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Abstract This paper considers the problem of how to
construct the optimal multi-period portfolio for investor

with loss aversion in fuzzy environment. Firstly, we re-
gard the return rates of the risky assets as fuzzy num-
bers, and use the value function in prospect theory to

transform the return rate of a portfolio into perceived

value, which reflects investors’ loss aversion. Moreover,

due to the fact that investors’ perception level toward

risk may vary with the loss aversion degree, we propose

a new risk measure based on the perceived value. Then,

we formulate the objectives of maximizing the cumula-

tive expected perceived value and minimizing the cumu-

lative perceived risk, and propose a multi-period portfo-

lio selection model with diversification constraint. Fur-

thermore, to solve the proposed model, we design a

multiple particle swarm optimization algorithm with

respect to its specific situation. Finally, using the data

from real financial market, we construct a real case to

illustrate the effectiveness of the model and algorithm.

The results show that loss aversion has an important
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effect in investors’ investment decisions, and the pro-
posed model could provide more reasonable strategies

for investors with different loss aversion degrees.

Keywords Fuzzy portfolio selection · Loss aversion ·
Prospect theory · Multiple particle swarm optimization

1 Introduction

How to allocate the wealth in multiple assets properly
is one of the important problems in financial sector.
The mean-variance (MV) portfolio selection model pro-
posed by Markowitz (1952) laid the foundation for the

modern portfolio theory, where the return of each risky
asset is assumed as random variable. Inspired by this

pioneering model, many scholars have studied the port-

folio problems by using the expected value and vari-

ance of portfolio to measure the investment return and
risk, respectively, e.g., Sharpe (1964), Merton (1972),
Perold (1984), Best and Hlouskova (2000). Consider-

ing the deficiency of variance which views the volatility
of high return as risk, Markowitz (1959) proposed the

semi-variance, which measures the risk by only taking

the volatility of return below the expected value into

account. In addition, lower partial moment is also used
for measuring the risk, many scholars regarded that this
risk measure can characterize investors’ perceived levels
of risk more properly, such as Harlow and Rao (1989),
Chow and Denning (1994) and Jarrow and Zhao (2006).

The above studies assumed the returns of risky as-

sets are random variables and use the historical data
to estimate their probability distribution. However, in
the real financial market, there exists a lot of non-
random factors such as expert opinions, political infor-
mation and confidence level, they are often occurring
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2 Xingyu Yang et al.

with linguistic descriptions such as high risk, low de-

gree and high level. In this situation, it is impossible

for investors to get the precise value of the returns of

risky assets which include lots of fuzzy uncertainty. As a

powerful tool for describing the fuzzy uncertainty of the

real event, the fuzzy set theory originally proposed by

Zadeh (1965). Inspired by the idea of the fuzzy set the-

ory, numerous researchers have applied it to study the
fuzzy portfolio selection problem, they assumed the re-
turn of risky assets are fuzzy numbers and constructed

the corresponding optimization model. Assuming the

return of each risky asset is trapezoidal fuzzy num-

ber, Deng and Li (2012) proposed a fuzzy portfolio
selection model with borrowing constraint. Using the

turnover rates of risky assets to measure the liquidity

of the portfolio, Barak et al. (2013) proposed a fuzzy

mean-variance-skewness portfolio selection model with

liquidity constraint and cardinality constraint. Chen et

al. (2019) considered transaction costs, liquidity, buy-in
thresholds and cardinality constraints, proposed a fuzzy

mean-semivariance-entropy portfolio selection model, and

designed a hybrid multiobjective bat algorithm to solve

the proposed model. By incorporating fuzzy return rates

and background risk, He and Lu (2021) proposed a

fuzzy porfolio model with cardinality constraint, and

designed an improved quantum-behaved particle swarm

optimization algorithm to solve the model.

In the real investment process, investors often need

to adjust the wealth allocated in assets. Therefore, it’s

reasonable to study the portfolio selection problem in

multi-period setting. Sadjadi et al. (2011) proposed a

multi-period fuzzy portfolio selection optimization model

considering borrowing rate and lending rate. Using pro-

portion entropy to measure the diversification of port-

folio, Zhang et al. (2012) proposed a multi-period fuzzy

mean-semi-variance-entropy portfolio selection optimiza-

tion model with transaction cost. Zhang et al. (2014)

proposed the concept of fuzzy semi-deviation to mea-

sure the risk of portfolio, constructed a multi-period

fuzzy portfolio selection optimization model with di-

versification and boundary constraints. Considering the

investment horizon may vary with different assets, Guo

et al. (2016) proposed a multi-period fuzzy portfolio

selection optimization model with different investment

horizon and total risk constraint, where the objective is

to maximize the final expected return of the portfolio.
Mohebbi and Najafi (2018) used scenario tree to char-

acterize the uncertainty of financial market, introduced

some realistic constraints such as cardinality, liquidity

and boundary constraint, then proposed a multi-period

fuzzy portfolio selection optimization model with trans-

action cost. Yang et al. (2021) used expected value and

semi-deviation to measure the return and risk of the sin-

gle asset, respectively, introduced a diversification con-

straint involving risk-free asset, and proposed a multi-
period fuzzy portfolio selection optimization model with
the objectives of maximizing the final expected wealth

and minimizing the cumulative risk.

In practice, investors are usually bounded rational

due to the cognitive factors such as sentiment, confi-

dence level and risk attitude. Using the value function

to characterize decision makers’ behavioral preferences

such as loss aversion and reference dependence, Kahne-

man and Tversky (1979) proposed the prospect theory.

