A
proliferation, we tested one set of arrays with 10 ng/ml EGF and the other without
added EGF. Arrays were returned to the incubator for 71 hours, after which 1uM
EdU was added to the medium for 1 hour. Cells were then fixed in 2% PFA at RT,
and stored at 4 °C in PBS. After fixation, cells were permeabilized with 0.3% Triton
X-100 for 25 minutes at RT. Array-bound cell staining was performed with KRT14
(Abcam, 1:200), CellMask, and DAPI (ThermoFisher, 1:10,000).

Arrays were imaged on a customized automated high content fluorescence
microscope platform (Nikon HCA) and resultant image data was output to an
OMERO image database95. Cells were segmented and intensity levels were
calculated using CellProfiler96. The resulting MEMA data was preprocessed and
normalized using open-source R software available from (https://github.com/MEP-
LINCS/MEP_Processing). The spot cell count was based on the DAPI stained
nuclei. EdU intensity was auto-gated to label cells as EdU+ and the proportion of
EdU+ cells in each spot was reported to measure proliferation. Each intensity and
morphology signal was independently RUV normalized in a series of matrices with
arrays as the rows and spots as the columns97. The RUV controls were the residuals
created by subtracting the replicate median from each spot value. After RUV
normalization, bivariate LOESS normalization was applied to the normalized
residuals using the array row and array column as the independent variables. After
normalization, the ∼15 replicates of each condition were median summarized to
the MEP level.

MCF10A dose optimization. We used a three-step process to identify ligands and
optimize doses for this large-scale perturbation experiment. Importantly, rather
than use the same dose concentration for each ligand, we ran pilot studies to
identify functionally relevant concentrations. First, we used a high-throughput
MEMA screen to identify ligands that modulated proliferation. Second, we
prioritized hits from the MEMA screen by selecting a panel of ligands that target
diverse receptor classes (cytokine, growth factor, TGFB family) and which targeted
highly expressed receptors. Third, for each of the 6 candidate ligands, we per-
formed dose-response studies to identify the relationship between ligand dose and
change in cell numbers after perturbation. MCF10A cells were plated on collagen
coated 24-well plates in full growth media for 7 hours at which point the media was
exchanged for experimental media. Following 18 hours in experimental media,
fresh experimental media was added with 7 doses of OSM, EGF, and HGF indi-
vidually, or with seven doses of BMP2, IFNG, and TGFB in combination with
10 ng/ml EGF. After 72 hours in ligand containing media, cells were fixed, stained
with DAPI, and imaged on the ScanR microscope. Cell counts from the images
were quantified using Cell Profiler and normalized based on the number of cells
present in the 10 ng/ml EGF condition. These dose-response experiments were
performed in biological triplicate. From the resultant curves, we chose supra-
maximal doses for each ligand treatment, reasoning that this would ensure robust
changes in cell number and minimize effects due to ligand depletion over the
course of the 48H assay.

OSM validation experiments. To assess responses to JAK/STAT inhibition
MCF10A cells were plated in 24-well collagen coated plates. Following the media
changes, cells were treated with 10 ng/ml OSM, 10 µM ruxolitinib (Selleck Che-
micals #S1378) and Nuclight Rapid Red Dye (Essen Bioscience #4717) to label
nuclei and count cells across time. Cells were then placed in the IncuCyte S3 and
imaged every 30 minutes for 48 hours using phase contrast and red fluorescent
filter sets. Cell number was quantified in Cell Profiler by counting the number of
fluorescent nuclei in each frame and normalizing counts to time 0H.

To assess cell responses to protease inhibitors cells were plated in 24-well
collagen coated plates, underwent the standard media changes and then at time 0H
treated with 10 ng/ml OSM and either a protease inhibitor cocktail at a 1:400
dilution (Sigma-Aldrich #P1860), 40 µM bestatin (Sigma-Aldrich # B8385), 800 nM
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aprotinin (Sigma-Aldrich # A1153), 10 µM E-64 (Sigma-Aldrich # 324890),
1.45 µM pepstatin (Sigma-Aldrich # P5318). Cells were then placed in the IncuCyte
S3 and imaged every 30 minutes for 48 hours.

Phase contrast images were registered using a custom ImageJ script and then
imported into the Baxter Algorithms cell tracking software98. Clusters of cells with
an area greater then 1000 pixels (~5 cells) were tracked using default parameters.
Cell cluster tracks were then analyzed to quantify migration. Speed, displacement,
mean squared displacement, and the cumulative distance traveled was calculated
for cell clusters.

Live-cell imaging. Well plates were placed in the IncuCyte FLR and phase contrast
images were acquired every 30 minutes for 48 hours. Individual cells were manually
tracked using the Fiji99 plugin MtrackJ100. Custom R scripts were used to quantify
the migratory behavior of individual cell lineages. In brief, starting at the last time
slot of each lineage, one cell was randomly selected and traced back through mitotic
events until T0. Migration distance for each lineage was then calculated as the sum
of the distances in pixels along the path between each image. To compare
migratory behavior across different ligand treatments, we performed an ANOVA
followed by Tukey’s Honestly Significant Difference test in R. Ligand treatments
with p-value < 0.05 were deemed significantly different.

Immunofluorescence. Prior to fixation, cells were pulsed with 10 µM EdU
(Thermo Fisher Scientific C10357) for 1 hour under standard culture conditions.
Cells were then fixed for 15 minutes with 2% paraformaldehyde (Electron Micro-
scopy Sciences #15710) and permeabilized for 15 minutes with 0.01% Triton X-100
in PBS. Cells were then stained with CellMask (Thermo Fisher Scientific #H32713)
for 30 minutes at RT, followed by fluorescent labeling of incorporated EdU for
1 hour at RT (Thermo Fisher Scientific C10357). Finally, cells were stained with a
keratin 5 polyclonal antibody (BioLegend #905501) at 1:800 overnight at 4 °C,
followed by an anti-rabbit 488 secondary antibody (Thermo Fisher Scientific
A21206) at 1:300 and Dapi (PromoKine PD-CA707-40043) at 0.5 µg/µL for
1 hour at RT.

