
A Multi-paradigm Querying Approach for a Generic Multimedia
Database Management System

Ji-Rong Wen* Qing Li# Wei-Ying Ma* Hong-Jiang Zhang*

*Microsoft Research Asia, Beijing, China {jrwen, wyma, hjzhang}@microsoft.com
#City University of Hong Kong qing.li@cityu.edu.hk

Abstract
To truly meet the requirements of multimedia
database (MMDB) management, an integrated
framework for modeling, managing and retrieving
various kinds of media data in a uniform way is
necessary. MediaLand is an experimental MMDB
platform being developed at Microsoft Research Asia
for users with different levels of experiences and
expertise to manage and search multimedia
repositories easily, efficiently, and cooperatively. Key
features of MediaLand include a uniform data model
for describing all kinds of media objects and their
relationships, and a 4-tier architecture based on this
data model. In this paper, a multi-paradigm querying
approach of MediaLand is presented, in which
multimedia queries are processed based on a
seamless integration of various existing search
approaches. In doing so, MediaLand also offers the
feature of "media independence" which is analogous
to the notion of "data independence" from the classic
ANSI SPARC standard. By incorporating a rich set of
facilities and techniques, MediaLand lays down a
good foundation for addressing further research
issues, such as multimedia query rewriting,
optimization, and presentation.

Keywords: multimedia database management, multi-
paradigm querying, uniform data modeling, media
independence.

1. Introduction
An incommensurable amount of digital information is
becoming available in digital libraries, on the WWW, and
in professional and personal databases, and this amount is
only growing. Information may be represented in various
forms of media, such as images, graphics, video, audio,
and text (collectively termed as multimedia). Traditional
database systems, especially relational database system,
have been very successful at the management of
administrative data. However, managing large collections
of digitized multimedia data is still a tough challenge, in
spite of the fact that users have rapidly growing access to
these information resources.

Information management has a long history and many
approaches have been invented to manage and query
diverse data types in the computer systems. The state-of-
the-art approaches being used for information
management can be classified into the following
categories:
1) Conventional database system – This is the widely-

used approach to manage and search for structured
data. All data in a database system must conform to
some predefined structures and constraints (i.e.,
schemas). To formulate a database query the user
must specify which data objects are to be retrieved,
the database tables from which they are to be
extracted and predicate on which the retrieval is
based. A query language for the database will
generally be of the artificial kind, one with restricted
syntax and vocabulary, such as SQL.

2) Information retrieval (IR) system – IR system is
mainly used to search large text collections, in which
the content of the (text) data is described by an
indexer using keywords or a textual abstract, and
keywords or natural language is used to express
query demands.

3) Content based retrieval (CBR) system – This
approach is used to retrieve desired multimedia
objects from a large collection on the basis of
features (such as colour, texture and shape, etc.) that
can be automatically extracted from the objects
themselves. Although keyword can be treated as a
“feature” for text data, traditional information
retrieval has much more higher performance than
content-based retrieval because keyword has the
proven ability to represent semantics, while no
features have shown convincing semantic describing
ability.

4) Graph or tree pattern matching – This approach aims
to retrieve object sub-graphs from an object graph
according to some denoted patterns.

Originally, the above approaches were designed to
provide solutions to specific data types and application
scenarios. None of them alone can be taken as the sole
strategy in a hybrid environment containing diverse types
of data, particularly multimedia data. This situation is
worsened by the fact that user queries in such an

26 SIGMOD Record, Vol. 32, No. 1, March 2003

environment are often subjectively defined (and hence
evaluated). Consider the case that a user is interested in
finding a "dream house" in some particular city. While
there are certain attributes which he/she can specify
clearly (such as the price range, area size, etc.), many
aspects can not be specified explicitly (eg, the style,
appearance, feng-shui, neighbourhood, etc.) which would
be much more effectively described through combinations
of "visual" media (eg, photos, videos). In view of such
cross-media queries, the main disadvantages of the above
existing approaches for developing multimedia databases
and applications become evident and striking, as listed
below:
• The basic assumption of the traditional database

methodology is that structured descriptive data for
media data are readily provided. But in many cases
the structured data usually are not sufficient or not
available.

• The performance of content based retrieval
techniques is not good in terms of precision and
recall. Moreover, content based retrieval approaches
usually are irrelevant to semantics.

• Graph or tree pattern matching approach only focuses
on the structural part of media data and pays no or
very little attention on the content and semantic part
of media data.

• Since the structures of media data are essentially
heterogeneous, there still lacks a uniform framework
to model media data and, at the same time, provide
powerful and flexible ways to manage and retrieve
these data.