Inspired by this pioneering work, numerous researchers

introduced the prospect theory to the portfolio selection

problem, and studied the influences of investors’ behav-

ioral preferences in the investment decision. Using the

linear value function to characterize investors’ loss aver-

sion preference, Fortin and Hlouskova (2011) proposed

a portfolio selection optimization model with the objec-

tive of maximizing the loss aversion utility. Considering

investors’ subjective preferences in the mean-variance

framework, Fulga (2016) proposed a loss aversion based

downside risk measure, and constructed a portfolio se-
lection optimization model with the objectives of max-

imizing the expected return and minimizing the down-
side risk. Song et al. (2017) considered investors’ loss

aversion preferences in the continuous-time investment

and consumption process, introduced the downside con-

sumption constraint, proposed a continuous portfolio

selection optimization model with maximizing the total

discounted S-shaped utility from consumption. Wang et

al. (2018) considered investors’ loss aversion preferences
in dynamic scenario, introduced the conditional value

at risk (CVaR) constraint, and constructed a portfo-

lio selection model with the objective of maximizing

the loss aversion utility. Liu and Zhang (2021) consid-

ered the case that investors’ loss aversion degrees are
relevant to the excess return, introduced the cardinal-

ity and boundary constraints, proposed a multi-period
fuzzy portfolio selection optimization model with the
objective of maximizing the time vary loss aversion util-

ity.

There are three points that encourage us to conduct

this study. First, investors are often provided informa-

tion with fuzzy uncertainty when making optimal deci-

sions in multi-period investment process. Second, con-

sidering the bounded-rational psychological states of in-

vestors under uncertainty, we introduce the prospect
theory to reflect their loss aversion. Third, due to the
fact that investors’ attitude toward risk vary with the

different loss aversion, we propose an alternative method-

ology based on the perceived value for measuring risk,

namely perceived risk. We summarize the main contri-

butions of this study to the current literature as follows:
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A multi-period fuzzy portfolio optimization model with investors’ loss aversion 3

• A multi-period fuzzy portfolio optimization model

considering investors’ loss aversion is proposed.
• A new method is used to transform the portfolio re-

turn rate into perceived value by the value function

in prospect theory.

• A risk measure is proposed to characterize investors’
loss aversion based on the perceived value.

• A multiple particle swarm optimization algorithm is
designed to solve the proposed model.

The remainder of this paper is organized as fol-
lows. Section 2 introduces some preliminaries. Section 3

establishes a multi-period fuzzy portfolio optimization

model considering investors’ loss aversion. Section 4 de-

signs a multiple particle swarm optimization algorithm

to solve the proposed model. Section 5 conducts a real

case study to illustrate the effectiveness of the proposed

model and algorithm. Section 6 draws the conclusions
of this paper.

2 Preliminaries

In this section, we introduce some preliminaries, which

will be used in the following discussion.

2.1 Fuzzy number

Definition 1 (Zadeh, 1965). A fuzzy number Ã is said

to be an LR-power fuzzy number if its membership

function has the following form

µÃ(x) =



















L
(

a−x
α

)

, a− α < x < a,

1, a ≤ x ≤ b,

R
(

x−b
β

)

, b < x < b+ β,

0, otherwise,

(1)

where α, β ≥ 0 represent the left and right spreads, re-

spectively; L,R : [0, 1] → [0, 1] are the left and right
functions, L (0) = R (0) = 1 and L (1) = R (1) = 0.

Denote it by Ã = (a, b, α, β)LR.

Lemma 1 (Dubois and Prade, 1980). Let Ã1 = (a1, b1, α1, β1)

and Ã2 = (a2, b2, α2, β2) are two trapezoidal fuzzy num-

bers, and l be a real number. Then

Ã1 + Ã2 = (a1 + a2, b1 + b2, α1 + α2, β1 + β2), (2)

lÃ1 =

{

(la1, lb1, lα1, lβ1) , l ≥ 0,

(lb1, la1,−lβ1,−lα1) , l < 0.
(3)

Definition 2 (Carlsson and Fullér, 2001). Let Ã be

a fuzzy number with membership function µÃ(·), γ ∈
(0, 1] be a real number. Define the γ−level set of Ã by

[Ã]
γ
= {x ∈ R : µÃ (x) ≥ γ} . (4)

Particularly, if Ã is an LR-power fuzzy number, its

γ−level set is an inverval, denote it by [Ã]
γ
= [a(γ), ā(γ)].

Definition 3 (Carlsson and Fullér, 2001). Let Ã be a

fuzzy number with γ−level set [Ã]
γ
= [a(γ), ā(γ)], γ ∈

(0, 1]. Define its possibilistic mean value and lower pos-

sibilistic semi-variance by

E(Ã) =

∫ 1

0

γ(a(γ) + ā(γ))dγ, (5)

SV (Ã) = 2

∫ 1

0

γ(E(Ã)− a(γ))
2
dγ. (6)

Definition 4 (Zadeh, 1965). Let Ã be a fuzzy num-

ber with membership function µÃ(·), φ : R → R be a

function. Define a fuzzy number B̃ and its membership

function by

µB̃ (y) = max
{x: φ(x)=y}

µÃ (x) . (7)