Fixed cells were imaged on an Olympus ScanR microscope. DAPI channel
images were imported into Ilastik for pixel classification101. A set of 20 images per
plate were randomly selected and used for training. Pixels were classified as either
nuclei or background using all default intensity, edge, and texture features, and
with smoothing filters ranging from 0.3 – 10 pixels. Probability maps were then
exported from Ilastik into CellProfiler version 3.1.8 for object segmentation102.
Nuclei were identified using the global Otsu method with a threshold smoothing
scale of 1.35. Clumped nuclei were separated based on intensity with a smoothing
filter of 12 pixels. Cytoplasm compartments were assigned to nuclei by a 10-pixel
donut expansion from each nucleus. Cytoplasm and nuclear Intensity, size, and
morphology data was then exported into RStudio (RStudio Team, 2015). The
values are analyzed as populations that have been median summarized from the
cell-level data to the image or field level. The field level data are then median
summarized to the well level. The EGF time course normalized values are the raw
values divided by the corresponding EGF value at the same time point within the
same replicate set. The preprocessing and QA script is at https://github.com/MEP-
LINCS/MDD/tree/master. All samples passed qualitative QC inspection that the
integrated DAPI intensity has the expected bimodal distribution.

Phenotype analysis. All phenotypic quantifications were derived from immuno-
fluorescent cell-level data. Cell cycle phase was determined by analysis DAPI
intensity: each cell was classified into either G1 or G2M cell cycle phase by clus-
tering cells into two groups based on total nuclear DAPI intensity. The Forgy
k-means algorithm was used for clustering (R stats package), with the number of
centers set to two. DAPI thresholds for classification were manually inspected, and
multinucleated and poorly segmented cells were removed from further cell cycle
analysis. KRT5 intensity was calculated as the mean intensity value of KRT5 in the
cytoplasmic cell compartment.

Three spatial metrics were computed to quantify treatment induced changes in
cell clustering and dispersal. The number of neighbors for each cell was calculated
by quantifying the number of cell centroids within 100 pixels of a cell’s centroid.
Cells with coordinates less than 100 pixels from the image border were excluded.
Nearest neighbor distances were determined by measuring the pixel Euclidean
distances of each cell centroid to the centroids of the four nearest cells in the
imaging field. To account for variations in image cell count, the mean nearest
neighbor distances for each image were normalized by the expected mean distance
to the nearest neighboring cell if the cells were distributed randomly103. The
number of cells per cluster was computed in a two-step process: first performing
mean shift clustering on the cell centroid coordinates for each image, using the R
package LPCM (v 0.47), and then computing the mean number of cells per cluster.

To compare phenotypic responses across treatments, we analyzed
quantifications of the immunofluorescent images 48 hours after treatment. The
Kruskal-Wallis test was used to test for overall treatment dependent differences.
Pairwise comparisons between treatments were then conducted using Pairwise
Wilcoxon Rank Sum Tests followed by an FDR multiple comparisons correction. A
stringent significance threshold of q-value < 0.05 was used to aid in identification of
the most differentially induced phenotype features.

Reverse phase protein array sample preparation. Cells were washed twice with
ice-cold PBS followed by collection by manual scraping in 50-100 µL of lysis buffer
(1% Triton X-100, 50 mM HEPES pH 7.4, 150 mM NaCL, 1.5 mM MgCL2, 1 mM
EGTA, 100 mM Na pyrophosphate, 1 mM Na3VO4, 10% glycerol, 1x cOmplete
EDTA-free protease inhibitor cocktail (Roche #11873580001), 1x PhosSTOP
phosphatase inhibitor cocktail (Roche #4906837001)). Lysates were incubated on
ice for 20 minutes with gentle agitation every 5 minutes and then centrifuged at
14,000 rpm for 10 minutes at 4 °C. Supernatant was collected into a fresh tube,
quantitated by BCA assay, and the appropriate volume was combined with 4X SDS
sample buffer (40% glycerol, 8% SDS, 0.25M Tris-HCl, 10% β-Me, pH 6.8), boiled
for 5 minutes, and stored at −80 °C. Three sets of replicates were collected over
three weeks and submitted to MD Anderson Cancer Center for RPPA testing.

Reverse phase protein array preprocessing and QC. Samples underwent stan-
dard pre-processing using methods developed at the MD Anderson Cancer Center
RPPA core104. In brief, the processing steps include the following: 1) Convert raw
data from log2 value to linear value. 2) Determine median for each antibody across
the sample set. 3) Calculate the median-centered ratio by dividing each raw linear
value by the median for each antibody. 4) Assess sample quality by computing a
correction factor (CF.1) for protein loading adjustment for each sample as the
median of the median-centered ratio values from Step 3 for all antibodies. Samples
with correction factors above 2.5 or below 0.25 are considered outliers and dis-
carded. 5) Compute the normalized linear value by dividing the median-centered
ratio from Step 3 by CF.1. All samples passed MDACC’s quality checks and are
included in the dataset. The normalized RPPA log2 values are joined with their
experimental metadata and stored on Synapse as level 3 data. Replicates are median
summarized and stored as Level 4 data.

RNAseq sample preparation and sequencing. Following treatment protocols
described, at the appropriate time point wells were aspirated and cells were har-
vested by scraping in 600 µl of RLT Plus buffer (Qiagen) plus 1% β-ME. Samples
were flash frozen in liquid nitrogen and stored at −80 °C prior to RNA extraction.
Total RNA was extracted from frozen using a Qiagen RNeasy Mini kit. Columns
were DNAse treated following the recommended protocol of the manufacturer.