• Most of the existing retrieval approaches are
designed for the professional users who are clear
about what they want and how to search. But
common users do not know or only know partially
the structures of media data and the characteristics of
the retrieval approaches. This is an even more
noticeable problem when multiple retrieval
approaches are applied together. Therefore, a flexible
multimedia query language is needed to adequately
meet the requirements of different users.

MediaLand is a database system aiming to provide the
“true” support for multimedia data management. The
objective of MediaLand is to provide an integrated
framework for users with different levels of experiences
to manage and search multimedia repositories easily,
effectively, efficiently and intelligently. A uniform data
modeling framework is thus developed for MediaLand to
describe all kinds of media objects and the relationships
among them. In addition, a novel multimedia database
system architecture is designed for MediaLand based on
the uniform data model. In this paper, a unified multi-
paradigm querying methodology supported by MediaLand
is described, which processes multimedia queries based
on a seamless integration of various existing search
approaches. As a by-product, MediaLand is able to

support the notion of media independence which is
analogous to the concept of "data independence" from the
classic ANSI SPARC standard.

The rest of the paper is organized as follows. In
section 2 we outline the modeling framework of
MediaLand in terms of its logical and conceptual models.
In section 3, a multi-paradigm querying methodology
based on a 4-tier architecture of MediaLand is presented;
we also describe the underlying specific operation
constructs, and show how such operations can be used to
accommodate powerful multimedia queries. Related work
is given in section 4. Finally, section 5 summarizes this
paper and offers a few research directions.

2. MediaLand Data Modeling Framework
The data modeling framework of MediaLand comprises
the conceptual, logical, and physical models. In this
section, we concentrate on the former two (ie, conceptual
and logical data models), as the latter is very much
implementation dependent.

2.1. Logical Model

2.1.1. Modeling media objects
Multimedia database objects differ from the traditional
data items held within a database in that multimedia data
objects are real world objects (such as video clips or
graphical images), while the more traditional contents of a
database are abstract concepts that describe external real
world objects. In order to support multiple retrieval
approaches in MediaLand, media objects should be
described from multiple aspects. In general, a media
object can be described by a six-tuple:

Media_Object = <OID, Type, DB_Attribute, IR_Feature,
CBR_Feature, Locator>

where OID is the identifier of an object, Type is the type of
the object, DB_Attribute is the structured data to describe
the attributes of the object, IR_Feature is the IR related
features (usually keywords) extracted from the object,
CBR_Feature is the content features (such as color, texture,
shape, etc.) extracted from the object, and Locator is a
pointer to locate the media object. Figure 1 shows a
diagrammatical description of a sample media object.

Locator

DB_Attribute IR_Feature

OID

CBR_Feature

Media
Object

Type

Figure 1. Description of a sample media object

Note that for different media objects the data
structures of DB_Attribute, IR_Feature and CBR_Feature are

SIGMOD Record, Vol. 32, No. 1, March 2003 27

different. A universal definition for all media objects is
neither feasible nor desirable in practice.

2.1.2. Modeling correlations among media objects
We use links to model the correlations among objects.
The links in MediaLand are typed and weighted. The type
information is used to distinguish the different link
semantics among objects. And the weight information is
used to measure how strong or week of a correlation
between objects. In many cases, the links among objects
are not static. We should allow that links can be added or
deleted dynamically. Therefore, the links should not be
modeled within the media objects. A separate mechanism
is needed to model the links outside media objects. A link
is also defined as a six-tuple:

Link = <LID, FromOID, ToOID, Type, Weight, Description>

where LID is the identifier of a link; FromOID and
ToOID are the identifiers of the two objects connected by
this link; Type is the type of the link; Weight is the weight
of the link; and Description is the textual data used to
describe the link.

Links can be built up by different applications
through different ways. In general, there are mainly three
ways to construct links:
1) Manually added by the users – For example, when a

user manually makes a comment to a photo, a link is
added to connect the photo and the comment
document.

2) Automatically built by some tools and applications –
An example is that video analysis tool can build some
links between scenes and shots and between shots
and frames. Another example is that a webpage
analysis tool can build the links between the webpage
and its components, or hyperlinks between two web
pages.

3) Learnt through usages – For example, learning or
mining through the user interactive and feedback
information of an image retrieval system can build
links between the similar images.

2.1.3. Multimedia object graph
In defining the logical model for MediaLand, one basic
premise is that the model needs to be flexible enough to
cater for much of the subjectivity and open-ended
semantics of media objects. Indeed, users can accumulate
a lot of media objects with diverse types through daily
usages, such as Word documents, emails, personal photos,
personal videos, mp3 files, and web pages, etc. These
media objects are not independent. They correlate one
another through many different ways. Thus in
MediaLand, all media objects are connected by various
types of links to construct a multimedia object graph. The
formal definition is given as follows.