2.2 Prospect theory

Prospect theory, initially proposed by Kahneman and

Tversky (1979), is a descriptive theory for decision mak-

ers’ bounded rational behaviors under uncertainty. In

this pioneering theory, there are three fundamental prin-

ciples, which describe decision makers’ behavioral pref-

erences. The first one is reference dependence, by using

a presetting wealth level, decision makers divide the

wealth result into two areas, i.e., gain area and loss

area, which reflect whether the wealth result is bet-

ter or worse than the presetting wealth level. The sec-
ond one is loss aversion, decision makers put a higher
value on the loss than on the gain when assessing the

wealth result. Third one is diminishing sensitivity, de-

cision makers are risk-averse in the area of gain, while

are risk-seeking in the area of loss.
Under the assumption that the decision maker is

more focus on the relative wealth amount of gain or loss

than the absolute amount of the final wealth, prospect

theory captured the decision maker’s behavioral prefer-

ences by the value function, which is as follows:

v(r) =

{

(r − rb)
δ1 , r ≥ rb,

−θ(rb − r)
δ2 , r < rb,

(8)

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



4 Xingyu Yang et al.

where r represents the final wealth, rb is the param-

eter that represents the presetting wealth level, which
reflects the decision makers’ reference dependence, 0 <

δ1, δ2 < 1 are the parameters that represent the deci-

sion makers’ decreasing sensitivity degree in gain area
and loss area, respectively, θ > 1 is the parameter that
represents the decision makers’ loss aversion degree. A

general case of the value function is shown in Fig. 1.

rb
r

0v(r
)

Fig. 1 The value function v(r)

For the influence of loss aversion, different investors

may have different risk attitudes toward the same un-

certain return of a portfolio. Therefore, an adjustable

risk measure should be developed to suit varying loss

aversion. In order to incorporate the loss aversion of in-

vestors, we define the following perceived risk based on
the perceived value.
Definition 5 Let Ã be a fuzzy number, its γ−level

set is [Ã]
γ
= [a(γ), ā(γ)], γ ∈ (0, 1]. Denote the per-

ceived value of Ã by Ṽ = v(Ã) with γ−level set [Ṽ ]
γ
=

[q(γ), q̄(γ)], γ ∈ (0, 1]. Define the perceived risk of Ã

by

PR
(

Ṽ
)

=

∫ 1

0

γ
(

min
{

q(γ), 0
})2

dγ. (9)

3 Modeling

In this section, we aim to construct a multi-period fuzzy

portfolio selection optimization model with investors’
loss aversion.

3.1 Problem description and notations

We consider a portfolio optimization problem with sev-
eral risky assets. Assume that the investor with initial

wealth W0 gets into the financial market at the be-
ginning of the first period horizon, he/she intends to
invest the wealth among n risky assets and get the fi-

nal wealth after T periods. He/she can adjust the pro-

portion of wealth invested in each risky asset at the
beginning of each period. We formulate the portfolio
optimization model under fuzzy uncertainty, in which

the return rate of each risky asset is regarded as trape-
zoidal fuzzy number. We consider investors’ loss aver-
sion, which means the investor usually presets the refer-

ence level of return rate according to his/her subjective

judgement, and puts a higher value on the loss than on

the gain. In fact, we only care about whether portfolio

selection is affected by his/her loss aversion under the

fuzzy uncertainty environment. Specifically, we charac-

terize investors’ loss aversion through two aspects: one

is transforming the portfolio return rate into the per-

ceived value by the value function in prospect theory;

the other is using the perceived risk measure to cap-

ture investors’ attitude toward risk under different loss

aversion degrees.

We introduce the following notations for convenient

discussion.

r̃t,i: the fuzzy return rate of asset i during period
t, which is represented by a trapezoidal fuzzy number,

i.e., r̃t,i = (at,i, bt,i, αt,i, βt,i);

xt,i: the investment proportion of asset i during pe-

riod t;

xt: the portfolio of period t, which is represented by

xt = (xt,1, xt,2, · · · , xt,n);

x: the investment strategy for T periods, where x =

(x1,x2, · · · ,xT );

c+: the transaction cost rate of purchasing risky as-

set;

c−: the transaction cost rate of selling risky asset.

Transaction cost, which is paid by the investor when
adjusting the portfolio, has a significant impact on the

investment decision making. The investor need to pay

transaction cost when purchasing risky assets or selling

risky assets. Denote the adjustment of the purchasing
and selling proportion of risky asset i at period t by

∆x+
t,i = max{xt,i−xt−1,i, 0} and ∆x−

t,i = max{xt−1,i−

xt,i, 0}, respectively. Then the amount of transaction

cost paid at period t is

ct =

n
∑

i=1

(

c+∆x+
t,i + c−∆x−

t,i

)

. (10)

Then the return rate of the portfolio at period t is

R̃t =

n
∑

i=1

xt,ir̃t,i − ct. (11)
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A multi-period fuzzy portfolio optimization model with investors’ loss aversion 5

Denote at =
n
∑

i=1

xt,iat,i − ct, bt =
n
∑

i=1

xt,ibt,i − ct, αt =

n
∑

i=1

xt,iαt,i, βt =
n
∑

i=1

xt,iβt,i. Then the return rate of the

portfolio at period t is represented by

R̃t = (at, bt, αt, βt) . (12)

The expected wealth of the portfolio at the end of pe-

riod t is

Wt =Wt−1(1 + E(R̃t))

=Wt−1

(

1 +
at + bt

2
+

βt − αt

6

−

n
∑

i=1

(

c+t,i∆x+
t,i + c−t,i∆x−

t,i

)

)

, (13)

and the terminal cumulative wealth of the investment

strategy is

CWT =W0

T
∏

t=1

(

1 +
at + bt

2
+

βt − αt

6

−
n
∑

i=1

(

c+t,i∆x+
t,i + c−t,i∆x−

t,i

)

)

. (14)

The semi-variance of the portfolio at period t is

SV (R̃t) =

(

bt − at
2

+
αt + βt

6

)2

+
α2
t

18
, (15)

and the terminal cumulative semi-variance of the in-

vestment strategy is

CRT =

T
∑

t=1

SV (R̃t)

=

T
∑

t=1

(

bt − at
2

+
αt + βt

6

)2

+
α2
t

18
. (16)

3.2 Objective function

Most fuzzy portfolio optimization models are proposed

with the objectives of maximizing the terminal cumu-

lative wealth CWT and minimizing the terminal cumu-

lative semi-variance of the investment strategy CRT .