RNA concentration and purity was determined by UV absorption using a
Nanodrop 1000 spectrophotometer. All samples had 260/280 absorption ratios of
at least 2.0, indicating successful isolation of RNA from other nucleic acids. RNA
integrity was assessed using an Agilent 2100 Bioanalyzer with an RNA 6000 Nano
Chip. RNA integrity numbers (RIN) were calculated from Bioanalyzer
electropherograms using the “Eukaryotic Total RNA Nano” program of the
Bioanalyzer 2100 Expert software (B.02.08.SI648). RIN values were in the 8.5-10
range, indicating high-quality RNA, with one exception (TGFB_48_C1_B;
RIN= 6.9). UV absorption measurements and RIN values are available on Synapse
(https://doi.org/10.7303/syn12550434).

cDNA libraries were prepared from polyA-selected RNA using an Illumina TruSeq
Stranded mRNA library preparation kit. 100-bp single-end reads were sequenced on
an Illumina HiSeq 2500 Sequencer, with a target of 60M reads per sample.

RNAseq pre-processing and QC. Sequence preprocessing and alignment was
performed using a Docker-based pipeline105. 100-bp single-end reads were trim-
med of Illumina adapter sequences using TrimGalore (v. 0.4.3), a wrapper for
CutAdapt (v. 1.10) and FastQC (v. 0.11.5). A minimum of 1-bp overlap with the
adapter sequence (AGATCGGAAGAGC) was required for trimming. After trim-
ming, reads with a length < 35 bp were discarded. Trimmed reads were aligned to
the GENCODE V24 (GRCh38.p5) assembly of the human genome using the
Kallisto pseudo-alignment software (v. 0.43.0). Kallisto, using the following para-
meters: --bias -b 30 --pseudobam.

Gene-level quantifications were produced from transcript-level abundance
estimates using the R (v. 3.5.0) package tximport (v. 1.8.0). Mapping between gene/
transcript identifiers was done using the biomaRt package (biomaRt v. 2.36.1) with the
ENSEMBL_MART_ENSEMBL biomart and the hsapiens_gene_ensembl dataset.
Gene-level quantifications were imported to DESeq2 (v. 1.24.0)106. The fpkm function
of DESeq2 was used to normalize data for library size and gene length differences, and
fpkm values were log2 transformed with an added pseudocount of 1.

Transcription Factor enrichment scores. Single-sample enrichment scores were
calculated for 297 transcription factor target gene sets obtained from the CHEA3
ReMap_ChIP-seq72 using the R package GSVA (v. 1.32.0)107. A minimum
expression filter was used for expressed genes; genes were retained only if expressed
at a minimum of 0.5 log2(fpkm+ 1) in a minimum of 3 samples. Enrichment
scores were calculated from filtered RNAseq data, in units of log2(fpkm+ 1), using
the argument “method= ‘ssGSEA’”.

Identification of differentially expressed genes. For each ligand treatment, we
performed a differential expression analysis on the RNAseq gene-level summaries
with the R package DESeq2 (1.24.0), with shrunken log2 fold change estimates
calculated using the apeglm method. We used the Benjamini-Hochberg method to
correct p-values for multiple comparisons and set a threshold of q-value < 0.01 and
shrunken log2 fold change > 1.5 or <−1.5 to indicate significance.
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Pathway enrichment of ligand-induced signatures. We used Gene Set Enrich-
ment Analysis (GSEA) to identify the pathways enriched by each ligand treatment.
Specifically, we used Gene Set Enrichment Analysis 4.1.0 downloaded from https://
www.gsea-msigdb.org/gsea/index.jsp to assess enrichment of the MSigDB Hall-
mark Pathways in the Level 3 data. For each 24H ligand treatment sample, we
computed log2 fold-change against CTRL_0 from the Level 3 RNAseq data.

ATACseq sample preparation and sequencing. ATACseq samples were collected
following the Omni-ATAC protocol108. Briefly, MCF10A cells were washed once
with PBS and detached from the plate using trypsin. Cells were then counted using
a Countess (Invitrogen), and 50,000 cells per condition were distributed to 1.5 ml
centrifuge tubes and spun at 500 RCF for 5 min. The supernatant was removed and
the cell pellet was resuspended in 500 µl of PBS and spun again at 500 RCF for
5 min. The supernatant was removed again, and the cell pellet was resuspended in
50 µl of cold ATAC resuspension buffer (RSB) containing 0.1% NP40, 0.1% Tween-
20, and 0.01% digitonin by pipetting up and down three times. After 3 min on ice,
1 ml of cold RSB containing 0.1% Tween-20 was added, and the tube was inverted
three times to mix. The nuclei were then pelleted by centrifugation at 500 RCF for
10 min at 4 °C. The supernatant was then carefully aspirated, and the nuclei were
resuspended in 50 µl of transposition buffer (25 µl 2x TD buffer (Illumina), 2.5 µl
transposase (Illumina), 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 µl 10% Tween-20, and
5 µl H2O). Samples were then placed in a pre-warmed (37 °C) thermomixer and
mixed for 30 min at 100 RPM. Transposed fragments were then purified using a
Qiagen MinElute column and frozen at −80 °C for further processing.

The remaining steps of the Omni-ATAC protocol were performed by the
OHSU Massively Parallel Sequencing Shared Resource. Transposed fragments were
preamplified with 5 rounds of PCR. Afterward, 5 µl of the pre-amplified mixture
was used for a qPCR reaction to determine the concentration of tagmented DNA.
After calculating the concentration of tagmented DNA, pre-amplified samples were
diluted with elution buffer to a final concentration of 5 µM. Six samples had an
undiluted DNA concentration below 5 µM and were not diluted. 5 µM pre-
amplified samples were amplified for 3 additional PCR cycles.