Definition 1: A multimedia object graph (MOG for short) is a
directed graph G=(CS, LS), where CS is a finite set of nodes and
LS is a finite set of object links. Each element in CS corresponds
to a media object oi ∈ O, where O is the collection of media
objects in the database. Each link in LS has the form of <lid, oi,
oj, t, r, d>, denoting a semantic link (identified by lid) from Oi
to Oj with t being the type, r being a real number indicating the
weight of the link, and d being the description of the link.

My media

Photos

folder

Emails

folder folder

Documents Videos WebPages

folder folder

contain

Image Image

contain

Email Email

containcontain

replyattachedrelated

Word
document

contain

attached

embed

Video

contain

shot shot

Image Image

contain contain

Keyframe Keyframe

WebPage WebPage

contain contain

WebPage

hyperlink hyperlink

hyperlink

hyperlink

WebPage

hyperlink

Figure 1. A sample personal collection of media data

Figure 1 illustrates a sample MOG which represents
a personal multimedia collection on a personal computer.
In Figure 1, each link is labled with a type name (eg,
“hyperlink”, “contain”, “folder” etc.), and connects two
media objects with some weight (not shown explicitly in
the figure) to indicate the strongness of their association
belonging to some type.

2.2. Conceptual Model

While the logical MOG model allows all media objects to
be described flexibly with assigned heterogenous
attributes, keywords, and features to them, from the
management point of view it would be very inefficient to
access and retrieve these objects. For this reason
MediaLand also adopts the “schema” concept, that is, to
assign uniform descriptive structures to the objects with
the same type at the conceptual level. The collection of
media objects with the same type is called a Media Class,
which can be described by a six-tuple:

Media_Class = <OID_Domain, Type, DB_Schema, IR_Schema,

CBR_Schema, Locator_Domain>

where Type is the common type of the objects in the class,
DB_Schema is the schema to describe the attribute
structures of the class, IR_Schema is the schema to
describe IR features of the class, CBR_Schema is the
schema to describe CBR features. Subsequently, a
Media_Object is an instance of a Media_Class if and only if:

(1) Media_Object.Type = Meida_Class.Type,
(2) DB_Attribute is an instance of DB_Schema,
(3) IR_Feature is an instance of IR_Schema, and
(4) CBR_Feature is an instance of CBR_Schema.

28 SIGMOD Record, Vol. 32, No. 1, March 2003

Therefore, Media Class is a conceptual mechanism to

cluster similar media objects and thus makes it more
effective to manage, retrieve and browse media objects.
We further force all objects belonging to the same class to
have the same schema.

Since the descriptions of all links have the same data
structure, there is only one class for all links in
MediaLand. The schema of the Link Class is defined as:

Link_Class = <LID_Domain, FromOID_Domain, ToOID_Domain,

Type_Domain, Weight_Domain, Description_Domain>

We now formally define a conceptual schema of
MediaLand as follows.

Definition 2: A conceptual schema S has a tripartite form S =
<CS, LS, Ψ> where CS = {C1, C2, …, Cn} is a set of Media
Classes, LS is the Link Class having the form of <LID, Ci, Cj, T,

W, D>, and ψ . Each link l in LS denotes a
semantic link from oi∈Ci to oj∈Cj with t∈T being the link
type, w∈W being the weight of the link, and d∈ D being the
description of the link.

LSCS ×⊂

Figure 3 illustrates the relationships among the media

objects, media classes, link class and various conceptual
schemas.

In MediaLand, a media object can belong to more
than one class. In other words, a media object can be
modelled by multiple different schemas. For example, an
email object can be described either by a complicated
email schema with pertinent attributes such as subject,
date, sender, etc. or by a simple text schema with only a
keyword vector feature. The schema of a media class can
thus be made up of one or more sub-schemas. An
important point for MediaLand is that every IR_Schema,
DB_Schema or CBR_Schema can be shared by multiple
media classes. For example, the same “keyword vector”
IR_Schema can be used both in an email class and a web
page class. Therefore, the same type of descriptive data
across multiple media classes are grouped into a single
schema, which makes it convenient to provide cross-
media retrieval support (as to be shown in section 3.3).

Media
Object

Media Class 1 Media Class 2 Media Class n

IR_Schema DB_Schema CBR_Schema

…...

Media
Object

Media
Object

Media
Object

Media
Object

Media
Object………...