The objectives of maximizing CWT and minimizing

CRT can’t reflect investors’ loss aversion during the in-

vestment process. However, the investor’s portfolio de-
cision making may be significantly affected by the loss
aversion. Specifically, investor’s psychological perceived

value toward the portfolio may be vary with different

loss aversion degree, then he/she may make different

portfolio selection due to the varying satisfaction de-

gree. Therefore, we consider the objectives of maximiz-

ing the terminal cumulative expected perceived value

CEPVT and minimizing the terminal cumulative per-

ceived risk CPRT to reflect the loss aversion of different
investors, instead of taking the maximization of CWT

and the minimization of CRT .

Given a return rate R̃t, we generate its expected

perceived value by the following two steps. Firstly, let

Ṽt be the fuzzy number, which is transformed by R̃t

using the value function v(·) introduced in Section 2.2.

Denote it by Ṽt = v(R̃t), which is called the perceived

value of R̃t. Since R̃t is a fuzzy number, from Definition

4, the perceived value Ṽt is also a fuzzy number, its

membership function can be represented by

µṼt
(x) =











µR̃t

(

rb + x
1

δ1

)

, x ≥ 0,

µR̃t

(

rb −
(

−
x

θ

)
1

δ2

)

, x < 0.
(17)

Then, from Definition 3 and the above membership

function, we can calculate the expected value of the
perceived value Ṽt, denote it by EPVt, which repre-

sents the expected perceived value of the portfolio at

period t. We only discuss the most common cases while

rb ∈ [at − αt, bt + βt], where the expected perceived

value EPVt can be calculated as follows

(1) If at − αt ≤ rb < at, we have

EPVt =
(bt + βt − rb)

δ1+2

β2
t (δ

2
1 + 3δ1 + 2)

−
θ[(rb − at + αt)

δ2+2
]

α2
t (δ

2
2 + 3δ2 + 2)

+
(at − rb)

δ1+1
(rb − at + 2αt + αtδ1)

α2
t (δ

2
1 + 3δ1 + 2)

−
(bt − rb)

δ1+1
(bN − rb + 2βt + βtδ1)

β2
t (δ

2
1 + 3δ1 + 2)

.

(18)

(2) If at ≤ rb ≤ bt, we have

EPVt =
(bt + βt − rb)

δ1+2

β2
t (δ

2
1 + 3δ1 + 2)

−
θ(rb − at + αt)

δ2+2

α2
t (δ

2
2 + 3δ2 + 2)

−
(bt − rb)

δ1+1
(bN − rb + 2βt + βtδ1)

β2
t (δ

2
1 + 3δ1 + 2)

+
θ(rb − at)

δ2+1
(rb − at + 2αt + αtδ2)

α2
t (δ

2
2 + 3δ2 + 2)

.

(19)
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6 Xingyu Yang et al.

(3) If bt < rb ≤ bt + βt, we have

EPVt =
(bt + βt − rb)

δ1+2

β2
t (δ

2
1 + 3δ1 + 2)

−
θ(rb − at + αt)

δ2+2

α2
t (δ

2
2 + 3δ2 + 2)

+
θ(rb − at)

δ2+1
(rb − at + 2αt + αtδ2)

α2
t (δ

2
2 + 3δ2 + 2)

−
θ(rb − bt)

δ2+1
(bt + 2βt − rb + βtδ2)

β2
t (δ

2
2 + 3δ2 + 2)

.

(20)

According to the above discussion, the terminal cumu-

lative expected perceived value of the investment strat-

egy is

CEPVT =

T
∑

t=1

EPVt. (21)

From Definition 5, we can calculate the perceived

risk of the portfolio at period t by

(1) If rb ∈ (at − αt, at], we have

PRt

(

Ṽt

)

=
θ2(rb − at + αt)

2δ2+2

α2
t (4δ

2
2 + 6δ2 + 2)

. (22)

(2) If rb ∈ (at, +∞], we have

PRt

(

Ṽt

)

=
θ2[(rb − at + αt)

2δ2+2

α2
t (4δ

2
2 + 6δ2 + 2)

−
(rb − at)

2δ2+1
(rb − at + 2αt + 2αtδ2)]

α2
t (4δ

2
2 + 6δ2 + 2)

.

(23)

Then, the terminal cumulative perceived risk of the in-

vestment strategy is

CPRT =
T
∑

t=1

PRt

(

Ṽt

)

. (24)

We use an example to explain the relation between

the loss aversion degree and the investor’s decision pref-

erence. Consider two portfolios with trapezoidal fuzzy

return rates R̃1 and R̃2, where R̃1 = (0.2, 0.3, 0.3, 0.6)

and R̃2 = (0.3, 0.4, 0.5, 0.1), as shown in Fig. 2. Then,
set δ1 = δ2 = 0.88, rb = 0.20, and plot the expected

perceived value and perceived risk of the two portfo-
lios with different θ, respectively, as shown in Fig. 3.