Tagmented DNA was pre-amplified with 5 rounds of PCR (72 °C for 5 min,
98 °C for 30 s, then 5 cycles of [98 °C for 10 s, 63 °C for 30 s, 72 °C for 1 min]). PCR
reactions contained 20 µl eluate, 25 µl NEBNext 2x MasterMix, 2.5 µl 25 µM i5
primer and 2.5 µl 25 µM i7 primer. The DNA concentration of the pre-amplified
samples was assessed by qPCR. 5 µl of pre-amplified mix was added to 3.76 µl
sterile water, 0.5 µl 25 µM i5 primer, 0.5 µl 25 µM i7 primer, 5 µl 2x NEBNext
master mix, and 0.24 µl 25x SYBR Gold (in DMSO). Samples were amplified for 20
cycles of [98 °C for 10 s, 63 °C for 30 s, 72 °C for 1 min]. DNA concentration was
calculated, and pre-amplified samples were diluted to a final concentration of 5 µM.
Six samples had an undiluted DNA concentration below 5 µM and were not
diluted. 5 µM pre-amplified samples were amplified for 3 additional PCR cycles.
100 bp PE reads were sequenced on an Illumina HiSeq 2500 Sequencer by the
OHSU Massively Parallel Sequencing Shared Resource with a target of 20 M reads
per sample.

ATACseq preprocessing and QC. ATACseq files were processed and aligned
using the ATACseq (1 -> 3) workflow on the AnswerALS Galaxy server
(answer.csbi.mit.edu). Reads were trimmed of adapter sequences and low-quality
bases using Trimmomatic (Galaxy version 0.36.5). Reads were trimmed of low-
quality bases (Phred score < 15) at the read start or end, and Nextera adapter
sequences (CTGTCTCTTATA) were trimmed from read ends (minimum of a 2-bp
overlap required for trimming). Reads were aligned to the human genome (hg38)
using Bowtie2 (Galaxy version 2.3.4.1) in paired-end mode with otherwise default
settings. BAM files were filtered to remove secondary alignments, unmapped reads,
and mitochondrial DNA alignments using ngsutils bam filter (Galaxy version
0.5.9). PCR duplicates were detected and removed using Picard MarkDuplicates
(Galaxy version 2.7.1.2). The de-duplicated, filtered BAM file was used for peak
calling and quantification. Peaks were called using MACS2 (Galaxy Version
2.1.1.20160309.5) using the following parameters: -format BAMPE -nomodel
-extsize 200 -shift −100 q value 0.01.

ATACseq sample quality was assessed by calculating the fraction of reads in
peaks (FRiP). Before calculating FRiP, a consensus peakset was generated for all
samples by taking the union of all peaks called in all samples and merging any
overlapping peaks, using the R (v. 3.6.1) package DiffBind (v. 2.12.0)109. For each
sample, FRiP was then calculated by counting the proportion of reads in the de-
duplicated, filtered BAM file that align within the consensus peakset. A minimum
FRiP threshold of 0.15 was applied to remove samples with low levels of chromatin
enrichment. Thirteen ATACseq samples did not pass the QC due to low FRiP
scores; the fragment length distributions of these samples also lack the periodic
peaks caused by nucleosome patterning. These low-quality samples likely are the
result of fragment over-transposition due to a high Tn5-transpose-to-cell
ratio110,111.

Construction of chromatin accessibility matrix. DiffBind (v. 2.12.0) was used to
generate a peak accessibility matrix for the QC-passing samples. First, a consensus
peakset was re-generated after removal of low-FRiP samples. The dba.count
function was then used to count the number of reads in the de-duplicated, filtered

BAM files that overlap with each peak in the consensus peakset. The dba.count
argument “score = DBA_SCORE_TMM_READS_EFFECTIVE” was used to out-
put TMM counts normalized to each sample’s effective library size, which is equal
to the de-duplicated, filtered library size multiplied by the FRiP. A peak accessi-
bility matrix in units of unnormalized counts was also generated using the dba.-
count function with the argument “score = DBA_SCORE_READS”.

Motif enrichment. Transcription factor motif enrichment scores were generated
from the TMM-normalized chromatin accessibility data using the R package
chromVAR (v. 1.6.0)112. ATACseq peaks were annotated with GC content using
the addGCBias function of chromVAR and the BSgenome.Hsapiens.UCSC.hg38
genome annotation package. Transcription factor motif position frequency
matrices were obtained from the “JASPAR CORE 2018 Homo sapiens” set of
motifs113. ATACseq peaks were matched to JASPAR motifs using the R package
motifmatchr (v. 1.6.0). The expected fraction of reads per ATACseq peak was
calculated using the chromVAR function computeExpectations, with the argument
“norm = TRUE”. Each sample’s deviation from the expected fraction of peaks in
each annotated category was calculated using the function computeDeviations, and
deviations were converted to Z-scores using the function deviationScores.
Enrichment scores of individual transcription factors were mean summarized to
the “family” level as annotated in JASPAR 2018.

Global chromatin profiling. The GCP assay was performed as previously descri-
bed in Creech et al.53 and Litichievskiy et al.11 Cells were washed with ice-cold PBS,
then collected by manual scraping in 200 µl of cold PBS. Cells were then pelleted by
centrifugation at 1500 RCF at 4 °C for 5 min, resuspended in 1 mL of cold PBS, and
spun again as specified. The resultant cell pellets were then flash frozen in liquid
nitrogen and stored at −80 °C until further processing. Pellets were thawed and
lysed with nucleus buffer, followed by histone extraction by sulfuric acid and
precipitation using trichloroacetic acid. Sample input was normalized to 10 µg of
histone in H2O before being propionylated, desalted (Oasis HLB 5mg Plate) and
digested by Promega trypsin overnight. A second round of propionylation, fol-
lowed by desalting using C18 Sep-Pak cartridges (Waters) was employed after
digestion. Propionylations and digestion were done in an automated fashion on an
LT-Bravos system (Agilent). Isotopically labeled synthetic peptides from histones
H3 and H4 were added as a reference to each sample prior to MS analysis. Peptides
were separated on a C18 column (EASY-nLC 1000, Thermo Scientific) and ana-
lyzed by MS in a PRM mode (Q ExactiveTM-plus, Thermo Scientific)53. Detailed
protocols of sample preparation steps can be found in https://panoramaweb.org/
labkey/wiki/LINCS/Overview%20Information/page.view?name=sops. GCP data
was merged with the experimental metadata and stored as level 3 data on Synapse.
Replicates were median summarized and stored as level 4 data.

