
Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

A Multi-Periodic Synchronous Data-Flow Language

Julien Forget1 Frédéric Boniol1 David Lesens2 Claire Pagetti1

firstname.lastname@onera.fr

1ONERA - Toulouse, FRANCE

2EADS Astrium Space Transportation - Les Mureaux, FRANCE

November 19, 2008

1 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

1 Context

2 Synchronous Data-Flow Languages

3 A Multi-Periodic Synchronous Language

4 Implementation

5 Conclusion

2 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Outline

1 Context

2 Synchronous Data-Flow Languages

3 A Multi-Periodic Synchronous Language

4 Implementation

5 Conclusion

3 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Implementing Multi-Periodic Reactive
Systems

An increasingly complex task:

Implementing functional aspects.

Implementing real-time aspects.

Developing the hardware platform (outside our scope).

Critical systems: strong determinism required (functional as well as
temporal).

At the same time, optimize latency, hardware cost, etc.

4 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Contribution

We propose:

A high-level, formal language

With automated code generation (from design to implementation).

Based on synchronous languages.

This provides:

High confidence in the generated code.

Easier design (higher level of abstraction).

Faster development cycle.

5 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

A reactive system : the Automated Transfer
Vehicle

The ATV is the resupplying vehicle for the International Space
Station.

We present a version adapted from the Mission Safing Unit (MSU)
of the vehicle developed by EADS Astrium Space Transportation.

Repeat the same behaviour indefinitely: Input-Compute-Output.

6 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Designing the system

1 Design each functional process separately (BASIC OP,
APPLY CMD, UPSTREAM, DOWNSTREAM).

2 Assemble the processes.

The assembly level:

Specify the rate of each process.

Handle inter-process communications: communications must be
deterministic.

⇒ Our language focuses on the specification of this assembly level.

7 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Outline

1 Context

2 Synchronous Data-Flow Languages

3 A Multi-Periodic Synchronous Language

4 Implementation

5 Conclusion

8 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Principles

Describe the computations performed at each iteration of the
system, called instant.

Each variable or expression is a flow (sequence of values).

Flows are activated/deactivated using clocks (Boolean conditions).
Clocks define the temporal behaviour of a process.

Only synchronous flows can be combined, ie flows present at the
same instants.

Flows are defined by equations.

Equations are structured hierarchically into nodes.

The main node is activated by an external program that repeats the
classic reactive loop (usually periodically):

1 provide inputs from sensors to the main node;
2 execute the node;
3 transfer the outputs of the node to the actuators.

9 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Operations on flows

Example

node N(i , j : i n t) r e t u r n s (o : i n t)
l e t

c=(i=j) ;
y=i when c ;
z=0 fby y ;

t e l

Behaviour:

i 2 3 1 5 6 ...

j 2 3 1 7 4 ...

c True True True False False ...

y 2 3 1 ...

z 0 2 3 ...

10 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Basic iteration in Multi-Periodic Systems

Programming a reactive system = program an iteration of the
process and repeat it indefinitely always at the same base rate.

time

F F F F F F F F

S S

basic iteration (10Hz)

Basic iteration: F + some part of S

11 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Implementing the MSU

node msu(fromEnv : i n t) r e t u r n s (toEnv : i n t)
var c lock0 , c lock1 , c lock2 , c lock3 , c l o c k4 : boo l ;

count , bop1 , bop2 : i n t ;
u s 0 : i n t when c l o c k0 ;
us1 , us2 : i n t when c l o c k1 ;
ds0 : i n t when c l o c k2 ;
ds : i n t when c l o c k3 ;

l e t
count=countN (5) ;
c l o c k0=(count =0); c l o c k1=(count =1); . . .

−− f a s t t a s k s
bop1 , bop2=bas icOp (fromEnv , cu r r en t (0 fby ds)) ;
toEnv=applyCmd (cu r r en t (0 fby us1) , bop1) ;

−− s low t a s k s : s p l i t computat ions between s u c c e s s i v e i n s t a n t s
u s 0=upStream0 (bop2 when c l o c k0) ;
us1 , us2=upStream1 (cu r r en t (u s 0) when c l o c k1) ;
ds0=downStream (cu r r en t (us2) when c l o c k2) ;
ds=downStream (cu r r en t (ds) when c l o c k3) ;

t e l

12 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Problem: Manual Scheduling

Slow operations have to be manually split into several nodes.

Difficult to distribute the slow processes fairly between successive
iterations, in terms of execution times.

Splitting operations may be difficult due to the software
architecture.

⇒ We define a language that enables automated scheduling.

13 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Outline

1 Context

2 Synchronous Data-Flow Languages

3 A Multi-Periodic Synchronous Language

4 Implementation

5 Conclusion

14 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Strictly Periodic Clocks

Flow: (vi , ti)i∈N. vi : a value in the set of values V. ti : a tag in N+.
For all i , ti < ti+1.

Clock of a flow: its projection on N+.

vi must be produced between ti and ti+1.

Definition

Clock h = (ti)i∈N+ , ti ∈ N+, is strictly periodic if and only if:

∃n ∈ N+∗, ∀i ∈ N, ti+1 − ti = n

π(h) = n: the period of h. ϕ(h) = t0: the phase of h.

(n, p): the clock α such that π(α) = n and ϕ(α) = π(α) ∗ p
(p ∈ Q+).