Link Class

Link Schema

Figure 3. Relationships among objects, classes and
schemas

3. A Multi-paradigm Querying Approach

Abstract Layer

End-user Interface (GUI)

Multi-paradigm Query Engine (API)Retrieval Layer

DB
subsystem

IR
subsystem

CBR
subsystem

Media Layer

Email
Class

Media Preprocessors

DB_Schemas IR_Schemas CBR_Schemas Link_Schema

Image

Image

Email

Email

reply

attached

related

Word
document

attached

embed

Video

shot shot

Image Image

contain contain

Keyframe Keyframe

WebPage WebPage

WebPage

hyperlink hyperlink

hyperlink

hyperlink

WebPage

hyperlink

Word
Doc.
Class

Photo
Class

Web
Page
Class

Video
Class

Link
Class

Graph Matching
subsystem

 Figure 4. Multi-paradigm querying framework of
MediaLand

In this section, we present a multi-paradigm querying
approach supported by MedialLand. This approach is
actually developed upon MedialLand’s 4-tier architecture.
We describe each of the layers, the necessary media
preprocessor, and the querying constructs (operations)
based on which complicated multimedia queries can be
formulated and processed.

3.1. 4-tier Architecture

Figure 4 depicts the 4-tier architecture of MediaLand. As
shown in Figure 4, these are Media Layer, Abstract Layer,
Retrieval Layer, and the GUI (user interface) layer,
respectively. These roughly correspond to the physical
file system storage, logical and conceptual schemas, and
the (application) view level with reference to the classic
ANSI SPARC architecture. Below we introduce the
details of each layer from bottom up.

3.2. Media Preprocessor

Media preprocessors are the connectors between Media
Layer and Abstract Layer and are used to extract
descriptive data from media data. In general, a specific

SIGMOD Record, Vol. 32, No. 1, March 2003 29

media preprocessor is needed for every media type.
Figure 5 is a sample email preprocessor. But some
preprocessors can be used by multiple media types. For
instance, a keyword extractor can be used to extract
keyword vectors from pure texts, word documents,
emails, web pages, etc. Another example is that the
feature extractors for images also can be applied to extract
features from the key frames of videos. In some cases, if a
media data contains other media data, the media
preprocessor will call other preprocessors to deal with the
embedded data. Referring to the example of Figure 5, if
there is a photo attached to the email, the image
preprocessor will be called to process the attached photo.

Figure 5. A sample Email preprocessor

3.3. Abstract Layer

Conceptually, every media class is made up of one or
more schemas. All the attributes or features with the same
type are clustered together. Such a kind of feature
aggregation provides direct support of media
independence. Each subsystem provides its specific
retrieval method based on corresponding abstract data, not
on the media data directly. Hence from the end-user's
perspective the query strategy is media independent, in
that he/she can pose queries with or without specifying
from which media type(s) the search should be conducted.
As to be shown in section 4, media independent search (or
"cross media search") is extremely simple and easy to
specify in MediaLand due to this property.

For convenience, the Abstract Layer also provides a
Class operation to access objects of a given class, which
is defined as:

O bject_set Class (Type)

The result of the Class operation is an object set,
which is formally defined as:

Definition 3: An object set S = {OID1, OID2, …, OIDn} is a set
of object IDs. There are no orders among the elements in the set.

3.4. Retrieval Layer

3.4.1. Subsystems

The Retrieval Layer contains various retrieval
subsystems, namely, DB subsystem, IR subsystem, CBR
subsystem and Graph matching subsystem (cf. Figure 4).
MediaLand do not impose any constraints on the
underlying functions of the subsystems. In general, it only
requires the subsystems to provide a few standard
operations, which are commonly supported by nearly all
existing retrieval systems.

3.4.1.1. DB subsystem
DB_Filter is the only operation required to be supported by
the DB subsystem. This operation is used to filter out the
objects satisfying some denoted conditions and is defined
as:

Object_set DB_Filter (conditional_expression)
 DB_Attribute:

Subject: Re: Wedding photos
To: jerry@microsoft.com
Date: 01/01/2001
……

IR_Feature:
Keyword_vector {wedding, photo, …}

Links:
<Email_145, Email_144, Reply>
<Email_145, Image_55, Attached>
<Email_145, Image_56, Attached>

The parameter conditional_expression is similar to that
of relational database. The result of DB_Filter operation is
a set of qualified media objects.

Compared to traditional database query, the DB_Filter
operation first filters out all candidate schemas whose
attributes matching those in the conditional expression,
then the conditional expression is used to select the
qualified objects by searching across all candidate
schemas.

Email
Preprocessor

3.4.1.2. IR & CBR subsystem
GradeSearch is the basic approximate search operation of
R and CBR systems and is defined as: I

O bject_list GradeSearch (Feature)

The result of the GradeSearch operation is an object
list. An object list is a collection of objects and ranked by
their relevance values to the denoted feature. Formally, an
object list is defined as:

Definition 4: An object list L = {(OID1, w1), (OID2, w2), …,
(OIDn, wn)} is a list of ordered OID-weight pairs. For arbitrary
two pairs (OIDi, wi) and (OIDj, wj), i j iff wi wj.