L1000 sample preparation. L1000 samples were collected as part of three col-
lections. The first L1000 sample collection was generated in parallel to the
ATACseq samples. MCF10A cells were washed once with PBS and detached from
the plate using trypsin. Cells were then counted using a Countess (Invitrogen) and
50,000 cells per condition were distributed to 1.5 ml centrifuge tubes and spun at
500 RCF for 5 min. The supernatant was removed, and the cell pellet was resus-
pended in TCL buffer (Qiagen) containing 1% β-Me. For the second and third
collections, cells were washed with PBS followed by the addition of TCL buffer
(Qiagen) containing 1% β-Me. The cell and buffer mixture was allowed to sit for
30 min and then frozen at −80 °C for further processing. Samples from the first
and second sample collections were frozen in 1.5 ml tubes. Samples from the third
data collection were frozen in their original 96-well plates. In total there were
eighteen plates from the third HMS collection, which contained 21 samples per
plate, and there were 190 samples from the first two OHSU collections. All samples
were shipped to the BROAD for simultaneous processing on the L1000 platform.
The source plates containing original samples were re-arrayed into six 96-well
master plates. These master plates contained 21 samples from each of three original
source plates, and 32 samples plated directly from tubes. In each of the six master
plates, well A1 was left empty to accommodate for internal technical control spike-
ins. The six 96-well master plates were then re-arrayed into the final 384 well
v-bottom PCR Plates (Eppendorf #951020702).

L1000 Ligation Mediated Amplification. For L1000 Ligation Mediated
Amplification20 crude cell lysates were transferred from source plates to 384 well
v-bottom PCR Plates (Eppendorf #951020702) assay plates. Oligo dT coated
magnetic particles (GE Healthcare #38152103010150) were added to capture
mRNA. Plates were then incubated at room temperature on shaker tables for
10 min. The beads were then spun down onto flat magnets and unbound lysate was
evacuated by centrifuging upside down on magnet to 800RPM for 30 s. 15 µl of
reverse transcription master mix containing SuperScript IV reverse transcriptase
was added to the plates and the plates were incubated at 55 °C for 10 min. Plates
were again spun down, beads were pelleted on a flat magnet, and the remaining
master mix was spun out. Probes were annealed to the first-strand cDNA by
addition of 15 µl of Probe Bind master mix, containing 100 fmole of each probe
and Taq ligase buffer. Samples were denatured at 95 °C for 5 min, then transferred
to a ramping water bath that decreased temperature from 70 °C to 40 °C over six
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hours. The following day, beads were again spun down on a flat magnet and master
mix was evacuated. To ligate probe pairs, 15 µL of Ligation Master Mix was added,
containing Taq DNA ligase and ligase buffer. Plates were sealed and incubated at
45 °C for 60 min. Plates were spun down on magnets and ligation master mix was
evacuated as with previous steps. 15 µl PCR master mix containing 0.5 mmole of
each primer (T3 and 50-biotinylated T7 universal primers), dNTPs, and Plati-
numTaq polymerase in reaction buffer was added to each well, and plates were
subjected to 29 cycle PCR. This process yielded biotinylated gene and bead (bar-
code) specific amplicons.

Each barcode corresponds to a complementary sequence on a Luminex bead,
allowing the PCR product to be hybridized to a mixture containing per well ~100 each
of 500 Luminex analyte colors. The plate was then denatured at 95 °C for 5min and
incubated at 45 °C for 18 h. Beads were pelleted and stained with streptavidin
R-phycoerythrin conjugate for ten minutes. Finally, plates were read on Luminex
FlexMap 3D Flow cytometers that detected analyte color (transcript identity) and
fluorescence intensity (transcript abundance) for all analytes detected in all wells.

L1000 preprocessing. To account for differences across the various cell collec-
tions, we adapted our standard data processing pipeline in several ways. L1000 data
typically use a population-based normalization scheme, known as plate control, as
described in Subramanian et al20. Here, the EGF treated wells served as the vehicle
when conducting vehicle normalization. The standard data processing pipeline was
followed, except for the changes at Level 1 and Level 4, described below. L1000
utilizes 10 sets of invariant genes, similar to ‘housekeeping’ genes, to assess quality
and in later normalization steps. These gene sets, each containing 8 genes, repre-
sent control values that span the spectrum of gene expression, and are ordered
according to their overall level of expression, the first level corresponding to the
lowest expressing genes, and the 10th corresponding to the highest expressors.

Plates were computationally split at Level 1 (LXB) into subpopulations of wells,
each containing only samples from a given time-point and collection combination. The
fluorescence intensity values associated with each bead color were subjected to the peak
deconvolution step, which separates the two genes associated with each bead color
(Level 2). Data were then normalized via L1000 invariant set scaling (LISS), which
scales the expression levels of the 978 measured landmarks in each well to the 80
control genes in the invariant gene set (Level 3). Next, we calculated differential
expression using EGF as the vehicle control. Robust z-scoring was used to calculate
differential expression values for each gene, where gene x is compared only to the
vector of normalized gene expression of gene x across all EGF samples in that
collection/time-point population (Level 4). Finally, individual biological and technical
replicates were collapsed into a consensus signature by computing a pairwise
Spearman correlation matrix between each replicate signature. The weights for each
replicate were calculated by the sum of their correlations to the remaining replicates,
summing to 1. The consensus signatures were generated by the linear combination of
the replicate signatures using each signature’s weight as the coefficient (Level 5).

L1000 QC. We used several approaches to assess data quality. First, to assess the
quality in each detection plate, we visually inspected and measured the slope of the
invariant gene calibration curve for each sample; outliers were omitted. Second, to
assess plate effects, we plotted median fluorescence intensity and interquartile
range of invariant set 10 across the entire plate. This allowed identification of failed
(low signal) wells, tissue culture related plate effects, or wells with abnormally wide
ranges in expression across each gene set. Third, to assess the efficacy of the
deconvolution algorithm, we determined the number of well/analyte combinations
where two peaks were clearly discernible.