We can see from Fig. 3(a) that the expected perceived

value of Portfolio 1 is higher than that of Portfolio 2

when θ < 1.75, while it is lower than that of Portfolio

2 when θ > 1.75, and from Fig. 3(b) that the perceived
risk of Portfolio 1 is always lower than that of Portfolio

2. Then, we find that the investor prefers Portfolio 1
to Portfolio 2 when θ < 1.75, while he/she may have

different selections when θ > 1.75. This indicates that

the investor’s attitude toward portfolios varies with the
loss aversion degree θ.

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

μ(
x)

���	�������
���	�������

Fig. 2 The membership functions of the two portfolios’ fuzzy
return rates

To sum up, we can characterize different investors’

loss aversion θ. The investors with higher loss aversion
degree get lower perceived value and higher perceived

risk from the fuzzy return rates of the portfolio. There-
fore, by considering the objectives of maximizing the
terminal cumulative expected perceived value CEPVT

and minimizing the terminal cumulative perceived risk
CPRT , investors can choose the appropriate parameter

θ according to their loss aversion degree, and generate
the optimal investment strategy.

3.3 Realistic constraints

To control the non-systematic risk borrowed from the

wealth over-concentration, investors usually more will-

ing to take the diversify portfolio than the centralize

portfolio. In this study, we use the proportion entropy

to measure the portfolio’s diversification. Then, the di-

versification constraint at period t can be represented

by

−

n
∑

i=1

xt,i lnxt,i ≥ e. (25)

We consider the case of not short selling proportion.

Then the boundary constraint can be represented by

xt,i ≥ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T. (26)

In addition, the budget constraint at period t can

be represented by
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(a) Expected perceived value
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(b) Perceived risk

Fig. 3 The expected perceived value and perceived risk of
the two portfolios with different θ

n
∑

i=1

xt,i = 1. (27)

3.4 Portfolio optimization model

Assume that the investor aims to maximize the termi-
nal cumulative expected perceived value and to min-
imize the terminal cumulative perceived risk. Assume

the short-selling is not allowed in the whole investment

process and the investor is self-financing. Meanwhile,

assume the investor requires the portfolio to satisfy the

diversification degree at each period. Then, the multi-

period portfolio optimization model can be established

as

P1



































































max CEPVT

min CPRT

s.t.
n
∑

i=1

xt,i = 1,

−

n
∑

i=1

xt,i lnxt,i ≥ e,

xt,i ≥ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T.

Considering that P1 is a bi-objective model, we trans-

form it into the following single objective model by us-
ing the weighted max-min fuzzy programing method

proposed by Lin (2004)

P2



























































































max λ

s.t.

CEPVT − CEPV −

CEPV + − CEPV −
≥ ωλ,

CPR− − CPRT

CPR− − CPR+
≥ (1− ω)λ,

n
∑

i=1

xt,i = 1,

−

n
∑

i=1

xt,i lnxt,i ≥ e,

xt,i ≥ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T,

where CEPV + and CEPV − are the ideal solution and

the anti-ideal solution of the cumulative expected per-
ceived value, respectively; CPR+ and CPR− are the

ideal solution and the anti-ideal solution of the cumu-

lative perceived risk, respectively; ω and 1− ω are the

objective weight of CEPVT and the objective weight

of CPRT , respectively. We can obtain a pareto optimal
solution of model P1 by solving the above model P2 un-

der a certain value of ω. Hence, the pareto frontier of
model P1 can be obtained by solving model P2 with ω

ranging over [0, 1].

4 Multiple particle swarm optimization

This section designs a multiple particle swarm opti-

mization (MPSO) to solve a generic form of model P2,
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8 Xingyu Yang et al.

which is as follows

P3











































max f(x)

s.t.

gk(x) ≤ 0, k = 1, 2, · · · ,m,
n
∑

i=1

xt,i = 1, t = 1, 2, · · · , T,

xt,i ≥ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T.

Particle swarm optimization (PSO), based on the
idea of the collaborative process of the flock of birds

searching for food, is a heuristic algorithm proposed

by Kennedy and Eberhart (1995). In PSO, a swarm is

formed by a group of particles, each particle searches

for the optimal solution and exchanges the information

with other particles in the search space. The global opti-

mal position of the current swarm is obtained by com-

paring all of the particles, and the personal optimal

position of each particle is represented by its historical
optimal position. The above two positions provide the
social learning information and self-learning informa-
tion for each particle in the swarm to adjust its posi-

tion in the iterative process. The social learning ability

and self-learning ability can improve the swarm’s global

exploration ability and the particle’s local exploitation

ability, respectively. Since it is difficult to combine the
two kinds of abilities, PSO may suffer some deficien-
cies, such as parameter sensitivity and premature con-
vergence. Then, some researchers, such as Niu et at.

(2007) and Ma et at. (2018), introduced multi-swarm

cooperative scheme to improve the performance of PSO.

Next, we propose a multiple particle swarm opti-

mization, in which the population is divided into a
leader swarm and several subsidiary swarms. The self-

learning rates and social learning rates vary with dif-

ferent swarms. When the particle is in the subsidiary

swarm, it adjusts its position based on the optimal par-

ticle information of the subsidiary swarm, while each

particle of the leader swarm adjusts its position based

on the optimal particle information of the leader swarm

and all subsidiary swarms. Through the above collabo-
rative approach, the leader swarm can obtain additional
reference information from the subsidiary swarms, thus
reducing the possibility of converging to a local optimal

solution. In addition, we introduce chaos initialization,

which can help to expand search space and improve

population stability.