The GradeSearch operation is used to select and rank
the objects in the database by applying some information
retrieval or content based retrieval approaches. Since
there are a lot of features and retrieval models, this
operation may be implemented through alternative ways.
Moreover, it is also a good choice to provide several
implementation functions for the GradeSearch
simultaneously.

Typically, GradeSearch will retrieve all relevant
objects irrespective of the similarity value. But usually
users only want to retrieve the top N objects or the objects
whose similarity value excess the denoted thresholds.
Thus two kinds of operations are supplemented.

• Object_list TopSearch(Feature, Num)

This operation is similar to the GradeSearch
operation except that it only retrieves the top N

30 SIGMOD Record, Vol. 32, No. 1, March 2003

relevant objects (if there exists). We only need to add
a parameter into the GradeSearch operation to
ransfer it into the TopSearch Operation. t

• Object_list ThresholdSearch(Feature, Threshold)

This operation is constructed by adding a
threshold constraint to the GradeSearch operation and
only those objects whose relevance values are larger
than the threshold value are retrieved.

Sometimes, the retrieval result of approximate search

operation, especially for TopSearch and ThresholdSearch,
can be treated as an object set by omitting the weight
values in the object list. A Convert function is defined to
achieve this:

 Object_set Convert (Object_list)

3.4.1.3. Graph matching subsystem
Since media objects are organized into an object graph
through the links among them, graph pattern-matching
techniques are employed to retrieve homomorphic
subgraphs of a given pattern graph from the global object
graph. First we define a new data type called
homomorphic relation.

Definition 5: A homomorphic relation from a graph
G=(CS, LS) to a pattern graph G’=(CS’, LS’) is a
relation R (f1:OID, f2:OID, …fn:OID). All of the fields in
the relation have the same type OID. The number of fields
is determined by the number of nodes in G’. For any t ⊆
R, if x → y is in G’ then t.x → t.y is in G.

It’s clear that every tuple in the homomorphic
relation is a qualified homomorphic subgraph of the given
pattern graph. Now we are ready to define a basic
operation for the graph matching subsystem, as the
following:

Homomorphic_relation Graph_Match (pattern_graph)

Previous work point out that a main drawback of
graph pattern-matching lies in its inherent computational
complexity and the subgraph isomorphism problem is
known to be NP-complete [26] [27]. But in MediaLand,
this is not a big problem attributing to two reasons:
Firstly, contrary to the classic graph matching problem,
the links in our model are typed, which allow us to cut
down the original object graph according to the link types
in the pattern graph. Secondly, the graph matching
operation usually is mixed with other operations and
seldom used solely in MediaLand (as we will demonstrate
in section 4). Thus other operations (usually much more
efficient than the graph matching operation) can be
executed first to filter out unwanted objects. These two
ways can narrow down the search space dramatically and
make graph matching a feasible search method in real
application scenarios.

3.4.2. Multi-paradigm query engine

As mentioned earlier, one of the key characteristics
emphasized by MediaLand is the support of multi-
paradigm querying method. The multi-paradigm query
engine targets to support complicated queries by
combining the capabilities of multiple retrieval
subsystems. In this section, we introduce the basic
operations of merging the results from multiple
subsystems. Unlike relational data model, which has only
one data type – relation, in MediaLand three basic data
types – object set, object list and homomorphic relation –
are supported by different subsystems. Thus, a group of
new operations which operate on heterogenous data types
has been devised in MediaLand.

3.4.2.1. Intersection operations
Traditionally, intersection operation is used to get the
common elements from two homogenous sets. In
MediaLand, the functions of intersection operation are
much broader than previous ones. A few new intersection
operations are proposed to facilitate merging results of
different data types.

Definition 6: Intersection between two object sets S1 and S2 is
defined as:

S1 ∩ S2 = { s | s ∈ S1 ∧ s ∈ S2 }

The semantics of intersection between object sets is
similar to traditional ones, that is, to simply select the
common objects in the two object sets.

Definition 7: Intersection between an object list L and an object
set S is defined as:

L ∩ S = { l | l ∈ L ∧ l(OID) ∈ S }
where l(OID) is a function to get the OID from the element l.

This intersection operation takes an object list as the
first operant and an object set as the second operant. Its
semantics is to filter out from the object list those objects
not contained in the object set. The result of this operation
is another object list keeping the order of objects in the
original one.

Definition 8: Intersection between a homomorphic relation R
and an object set S is defined as:

})(|{ SftRttSR ifi

∈∧∈=∩

where fi is the ith field in the relation and t(fi) is the value of the
ith field of the tuple t.

The semantics of this kind of intersection operations
is to filter out from the homomorphic relation those tuples
whose value of the ith field is not contained in the object
set. Another interpretation of this operation is that it
equals to the natural join between the homomorphic
relation and the object set.