In addition, we computed a transcriptional activity score (TAS) as a composite
measure of L1000 transcriptional response. Here signature strength (SS) was
computed as the number of genes with a z-score greater than or equal to 2 for each
sample, and replicate correlation (CC) was computed as the 7th quantile of the
spearman correlation between all pairwise combinations of replicates. TAS is
calculated as the geometric mean of SS and CC for a signature, and scaled by the
square root of the number of landmark genes, yielding a final score between 1 and
0. QC metrics are available on Synapse (https://doi.org/10.7303/syn19416843.1). 2
L1000 samples (1 from C1 and 1 from C3) failed these QC metrics and were
removed. Finally, within each sample collection (C1, C2, and C3), we clustered
samples based on the Euclidian distances between expression of the 978 measured
landmark genes in the Level 3 data, using the R function hclust. Each collection had
a small number of outlier samples that showed markedly aberrant expression of the
978 landmark genes and clustered apart from all other samples, in a pattern that
was not explained by sample treatment; these 17 samples (3 from C1, 1 from C2,
and 13 from C3) were removed. Additionally, 25 samples from Collection 2 lacked
an appropriate EGF-treated control on the same 384-well plate and therefore were
omitted from the final dataset. In total, 44 L1000 samples (4 from C1, 26 from C2,
14 from C3) were removed from the dataset.

Cyclic immunofluorescence (CyCIF) sample preparation and imaging.
MCF10A cells were seeded 4000 cells/well in 200 µl of GM in collagen coated (as
described above) 96 well plates (NUNC, 165305) in technical (multiple wells on the
same plate) and biological (experiments separated by a minimum of one cell
passage) triplicates. Eight hours after seeding, the cells were washed once with PBS

using an EL405x plate washer (BioTek), and 200 µl of EM was added per well.
Following an additional 16 hours (24 hours after initial plating), one plate was fixed
(time= 0 hours) and EM was aspirated from all wells in the remaining plates using
the plate washer and replaced with 200 µl of the appropriate ligand or control
treatment.

The treated plates were fixed following incubations of 1, 4, 8, 24, and 48 hours.
Cells were fixed in 4% formaldehyde for one hour at room temperature and washed
with PBS. Plates were sealed and stored at 4 °C until all replicates were collected.
Next, cells were permeabilized with ice cold methanol for ten minutes, blocked in
Odyssey buffer (LI-COR) for one hour, pre-stained with secondary antibodies,
bleached, and imaged to register background intensities prior to beginning
CyCIF49,50. For each cycle, cells were stained with three conjugated antibodies,
unless otherwise specified, and Hoechst 33342 overnight at 4 °C, washed with PBS,
and imaged with an IN Cell Analyzer 6000 (nine fields of view per well, 20x/
0.45NA air objective, 2×2 binning) (GE Healthcare Life Sciences). Following image
acquisition, fluorophores were chemically inactivated as described49,50, and cells
then entered the next staining cycle. Refer to Supplementary Data 21 for antibody
metadata.

CyCIF preprocessing and image analysis. A flat field correction profile, gener-
ated from all fields on one plate using the BaSiC ImageJ plugin114, was normalized
to a mean value of one and each image was then divided by it. Image registration
was performed with a custom ImageJ script. Segmentation of the nuclei (based on
Hoechst staining), and cytoplasm (based on β-catenin staining) was performed
with a custom MATLAB (MathWorks) script. Each cell was then divided into four
subcellular masks: nucleus, peri-nuclear ring, cytoplasm, and cell membrane for
feature extraction, a fifth region including all the cytoplasm (peri-nuclear ring,
cytoplasm, and cell membrane together) was also defined. Segmentation was
performed on the images acquired in cycle 4 only; the masks were then overlaid on
all other cycles for feature extraction. Intensity, texture, and morphology features
were extracted for each mask, as appropriate (see Supplementary Data 22 for
feature definitions).

CyCIF QC. Quality control was performed in two steps. In the first step, cells that
were washed away over the course of the experiment and those near the edges of
the imaging fields that were incompletely captured cycle to cycle due to microscope
stage drift were identified and excluded from subsequent analyses. These cells were
identified by their high variation in nuclear Hoechst signal between successive
cycles (https://github.com/yunguan-wang/cycif_analysis_suite/blob/MCF10A/
notebooks/Section2.1_Intensity%20based%20QC.ipynb). If more than 90% of the
cells in a field of view failed this QC step, the entire field was removed. The median
fraction of lost cells was ~15 % for fields 1-8 whereas an average of 60% of cells
were lost from field 9, with a significant number of instances where the fraction of
lost cells exceeded 90%. Field 9 was therefore excluded entirely from subsequent
analyses. Additionally, for unknown reasons, most of the wells occupying row E on
plate 18 exhibited cell loss in excess of 90% leading to the exclusion of all data from
those wells in downstream analyses. In the second quality control step, cells with
failed cytoplasm segmentation as identified by multinucleation were removed.
Multi-nucleated cells were identified by re-segmenting each mask using the Python
implementation of Opencv (https://github.com/skvark/opencv-python) and
counting the nuclei; cells with two or more nuclei were excluded from downstream
analyses (https://github.com/yunguan-wang/cycif_analysis_suite/blob/MCF10A/
notebooks/Section2.2_image_based_qc.ipynb). Although masks with two nuclei
can represent failed segmentation or truly binucleated cells, visual inspection led us
to conclude that these cases were primarily segmentation errors and were therefore
excluded from downstream analyses.

Measuring association between variance and covariates. We applied the
Measuring Association between VaRIance and Covariates method to systematically
assess the fractional variance explained by each experimental covariate of ligand, time,
and replicate56,57. Briefly, each dataset was normalized by winsorization at 99% to
remove extreme outliers and then median centering within replicate. Next, we per-
formed principal component analysis to reduce the dimensionality of each data set
while preserving the variability. A subspace of principal components (PCs) sig-
nificantly associated with each covariate (ligand, time, replicate) was determined by
lasso regression for continuous covariates and silhouette coefficient for categorical
covariates. We then quantified the total variance explained by each covariate by
summing the weighted variances of all principal components (PCs). Low variance PCs
with an eigenvalue of less than 0.7 were unlikely to significantly correlate to any
covariates and these discarded PCs were not included in the analysis.