4.1 Encoding and decoding

A solution x = (x1,x2, · · · ,xT ) of model P3 is en-
coded by an nT -dimension position vector, which is

P = (p1,1, · · · , p1,n, · · · , pT,1, · · · , pT,n) that represents

a particle, where pt,i ∈ [0, 1]. Define the search space

by

SP ={P = (p1,1, · · · , p1,n, · · · , pT,1, · · · , pT,n) :

0 ≤ pt,i ≤ 1, t = 1, 2, · · · , T, i = 1, 2, · · · , n}.

(28)

For a position vector P ∈ SP , the actual investment
proportion of asset i at period t is decoded by

xt,i =
pt,i
n
∑

i=1

pt,i

, t = 1, 2 · · · , T. (29)

It can be seen that the corresponding solution x ob-
tained by any particle in the search space satisfies con-

straint
n
∑

i=1

xt,i = 1 and constraint xt,i ≥ 0.

4.2 Chaos initialization

Denote the number of the swarms by L, the number

of particles in each swarm by NP , where the swarms

1, 2, · · · , L − 1 are subsidiary swarms, and the swarm

L is the leader swarm. Denote the maximum number
of iterations by Gmax. Denote the upper limit for the

velocity of the particles by vmax. Denote the maximum

and minimum of the inertia weight are wmax and wmin,

respectively.

In this subsection, we use the following chaos map-

ping method to intialize each population

ps+1
t,i = 4pst,i(1− pst,i). (30)

Specifically, in the search space, we randomly generate a

particle P 0 = (p01,1, · · · , p
0
1,n, · · · , p

0
T,1, · · · , p

0
T,n), then

the above chaos mapping method is used to generate a

new particle, and the same operation is performed on

the newly generated particle to continue generating the

next new particle, repeating this process NP − 1 times

to generate NP particles.

4.3 Fitness

We adapt the following penalty function to handle the

constraint gk(x) ≤ 0. For the k-th constraint, the penalty

value is

pk = max {gk(x), 0} . (31)

The total penalty value of the solution x is

p(x) =

m
∑

k=1

pk. (32)
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A multi-period fuzzy portfolio optimization model with investors’ loss aversion 9

If x satisfies the constraint gk(x) ≤ 0, p(x) = 0; other-

wise, p(x) > 0.

We design the following fitness function to evaluate

each particle in the search space

F (P) = exp [f(x)−M · p(x)] . (33)

where f(x) is the objective function value of the solu-

tion x, M is a positive number that sufficiently large. It

can be seen that in a series of particles that satisfy the

constraint gk(x) ≤ 0, the higher the objective function
value of a particle, the higher its fitness; while if a parti-

cle is not satisfying the constraint gk(x) ≤ 0, its fitness
is lower than any particle that satisfies the constraint

gk(x) ≤ 0.

4.4 Update process

Denote the position and velocity of particle j of swarm

l in the current generation g by P l
j(g) and V l

j (g), re-

spectively. Denote the best previous position of parti-

cle j, which represents the personal optimal position,

by Pbestlj(g), i.e.,

F (Pbestlj(g)) = max
1≤g′≤g

{

F (P l
j(g

′))
}

. (34)

For the global optimal position of subsidiary swarm
l(l = 1, · · · , L− 1), denote it by Gbestl(g), i.e.,

F (Gbestl(g)) = max
1≤j≤NP

{

F (Pbestlj(g))
}

. (35)

For the global optimal position of leader swarm L, de-

note it by GbestL(g), i.e.,

F (GbestL(g)) = max
1≤j≤NP
1≤l≤L

{

F (Pbestlj(g))
}

= max
1≤j≤NP
1≤l≤L−1

{

F (Gbestl(g)), F (PbestLj (g))
}

.

(36)

Then, the following equations are used to update the

velocity and position of each particle at each iteration











V l
j (g + 1) =wV l

j (g) + cl1r1
[

PbestLj (g)− P l
j(g)

]

+ cl2r2
[

Gbestl(g)− P l
j(g)

]

,

P l
j(g + 1) =jl(g) + V l

j (g + 1),

(37)

where w = wmax− (wmax−wmin) ·g/Gmax is the inertia

weight proposed by Tripathi (2007); cl1 and cl2 are the

self-learning rate and social learning rate of swarm l,

respectively; r1 and r2 are two numbers that randomly
generated from interval [0, 1].

4.5 Main procedure

The main procedure of the MPSO is summarized as

follows

Step 1 Set parameters used in the algorithm in-

cluding L, NP , vmax, wmax, wmin, c
l
1, c

l
2, Gmax.

Step 2 Let g = 1, and generate a series of particles

for each swarm, where the initial positions of the parti-
cles in each swarm are generated by the chaos mapping
method, and the velocity of each particle is randomly
generated on interval [−vmax, vmax].

Step 3 Calculate the fitness of the position of each

particle, and update the personal optimal position and
the global optimal position.

Step 4 Update the velocity of each particle. If an
element of the velocity matrices is excluded from the
interval [−vmax, vmax], replace it by the closer interval

endpoint.

Step 5 Update the position of each particle. If an
element of the position vector is excluded from interval
[0, 1], replace it by the closer interval endpoint.

Step 6 If g = Gmax, quit the iteration and report

corresponding solution decoded by GbestL(g); other-

wise, let g ← g + 1, and return to Step 3.