SIGMOD Record, Vol. 32, No. 1, March 2003 31

Definition 9: Intersection between two homomorphic relations
1 and R2 is defined as: R

R
 1 ∩ R2 = { t | t ∈ R1 ∧ t ∈ R2 }

R1 and R2 should have the same schemas.

The semantics of this intersection operation is the
same as that of the relational model.

We do not define the intersection operation between
two object lists because it is hard or, more precisely,
meaningless to determine the weights and ranks of the
objects in the result list. Instead, we define another
operation called Rerank to merge the results of two object
lists in Section 3.4.2.4. Moreover, it’s obvious that it’s
meaningless to define intersection operation between an
object list and a homomorphic relation since the
semantics of such an operation is unclear.

3.4.2.2. Union operations
In MediaLand, union operations are used to combine the
elements of two object sets or tuples of two homomorphic
realtions, which has the same semantics as that of
relational model.

Definition 10: Union between two object sets S1 and S2 is
defined as:

S1 ∪ S2 = { s | s ∈ S1 ∨ s ∈ S2 }

Definition 11: Union between two homomorphic relations R1
and R2 is defined as:

R1 ∪ R2 = { t | t ∈ R1 ∨ t ∈ R2 }

Again, it is meaningless to union the elements of two
object lists.

3.4.2.3. Rerank operation
Each retrieval subsystem retrieves and ranks objects
independently. A mechanism of combining and re-ranking
the objects from multiple object lists is an effective way
to improve the retrieval performance, which also is a
well-known research topic in the IR community [14] [16].
We define below a Rerank operation to merge two object
lists and then reorder the objects according to a uniform
criterion.

Definition 12: Rerank of two object lists L1 and L2 is defined as:

)})}()(,|({)(

,|{

21

2121

OIDlOIDkLkLkkfwl

LlLllLL
f

=∈∨∈=

∈∨∈=⊕

where f is a function to recalculate the weight of each element
by combining both of the element’s weights in L1 and L2.

There have been a lot of proposed weight
recalculation functions in previous studies. Here we have
only given the formal definition of Rerank operation. The
weight recalculation function is itself an additional
issue/topic and is beyond the scope of this paper.

4. Sample Application Query Processing
The operations described above can be combined to
support very complicated multimedia queries. We give
some query examples in this section to illustrate the usage
and expressive power of these querying constructs.

Example 1 – Text retrieval

Consider the following query: Find and rank all word
documents according to the similarity between their keyword
vectors and the sample vector {multimedia, database}.

This query can be expressed by an intersection
etween a GradeSearch operation and a Class operation: b

GradeSearch ({multimedia, database}) ∩ Class
“Word_document”) (

Example 2 – Content based retrieval

Let us consider another query: Find and rank image
objects according to the similarity between their color
histogram features and the sample feature.

Again, this query can be expressed by an
intersection between a GradeSearch operation and a Class

peration: o

GradeSearch (sample_ColorHistogram_Feature) ∩ Class
“Image”) (

The above two examples show that existing

traditional retrieval approaches can be easily covered by
our multimedia query language. On the other hand, since
all similar attributes and features from diverse media
types are grouped together, the implementation of cross
media retrieval in MediaLand is straightforward, as the
following example shows.

Example 3 – Cross media retrieval

Suppose the user poses the following query: Find and
rank all objects that are relevant to “multimedia database”.

This query can be easily formulated through the
ollowing single operation: f

GradSearch ({multimedia, database})

Note that the evaluation of this query will result in
various media objects to be retrieved, so long that these
objects have in their attributes/features the string of
"multimedia database". (It is somewhat surprising to see
how simple it is in MediaLand to fulfill cross media
retrieval by just using a single operation in such a case.)

Example 4 – Combination of multiple retrieval methods

We now consider a rather "complex" query (as far as
the specification in English is concerned): Find all image
objects with the date not earlier than “01/01/2001”, and then
rank the objects according to (1) the similarity between their
shape feature and the sample feature, and (2) the similarity
between their keyword vectors and the sample vector {sunset,
ocean}.

In MediaLand, the query can be specified through a
ombination of the following operations: c

32 SIGMOD Record, Vol. 32, No. 1, March 2003

(GradeSearch ({sunset, ocean}) ⊕ GradeSearch
(sample_Shape_Feature))
 ∩ DB_Filter (“date >= 01/01/2001”)) ∩ Class (“Image”)

First, two operations are used to retrieve and rank
objects according to keyword and shape feature
respectively. Second, the results of these two GradeSearch
operations are merged and re-ranked. Then a DB_Filter
and a Class operation are used to filter the object list
further.

Example 5 – Associative retrieval

As a final example, let us consider the following
more "tricky" query: Find all images which are attached to
some emails while the similarity between the images and the
sample image is larger than 50%.