L1000 drug signature comparison. To compare our results to existing L1000
transcriptional drug signatures20 we used the L1000 FWD tool115 available at
https://maayanlab.cloud/L1000FWD/. We used as input the top 200 most sig-
nificantly up-regulated and top 200 most significantly down-regulated genes at 24
H relative to CTRL_0. We considered drug signatures with Fisher exact test
q-values < 0.2 to be significantly correlated or anti-correlated with our ligand
signatures. Finally, we summarized the number of drugs with similar mechanisms
of action to identify common patterns.
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Comparison of RNAseq and RPPA assays. To examine the relationship between
gene expression and protein abundance, we compared Z-scores calculated from our
Level 3 RNAseq and RPPA data for the 222 genes/proteins measured by both assays.
We also characterized the relationship between these assays by examining the con-
cordance of genes and protein identified as differentially expressed (compared to time
0) after ligand treatment. Genes meeting an absolute fold-change threshold of 1.5 and
an FDR-adjusted q-value of 0.01 were considered differentially expressed (as described
in RNAseq methods). RPPA antibodies meeting an absolute log fold-change threshold
of 0.5 and an FDR-adjusted q-value of 0.01 were considered differentially expressed.
For this analysis, we used a more stringent alpha of q= 0.01 (rather than q= 0.2 used
elsewhere) to focus on the strongest and most robust signals in each assay. Mea-
surements with differential expression in both assays were considered concordant. We
visualized the concordance between these assays with paired heatmaps displaying
upregulated and downregulated measurements. We summarized these results with a
Euler diagram showing set relationships between upregulated and downregulated
measurements across all ligand treatments.

Comparison of RNAseq and L1000 assays. To assess the concordance between
gene expression profiles generated by both the RNAseq and L1000 assays, we first
filtered Collection 1 Level 3 data from both datasets to contain only samples and
transcripts directly measured by both assays, then z-transformed the filtered
datasets. We calculated the Pearson’s correlation between the RNAseq and L1000
z-scores for all pairwise combinations of samples, then compared the distributions
of treatment-matched and treatment-mismatched samples. Samples with the same
ligand treatment and time point were considered treatment matched. We used a
Mann-Whitney U test was used to test for differences in mean correlation between
the treatment-matched and -mismatched groups.

Comparison of ATACseq and RNAseq assays. To compare gene expression to
chromatin accessibility at the respective transcriptional start site (TSS), we quan-
tified chromatin accessibility using bedtools multiBamCov (v. 2.26.0) .[Chromatin
accessibility was quantified in windows ±500 bp from TSS coordinates provided by
the R package TxDb.Hsapiens.UCSC.hg38.knownGene [PMID 20110278]. The
most-accessible TSS was selected for genes with multiple TSS. Integer counts were
transformed using the variance-stabilized transformation from the R package
DESeq2 (v. 1.24.0). Genes within the MHC region of chromosome 6 (chr6:
28510120-33480577) were excluded from this analysis; ATACseq data from this
region had poor alignment due to alternative contigs for this region in the hg38
genome assembly. Median VST-transformed TSS accessibility was compared to
median Level 3 RNAseq data for the EGF_48 condition.

We also compared the 10 most-variant ATACseq TF motifs (by standard
deviation) to single-sample gene set enrichment scores computed for the same TFs
from Level 3 RNAseq data, using the R package GSVA (v 1.32.0) and the TF-gene
target mappings from the ReMap ChIP-seq library (as described above).

Multi-omic module detection. To identify coordinately regulated multi-omic
modules, we performed normalization, data scaling, feature selection and cluster
analysis on molecular features induced by ligand treatments. For the GCP, RPPA and
CyCIF datasets we used limma to normalize to CTRL_0, summarize across the
replicates and calculate adjusted p-values using Benjamini-Hochberg correction; we
used DESeq2 to analyze the RNAseq data in a similar manner. We used chromVAR to
aggregate chromatin accessibility peaks that share common motifs and then the
individual motif enrichment scores of transcription factor families. We applied the
rrscale transformation to each assay data set to minimize differences in the assay-
specific data distributions70. In brief, each assay’s T0 CTRL-normalized data was
rrscaled independently with Box Cox negative and asinh transformations using an
infinite z score cutoff. This transformation yields data matrices for each assay that have
symmetrical Gaussian-shaped distributions, making them suitable for parametric
statistics. We selected a subset of highly variant and biologically interpretable features
from the 24H and 48H samples from each assay. In GCP and RPPA assays, features in
the lowest variance quartile were removed. For the CyCIF, RNAseq, and GCP assays,
features were retained if, for any condition, the absolute log fold change was greater
than 1.5 and the p-value was less than 0.05. For the RPPA assay, we used a log fold-
change threshold of 0.75 to account for differences in the RPPA data distribution. All
ATACseq motif family scores were retained.

We performed k-means clustering using partitioning around medoids and a gap
statistic analysis using the firstSEmax method to identify the optimal number of
clusters (R package cluster, version 2.1.2). In brief, the gap statistic method runs
PAM clustering on the integrated data matrix once for each k value, where
k= 2:25. Then for each k, we performed PAM clustering on 100 randomized
permutations of the data that have structure similar to the actual data. At each k,
the gap is calculated as the difference in the log of the within-groups sum of
squares of the actual versus randomized data. To cluster the features, we use
partitioning around medoids (PAM) clustering for the optimal number of clusters
defined in the previous step (k= 18), with seeds randomly selected from the
dataset. We repeated this 100 times to form an ensemble of partitions, then
calculated consensus clusters from the ensemble using a hard euclidean (HE)
method and 5 internal runs. We repeated this entire procedure 25 times and then
calculated a final consensus clustering with the HE method from these 25

consensus clusters. We further refined these clusters by identifying and collapsing
highly correlated clusters. In brief, we calculated the mean expression of features in
each cluster for each condition and then computed Pearson correlations between
all pairs of clusters. Next, we then used the R hclust function and the dendextend
cutree function on the distance matrix of the correlations to identify highly
correlated clusters. This resulted in combining 4 pairs of clusters to yield a final set
of 14 modules for further analysis.