5 Real case studies

In this section, we give a real case study to illustrate the

practicability and effectiveness of the proposed model

and algorithm. We assume the investor plans to in-

vest his/her wealth in five stocks from Shanghai Stock

Exchange, i.e., A1(600004), A2(600008), A3(600011),
A4(600017), A5(600023). We collect the weekly histori-

cal data of the above stocks over six years, i.e., January

1st, 2016 to December 31st, 2021, and divide it into

three periods evenly. We adopt the method proposed

by Mehlawat (2016) to estimate the weekly fuzzy re-
turn rates of the stocks at each period, as shown in

Table 1.

Assume the initial wealth is W0 = 10000, and the

transaction cost rates of purchasing and selling the risky

assets are c+t,i = 0.003 and c−t,i = 0.004, respectively. As-

sume the reference level of the return rate is rb = 0.02,

the decreasing sensitivity degree is δ1 = δ2 = 0.5, the

loss aversion degree is θ = 1.1, and the diversification
level is e = 1.13 except sensitivity analysis.

In the proposed algorithm MPSO, the parameters

are set as follows: the total number of swarms is L = 6;

the number of particles in each swarm is NP = 300;

the upper velocity of each particle is vmax = 3; the
maximum and minimum inertia weights are wmax = 0.7

and wmin = 0.3, respectively; the self-learning rate and
social learning rate are cl1 = 3, 2.5, 2, 1.5, 1, 2 and cl2 =
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10 Xingyu Yang et al.

Table 1 The fuzzy return rates of the five
risky assets on the three periods

Period Assets Fuzzy weekly return rates

t = 1 A1 (-0.0120, 0.0532, 0.5055, 0.3671)
A2 (-0.0286, 0.2359, 0.6412, 0.6707)
A3 (-0.0169, 0.0379, 0.3550, 0.3552)
A4 (-0.0192, 0.0508, 0.3971, 0.3781)
A5 (-0.0128, 0.0308, 0.3854, 0.3429)

t = 2 A1 (-0.0286, 0.0716, 0.4328, 0.3838)
A2 (-0.0239, 0.0492, 0.3851, 0.3787)
A3 (-0.0214, 0.0665, 0.3594, 0.3958)
A4 (-0.0242, 0.0402, 0.3633, 0.3551)
A5 (-0.0178, 0.0535, 0.3389, 0.3752)

t = 3 A1 (-0.0337, 0.0736, 0.3579, 0.4066)
A2 (-0.0192, 0.0491, 0.3697, 0.3669)
A3 (-0.0335, 0.1801, 0.3809, 0.5849)
A4 (-0.0141, 0.0710, 0.3536, 0.4090)
A5 (-0.0138, 0.0506, 0.3553, 0.3737)

1, 1.5, 2, 2.5, 3, 2, respectively; the maximum iteration

number is Gmax = 500.

5.1 Algorithm testing

To test the performance of the proposed MPSO, we

adapt it to solve the programming model of form P4.

Specifically, we take model P2 as an example by set-

ting the objective weight ω = 0.5, and run the MPSO

four times. The convergence process of the MPSO is

presented in Fig. 4. The convergence processes of the

PSOs corresponding to the subsidiary swarms are also
presented for convenient comparison.

From Fig. 4, we can see that the proposed algorithm

MPSO gets better performance than that of the PSOs

in the four dependent tests. This means that gathering

the information from other PSOs can effectively help

the MPSO to reduce the possibility of premature con-
vergence. Therefore, we will adapt the MPSO to solve
the portfolio optimization problems.

5.2 Solving process

In this subsection, we introduce how to get the efficient

frontier of model P1 by using the designed algorithm

MPSO to solve model P2. As mentioned in the above

section, we set the objective weight ω ranging over [0, 1]

with the interval 0.1, and solve model P2 under differ-
ent ω. Then, we can obtain a series of efficient solu-

tions, which form the efficient frontier of model P1, as

shown in Fig. 5. From Fig. 5, we can see that there is a

positive correlation between cumulative expected per-

ceived value and cumulative perceived risk. Specifically,

as the given cumulative perceived risk level increases,

the optimal strategy has higher cumulative perceived

value. This indicates that the greater the given cumu-

lative perceived risk level, the investor has a higher

tolerate level toward risk, and pays more attention to

the perceived value. Therefore, our proposed model can

provide the suitable investment strategies for investors

with respect to their personal preferences.

5.3 Comparison results

In order to illustrate the effectiveness of the proposed
model P1 in reflecting the investors’ loss aversion, we

compare it with a classical form of multi-period fuzzy
portfolio model, which is as follows

MSV



































































max CWT

min CRT

s.t.
n
∑

i=1

xt,i = 1,

−

n
∑

i=1

xt,i lnxt,i ≥ e,

xt,i ≥ 0, i = 1, 2, · · · , n, t = 1, 2, · · · , T.

To evaluate the excess return per unit downside risk,

Keating and Shadwick (2002) proposed the Omega Ra-
tio. Here, we propose a similar ratio, named Perceived

Ratio, to measure the perceived value per unit per-

ceived risk, which is defined as follows

PR(x) =
CEPV (x)

CPR(x)
. (38)

where x represents the investment strategy, CEPV (x)
and CPR(x) represent the terminal cumulative expected

perceived value and terminal cumulative perceived risk

corresponding to the investment strategy x, respectively.