In MediaLand, this query is specified as a
combination of the following operations:
Graph_Match (x →(attached) y) Class (“Email”)

y
Ι

x
Ι Convert (ThresholdSearch (sample_image, 0.5) ∩

Class (“Image”))

The result of Graph_Match (X →(attached) Y) is a
relation with schema (x:OID, y:OID). Then this relation is
intersected with the email object set and qualified image
object set.

5. Related Work
Multimedia data in the form of image, graphics, text,
video, and audio possess properties that are not
adequately supported by traditional database systems,
such as large data size, time-dependent nature, content-
based retrieval, and the demands on quality of service,
etc. To address such limitations, during the last decade
multimedia databases have been proposed and received an
extensive study on its related techniques. A main
objective is to provide reliable and efficient storage,
maintenance, and access of different types of multimedia.
Substantial modifications and extensions have been made
to both relational databases (e.g. STARBURST system
[11]) and object-oriented databases (e.g. [19] [20]) to
include the “multimedia features”. Many emerging
multimedia systems, such as QBIC[2] and
Informedia[12], manifest certain properties being
characteristic of a multimedia database. Nevertheless,
existing multimedia databases have not achieved the
ultimate goal of providing an integrated environment for
managing different media objects uniformly. As a matter
of fact, many related problems have not been successfully
addressed, particularly from the perspective of unified
modeling of media objects and cross media retrieval. To
the best of our knowledge, MediaLand is the first
multimedia database which actually reaches to the extent
of providing a uniform modeling framework to data
objects of all the media types.

Information retrieval [22], content based retrieval
[24], database querying [23], graph and tree matching
[17] [25] [26] are four distinct research fields
traditionally. Recently, there are some efforts to extend
one approaches to handle other date types, such as
integrating keyword based search into database systems
[4][6][7][8], combining keywords with features in
content-based retrieval systems[15], adding XML support
into relational database systems [17], adopting XML to
describe and access visual-audio data [13] etc. Although
previous work has demonstrated some appealing results,
still there lacking of a solid theory and system to provide
a uniform framework for modeling, managing and
retrieving various kinds of multimedia data. In contrast,
MediaLand provides a multi-paradigm querying
methodology by integrating the relevant techniques from
database approach, information retrieval, content-based
retrieval, and hypermedia (graph) modeling in a seamless
manner.

6. Conclusion and future work
In this paper we have presented a multi-paradigm
querying approach of MediaLand, an experimental
multimedia database (MMDB) system being developed at
Microsoft Research Asia. The main objective of
MediaLand is to truly meet the requirements of MMDB
management, by providing an integrated framework for
modeling, managing and retrieving various kinds of
media data in a uniform way. To suupport MMDB users
who can be of different levels of experiences and
expertise, a multi-paradigm query engine is devised upon
MediaLand's 4-tier architecture to process cross media
retrieval via a seamless integration of various existing
search approaches. As a by-product, MediaLand can
support the notion of "media independence" which is
analogous to the concept of "data independence" from the
classic ANSI SPARC standard.

MediaLand is an ongoing project, and there are a
number of important issues remaining to be addressed in

ur subsequent research: o

1) Query optimization

Since approximate search operations (especially
those for content base retrieval and graph matching) are
usually very time-consuming, optimization is very critical
to the performance of query processing. In MediaLand,
the essence of query optimization is to give an optimized
execution order of the operations. A proper order can
effectively reduce the cost of some expensive operations.
Therefore, the query optimization in MediaLand is very
different from those in relational database systems (more
ppropriately, it can be termed as “meta-optimization"). a

2) User interface facilities

Besides a "descriptive" query language, versatile
user interface facilities are needed to be developed, which
can support visual presentation of the query results

SIGMOD Record, Vol. 32, No. 1, March 2003 33

dynamically, incremental/iterative user feedbacks
interactively, and the whole range of
dministrative/editing operations completely. a

3) Performance Evaluation

Last but not the least, we also plan to work on
issues related to performance evaluation. As queries in
MediaLand can be both precise and imprecise,
appropriate cost model functions need to be developed in
order to evaluate the effectiveness of the various query
optimization and indexing techniques. Also, a "ground-
truth" database needs to be chosen and bench-mark
queries need to be defined upon which the performance
evaluation can be conducted more objectively.

Acknowledgement: The authors would like to express
their sincere thanks to Prof. Hongjun Lu for a fruitful
discussion on some issues/aspects related to this project,
which also helped the presentation of this paper.

Reference
[1] Abiteboul, S., Querying Semi-structured Data, Proceedings

of the International Conference on Database Theory, 1997.

[2] Apers, P. M. G., Blanken, H. M., Houtsma, M. A. W.,
Multimedia Databases in Perspective, Springer-
Verlag,1997.