Consensus principal component analysis. To explore how our method compares
against other published multiomics approaches73, we performed a Consensus
Principal Component Analysis (CPCA) using the R package MoCluster74 and then
compared the clusters to the refined molecular modules described above. In brief,
the same features used in the consensus PAM clustering were input as separate
blocks to the CPCA algorithm. For each Joint Latent Variable (JLV), the principal
components of each assay (block) are calculated as the block latent variables
(BLVs), normalized to 1, softly thresholded using a sparsity parameter (0.9) that
controls the number of non-zero values and used to iteratively converge on a joint
latent variable, which maximizes the correlation between the BLVs. Based on knee
analysis of the CPCA pseudoeigenvalues, we kept the first 8 JLVs.

Module TF enrichment analysis. We identified transcription factors enriched in
the integrated modules by submitting all RNAseq features from each integrated
module to the ChEA3 web-based transcription factor enrichment tool ChEA372,
which identifies transcription factors enriched for a list of genes using Fisher’s exact
test. We limited our analyses to transcription factor targets in the ReMap ChIP-Seq
library and considered transcription factors significantly enriched if the FDR-
corrected q-value was less than 0.2.

Module pathway enrichment analysis. To identify pathways enriched in each
module, we used the Reactome pathway enrichment analysis tool (https://reactome.
org/) to analyze the genes in each module. In brief, this analysis performs a binomial
test of each gene set of 2516 curated pathways in the Reactome database. We identified
significantly enriched pathways as those with FDR q-values (Benjamini-Hochberg
method) < 0.2, gene ratios > 0.1, and pathways that included a minimum of 5 and
maximum of 500 genes. To aid visual interpretation, only the top three pathways for
each module sorted by FDR and descending gene ratio are shown in Fig. 5b.

Module expression scores. To calculate the expression of modules across dif-
ferent samples in our MCF10A dataset, we computed the mean expression of
features in each module. To assess expression of the modules in external datasets
(e.g. GTEx), we focused on the RNAseq features in each module and computed
their mean expression. For our analysis of Module 10 gene expression in a panel of
breast cancer cell lines, we processed and aligned raw sequence data using the
Docker-based RNA-seq pipeline105 described in RNAseq pre-processing and QC,
then normalized the data using the variance-stabilizing transformation in the R
package DESeq2106. We used a Mann-Whitney U test to test for differences in
mean Module 10 gene expression between groups.

Set analysis. Set analysis was used to identify features significantly induced by a single
ligand (ligand-specific) or multiple ligands (shared). The input to the set analysis was
the integrated and scaled matrix of log fold change values derived from the multi-omic
module analysis. Each feature in the multi-omic matrix was labelled either ‘Unique’ or
‘Shared’. Features were defined as ‘Unique’ if they were significantly perturbed by only
a single ligand, with log fold change greater than or equal to |1.5| and Benjamini-
Hochberg adjusted p-value less than .05, relative to time 0. Features that were sig-
nificantly regulated by two or more ligands were labelled ‘Shared.’

Statistics and reproducibility. When testing for statistical significance, we
adjusted for multiple testing using the Benjamini-Hochberg method. Assays were
performed on samples in biological triplicate, as described in Cell Culture Methods.
We used a threshold of q= 0.01 for individual analyses of assay datasets (RNAseq
and RPPA) and q= 0.05 for phenotypic behavior comparisons to identify only the
largest and most robust responses in the data, and a less stringent alpha of q= 0.2
for all other analyses. The significance of list-based enrichment analyses (CHEA3,
L1000 FWD) was evaluated using Fisher’s exact tests. We used the nonparametric
Mann-Whitney U test to test for between-group differences in RNA-L1000 cor-
relation coefficients and Module 10 gene expression.

Data availability
Data, metadata and additional analysis reports are available at: synapse.org/LINCS_
MCF10A. Raw RNAseq and ATACseq data generated for this study can be accessed from
the Gene Expression Omnibus (GSE152410). Datasets for figures are as follows: Fig. 2c–g
in Supplementary Data 1; Fig. 2h in Supplementary Data 2, 3; Figs. 3a and 6b in
Supplementary Data 4; Fig. 3d in Supplementary Data 6; Fig. 3f in Supplementary Data 7;
Fig. 4a in Supplementary Data 8; Fig. 4c in Supplementary Data 12; Fig. 3b in
Supplementary Data 5; Figs. 6c and 7c in Supplementary Data 17; Fig. 6d, e in
Supplementary Data 16; Figs. 6g, h and 7b in Supplementary Data 15; Fig. 7e in
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Supplementary Data 20. Primary source data for Fig. 6g from GSE99116. Primary source
data for Fig. 6h is hosted on Synapse.org with Synapse ID: syn2346643 (https://www.
synapse.org/#!Synapse:syn2346643/wiki/232048). Supplementary Data 23 contains
metadata for the experimental samples and can be merged with Level 3 data for each
assay. All other data are available from the corresponding author on reasonable request.

Code availability
Unless otherwise stated, analyses were performed in R (https://www.R-project.org). R
packages used in analyses included: tidyverse116 (version 1.3.1), ComplexHeatmap
(version2.8.0), httr (version 1.4.2) and rmarkdown (version 2.9). A complete list of
packages and their versions can be found in analysis scripts available at https://github.
com/MEP-LINCS/MDD. The DOI is https://zenodo.org/badge/latestdoi/189112490117.
Supplementary Data 24 contains a mapping of figures and tables in this paper to the
scripts that created them.
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