To measure the differences between two efficient fron-

tiers, Fulga (2016) proposed a dissimilarity index by
comparing each pair of efficient portfolios. Inspired by

this idea, we aim to assess the performance of the effi-
cient frontier based on the above Perceived Ratio (PR),
and define the Perceived Ratio of Frontier (PRF) as fol-

lows

PRF =
1

J

J
∑

j=1

PR(x∗
j ), x∗

j ∈D. (39)

where x∗
j represents one of the investment strategies in

the efficient frontier; D represents the set of all of the
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(c) Third test
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(d) Fourth test

Fig. 4 The performances of the six algorithms in the four tests
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Fig. 5 The efficient frontier of the proposed model

investment strategies in the efficient frontier; J repre-

sents the number of investment strategies selected from

the efficient frontier.

Next, we use the PRF to compare the efficient port-

folios that created by model P1 and MSV. Specifically,

given the selected number J ranged from [10, 90] with

the interval of 10, we use MPSO to solve the proposed

model P1 and model MSV, and compare the PRF val-

ues of the above two models with respect to different

J , as shown in the following Fig. 6.

�� �� �� �� �� �� �� 	� 
�
J

�����

�����

�����

�����

�����

�����

�����
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��
�

P1
���

Fig. 6 The performances of the two models under different
J
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12 Xingyu Yang et al.

From Fig. 6, we can see that for the selected number

J , the PRF value of our proposed model P1 is higher
than that of the model MSV, which indicates that it

performs better than the model MSV. The main rea-

son is that our proposed model P1 incorporates the in-

vestors’ loss aversion into portfolio decisions. In sum-
mary, the proposed model has a good performance in

reflecting the investors’ subject preferences and provid-
ing more reasonable investment strategies.

5.4 Analysis of investors’ loss aversion

This subsection discusses the effect of investors’ loss

aversion on investment decision through the following

aspects. First, we consider three cases of the loss aver-

sion degree, i.e., θ = 1.1, 1.2, 1.3. By using the MPSO
to solve the optimization problems, we obtain the effi-

cient frontiers of model P1 under different loss aversions

in the CEPV − CPR space, as shown in Fig. 7. From

Fig. 7, we can see that the loss aversion has a signifi-

cant effect on the efficient frontier in the CEPV −CPR
space. Specifically, as the given loss aversion degree

increases, the efficient frontier obtained by model P1

moves right down. The main reason is that the investor

with higher loss aversion degree is more pessimistic

about the future returns of the risky assets, and thus

gets a lower cumulative expected perceived value and

a higher cumulative perceived risk from the investment

strategy. The indicates that an investor with high loss

aversion degree may be more conservative than the one
with low loss aversion degree, and thus he/she may not
invest wealth in a risky asset when its risk level is ex-

cessing the maximum risk level that he/she can tolerate.
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Fig. 7 The efficient frontiers of model P1 under different loss
aversions in the CEPV-CPR space

Next, we analyse the effect of the loss aversion on the
optimal investment strategy with respect to the cumu-

lative wealth (CW) and cumulative risk (CR). Specif-

ically, we set the objective weight ω = 0.5, and the

loss aversion degree θ ranged from [1.1, 5.1] with the

interval of 0.5, respectively, then obtain the optimal in-

vestment strategies of model P1 by solving model P2

under the above different parameter settings, and the

cumulative wealth and cumulative risk of these invest-

ment strategies, as shown in Fig. 8. From Fig. 8, we find

that the loss aversion has an effect on the investment

strategy. As the given loss aversion degree θ increases,
the investor intends to select the investment strategy

of lower cumulative wealth and lower cumulative risk,

which indicates that as the higher the given loss aver-

sion degree, the investor tends to be more conservative.

From the above analysis, it is meaningful to incorpo-

rate investors’ loss aversion into the portfolio selection

model. Therefore, investors can determine the parame-

ter θ according to their loss aversion degree in the prac-

tical investment management.
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Fig. 8 The optimal strategies obtained by model P2 under
different loss aversion degree θ

5.5 Analysis of diversification

In this subsection, we analyse the effect of the investor’s

diversification requirement on investment decision. We

consider three cases of the diversification level, i.e., e =

0.93, 1.13, 1.33. By using the MPSO to solve the op-
timization problems, we obtain the efficient frontiers

of model P1 under different diversification requirement,

as shown in Fig. 9. From Fig. 9, we can see that the

diversification level has a significant effect on the effi-

cient frontier. Specifically, in the CEPV −CPR space,

as the given diversification level increases, the efficient

frontier obtained by model P1 gets shorter and moves
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right down. The main reason is that an efficient solu-

tion to the model with high diversification level may be

dominated by the one with low diversification level, and

thus it cannot be efficient solution to the latter. This in-

dicates that as the higher the diversification level, the

investor is more willing to reduce the non-systematic

risk rather than increasing the excess return. Therefore,

investors can determine e according to their diversifica-
tion requirement in the practical investment manage-

ment.
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Fig. 9 The efficient frontiers of model P1 under different
diversification requirements

6 Conclusion

This paper addressed the multi-period portfolio selec-

tion problem considering investors’ loss aversion in fuzzy

environment. Firstly, the return rate of each risky as-

set is described by a trapezoidal fuzzy number, which

captures the uncertainty in financial market. Next, by

employing the value function in prospect theory, we

transformed the portfolio return rate into the perceived

value, and used the perceived risk to measure the port-
folio’s risk. Then, we proposed a multi-period fuzzy
portfolio selection model with investors’ loss aversion.
Moreover, in order to solve the proposed model, we de-

signed a multiple particle swarm optimization with re-

spect to its specific situation. Finally, we illustrated the

effectiveness of the designed algorithm and proposed

model through a real case. The results show that the
proposed model could provide decision support for in-
vestors with different loss aversion degrees.
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