15 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Periodic clock transformations

Transformations that produce new strictly periodic clocks:

Division: π(α/.k) = k ∗ π(α), ϕ(α/.k) = ϕ(α) (k ∈ N+∗)

Multiplication: π(α ∗. k) = π(α)/k, ϕ(α ∗. k) = ϕ(α) (k ∈ N+∗)

Phase offset: π(α →. q) = π(α), ϕ(α →. q) = ϕ(α) + q ∗ π(α)
(q ∈ Q)

α

α ∗. 2

α/.2

α →.
1
2

16 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Why a new class of clocks ?

1 To clearly separate two complementary notions:

A strictly periodic clock defines the real-time rate of a flow.
A Boolean clock specifies on this rate the activation condition of
the flow.

2 Strictly periodic clocks and their transformations are statically
evaluable.

This is mandatory to enable efficient scheduling.
Boolean clocks can emulate strictly periodic clocks but they are not
statically evaluable.

Strictly periodic clocks do not replace Boolean clocks, they
complement them.

17 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Operators based on strictly periodic clocks

If the flow x has clock α:

x∗ˆk has clock α ∗. k.

x/ˆk has clock α/.k.

x∼>q has clock α →. q.

tag 0 2 4 6 8 ...

x x1 x2 x3 ...

x ∗ˆ2 x1 x1 x2 x2 x3 ...

x/ˆ2 x1 x3 ...

x ∼> 1/2 x1 x2 ...

18 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Reminder: the Mission Safing Unit

Repeat the same behaviour indefinitely: Input-Compute-Output.

19 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Programming the MSU: Step 1

Define each “functional” node:

imported node bas icOp (i , j) r e t u r n s (o , p) ;
imported node A(i) r e t u r n s (o) ; . . .
wcet bas icOp =40; wcet applyCmd=20; wcet A=30;
wcet B=10; wcet C=20; wcet D=40;wcet E=10; wcet F=30;

node upStream (i) r e t u r n s (o1 , o2)
l e t

o1=A(B(i)) ; o2=C(i) ;
t e l
node downStream (i) r e t u r n s (o)
l e t

o=D(E(F(i))) ;
t e l

20 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Programming the MSU: Step 2

Assemble the functional nodes:

−− a s s emb l i ng nodes
node msu(fromEnv) r e t u r n s (toEnv)
var bop1 , bop2 , us1 , us2 , ds ;
l e t

bop1 , bop2=bas icOp (fromEnv , (0 fby ds)∗ˆ5) ;
toEnv=applyCmd ((0 fby us1)∗ˆ5 , bop1) ;
us1 , us2=upstream (bop2 /ˆ5) ;
ds=downStream (us2) ;

t e l

−− o p t i o n a l l e v e l : c l o c k i n s t a n c i a t i o n + a c t i v a t i o n c o n d i t i o n
node main (c , fromEnv : r a t e (100 , 0))

r e t u r n s (toEnv : r a t e (100 ,0) when c)
l e t

toEnv , toOtherMSU=(msu(fromEnv , otherMSU)) when c ;
t e l

21 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Outline

1 Context

2 Synchronous Data-Flow Languages

3 A Multi-Periodic Synchronous Language

4 Implementation

5 Conclusion

22 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Ensuring program correction

Static analysis:

Typing: the program only combines values of the same type.

Causality analysis: no loop in the data-dependencies.

Initialisation analysis: included in the clock calculus in our case.

Clock calculus: the program does not access to undefined values.

Scheduling: the program respects its real-time constraints.

Only then: generate the code corresponding to the program.

23 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

The Clock Calculus: checking program
synchronism

An expression is well-synchronized if it does not access to undefined
values.

The role of the clock calculus is to verify that a program only uses
well-synchronized expressions.

Well-synchronized programs cannot go wrong: if the program is
well-synchronized then its semantics are well-defined.

The clock calculus on strictly periodic clocks can be implemented
as a type system with simple sub-typing constraints.

24 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Scheduling: from a synchronous program to a
set of real-time tasks.

Transform the program into a set of tasks.

Compute the real-time characteristics of each task.

Schedule the resulting set of tasks.

Obtaining tasks:

Tasks=imported nodes.

Precedences=data dependencies.

Let cki be the clock of task τi . pparent(cki) denotes the closest
strictly periodic clock parent of cki (in case cki is Boolean).

Ti = π(pparent(cki))

ri = ϕ(pparent(cki))

Ci is known from the node wcet declaration.

di = Ti .

25 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Scheduling multi-periodic dependent tasks

Problem: Few scheduling algorithms support multi-periodic tasks
related by precedence constraints.

Solution (ongoing work):

Automatically encode precedences in the real-time attributes of the
tasks (Chetto90).

Use an EDF scheduler.

The use of preemptions avoids to manually split the slow task into
several sub-tasks.

26 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Outline

1 Context

2 Synchronous Data-Flow Languages

3 A Multi-Periodic Synchronous Language

4 Implementation

5 Conclusion

27 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Conclusion

The language:

Provides a high level of abstraction.

Enables flexible description of multi-rate communicating systems.

Provides automatic code generation, the correction of which is
proved formally.

Main benefits:

Avoids manual scheduling (vs classic synchronous languages).

Prevents non-deterministic communications (vs asynchronous
languages).

Future work: define the scheduling of a program.

28 / 28

A Multi-Periodic Synchronous Data-Flow LanguageJulien Forget (ONERA)

	Context
	Synchronous Data-Flow Languages
	A Multi-Periodic Synchronous Language
	Implementation
	Conclusion