[3] Chaudhuri, S. and Gravano, L., Optimizing Queries over
Multimedia Repositories, Proc. of ACM SIGMOD’96,
Montreal, Canada, 1996, pp. 91-102.

[4] Dessloch, S. and Mattos, N., Integrating SQL Databases
with Content-specific Search Engines. Proceedings of the
23rd VLDB conference. Athens, Greece, 1997.

[5] Fagin, R., Fuzzy Queries in Multimedia Database Systems.
Proceedings of the 17th ACM symposium on Principles of
database systems (PODS '98), June 1 - 4, 1998, Seattle,
WA.

[6] Florescu, D., Kossmann. D. and Manolescu, I., Integrating
Keyword Search into XML Query Processing. Proceedings
of the 9th WWW conference. Amsterdam, NL, May 2000

[7] Fuhr N., Models for Integrated Information Retrieval and
Database Systems. IEEE Data Engineering Bulletin 19(1),
pp. 3-13.

[8] Goldman, R., Shivakumar, N., Venkatasubramanian, S. and
Garcia-Molinas, H., Proximity search in databases. In
Proceedings of the 24th VLDB Conference, 1998

[9] Gyssens M., Paredaens J., Van den Bussche J. and Van
Gucht D., A Graph-oriented Object Database Model. IEEE
Trans. on Knowledge and Data Eng., 6(4), 572-586, 1994.

[10] G tzer, U., Balke, W. and Kie ing, W., Optimizing
Multi-Feature Queries for Image Databases. Proceedings of
the 26th VLDB conference, pp. 419-428, Cairo, Egypt,
2000.

[11] Haas, L. M., “Supporting Multi-Media Object Management
in a Relational Database Management System”, Technical
report. IBM Almaden Research Center, 1989.

[12] Hauptmann, A., Smith, M., “Text, speech, and vision for
video segmentation: The Informedia project”, In AAAI Fall
1995 Symposium on Computational Models for Integrating
Language and Vision, 1995.

[13] Jos M. Mart ez (Editor), Overview of the MPEG-7
Standard. March 2001,
http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm

[14] Lee, J. H., Analyses of Multiple Evidence Combination.
Proceedings of the 20th international ACM SIGIR
conference. July 27 - 31, 1997, Philadelphia, PA.

[15] Lu, Y., Hu, C., Zhu, X., Zhang, H. and Yang, Q., A Unified
Semantics and Feature Based Image Retrieval Technique
Using Relevance Feedback. ACM MULTIMEDIA 2000--
The 8th ACM International Multimedia Conference, Los
Angeles, California , October 30 - November 3, 2000.

[16] Manmatha, R., Rath, T. and Feng, F., Modeling Score
Distributions for Combining the Output of Search Engines.
Proceedings of the 24th international ACM SIGIR
conference. Sept. 9-13, 2001, New Orleans, LA.

[17] Mart ez, C. and Valiente, G. An Algorithm for Graph
Pattern-Matching. In Proc. Fourth South American
Workshop on String Processing, volume 8 of International
Informatics Series, Carleton University Press (1997), pp.
180-197.

[18] Microsoft Corp., Microsoft SQL Server 2000.

[19] Oomoto, E., Tanaka, K., “OVID: Design and
Implementation of a Video-Object Database System”,
IEEE Transactions on Knowledge and Data Engineering,
vol.5, pp 629-641, 1993.

[20] Orenstein, J. A., “A Comparison of Spatial Query
Processing Techniques for Native and Parameter Spaces”,
In Proc. of ACM SIGMOD Conf. pp 343-352, 1990.

[21] Rakow, T., Neuhold, E. J. and Lohr, M., Multimedia
Database Systems - The Notions and the Issues. In G.
Lausen, editor, Tagungsband GI-Fachtagung
Datenbanksysteme in Buro, Technik und Wissenschaft
(BTW), Dresden Marz 1995, pp. 1--29. Springer Verlag,
Informatik Aktuell, 1995.

[22] Salton, G. and McGill, M.J., Introduction to Modern
Information Retrieval, McGraw-Hill Book Company, 1983.

[23] Ullman, J. D., Principles of Database Systems. Computer
Science Press, 2 edition, 1982.

[24] Zhang, H. J. et al, "Video parsing and browsing using
compressed data" Multimedia Tools and Applications 1(1),
89-111, 1995

[25] Zhang K., Shasha D. and Wang, J., Approximate Tree
Matching in the Presence of Variable Length don't Cares.
Journal of Algorithms, 16(1):33-66, January 1994.

[26] Zhang, K., Wang, J.T. and Shasha, D. On the Editing
Distance Between Undirected Acyclic Graphs.
International Journal of Foundations of Computer Science
7(1): 43-58 (1996).

34 SIGMOD Record, Vol. 32, No. 1, March 2003

