A Multi-Periodic Synchronous Data-Flow Language

Julien FORGET' Frédéric BontoL! David LESENS® Claire PAGETTI
firstname.lastname@onera.fr

LONERA - Toulouse, FRANCE

2EADS Astrium Space Transportation - Les Mureaux, FRANCE

November 19, 2008

Julien FOrRGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language
({128k

© Context
© Synchronous Data-Flow Languages
e A Multi-Periodic Synchronous Language

Q@ Implementation

© Conclusion

Julien FOrRGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language

S DE]

@ Context

© Synchronous Data-Flow Languages
© A Multi-Periodic Synchronous Language
O Implementation

© Conclusion

Julien ForGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language

Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Implementing Multi-Periodic Reactive
Systems

An increasingly complex task:
@ Implementing functional aspects.
@ Implementing real-time aspects.
@ Developing the hardware platform (outside our scope).

@ Critical systems: strong determinism required (functional as well as
temporal).

@ At the same time, optimize latency, hardware cost, etc.

4 /28

We propose:

@ A high-level, formal language

@ With automated code generation (from design to implementation).

@ Based on synchronous languages.

This provides:

@ High confidence in the generated code.

@ Easier design (higher level of abstraction).

@ Faster development cycle.

Julien FORGET (ONERA)

A Multi-Periodic Synchronous Data-Flow Language

C

)_

5/ 28

Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

A reactive system : the Automated Transfer
Vehicle

@ The ATV is the resupplying vehicle for the International Space
Station.

@ We present a version adapted from the Mission Safing Unit (MSU)
of the vehicle developed by EADS Astrium Space Transportation.

-1
12
A 4
BASIC_OP »| APPLY_CMD | »| UPSTREAM » DOWNSTREAM | :
. N SN R
; Basic Task: 10HZ . . Control Task: 2Hz
IIIIIIII IIIIIIIIIIIIIIIIIIIIII'IIIIIII- o EEEEEEEEEEEEEEEEEEEEE S S S S S S SRS
I \
Sensors Actuators

Repeat the same behaviour indefinitely: Input-Compute-Output.

6 /28

Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation Conclusion

Designing the system

© Design each functional process separately (BASIC_OP,
APPLY_CMD, UPSTREAM, DOWNSTREAM).

@ Assemble the processes.

The assembly level:
@ Specify the rate of each process.

@ Handle inter-process communications: communications must be
deterministic.

= Our language focuses on the specification of this assembly level.

7/ 28

© Context

Q Synchronous Data-Flow Languages
© A Multi-Periodic Synchronous Language

O Implementation

© Conclusion

Julien ForGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language

NeEm—— -

Context (Synchronous Data-Flow Languages) A Multi-Periodic Synchronous Language Implementation Conclusion

Principles

@ Describe the computations performed at each iteration of the
system, called instant.

@ Each variable or expression is a flow (sequence of values).

@ Flows are activated/deactivated using clocks (Boolean conditions).
Clocks define the temporal behaviour of a process.

@ Only synchronous flows can be combined, ie flows present at the
same instants.

@ Flows are defined by equations.

@ Equations are structured hierarchically into nodes.

@ The main node is activated by an external program that repeats the
classic reactive loop (usually periodically):

@ provide inputs from sensors to the main node;
© execute the node;
© transfer the outputs of the node to the actuators.

9 /28

Example

node N(i,j:int)
let
c=(i=j);
y=i when c;
z=0 fby vy;
tel

returns (o:int)

Behaviour:

i 2 3 1 5 §)

j 2 3 1 7 4

c| True True True False False
y 2 3 1

yi 0 2 3

Julien FORGET (ONERA)

A Multi-Periodic Synchronous Data-Flow Language

C

)__

10 / 28|

Implementation Conclusion

Context CSynchronous Data-Flow Languages) A Multi-Periodic Synchronous Language

Basic iteration in Multi-Periodic Systems

Programming a reactive system = program an iteration of the
process and repeat it indefinitely always at the same base rate.

basic iteration (10Hz)
— 5

S

> time

Basic iteration: F 4+ some part of S

11 / 28

Context (Synchronous Data-Flow Languages) A Multi-Periodic Synchronous Language Implementation Conclusion

Implementing the MSU

node msu(fromEnv: int) returns (toEnv: int)
var clockO , clockl ,clock2, clock3, clock4 : bool;
count , bopl, bop2: int;
us_0: int when clockO;
usl, us2: int when clockl:;
dsO: int when clock?2;
ds: int when clock3;
let

count=countN (5);
clockO=(count=0); clockl=(count=1);

— fast tasks
bopl, bop2=basicOp(fromEnv, current(0 fby ds));
toEnv=applyCmd(current (0 fby usl), bopl);

— slow tasks: split computations between successive instants
us_O=upStreamO (bop2 when clock0);
usl, us2=upStreaml(current(us_0) when clockl);
dsO=downStream (current (us2) when clock?2);
ds=downStream (current(ds) when clock3);
tel

12 / 28

Context (Synchronous Data-Flow Languages) A Multi-Periodic Synchronous Language Implementation Conclusion

Problem: Manual Scheduling

@ Slow operations have to be manually split into several nodes.

@ Difficult to distribute the slow processes fairly between successive
iterations, in terms of execution times.

@ Splitting operations may be difficult due to the software
architecture.

= We define a language that enables automated scheduling.

13 / 28

© Context

© Synchronous Data-Flow Languages
e A Multi-Periodic Synchronous Language

O Implementation

© Conclusion

Julien ForGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language

14 / 28 |

Context Synchronous Data-Flow Languages CA Multi-Periodic Synchronous Language) Implementation Conclusion

Strictly Periodic Clocks

@ Flow: (v, tj)ien. vi: a value in the set of values V. t;: a tag in N7,
For all 7, t; < tir.

@ Clock of a flow: its projection on N7 .

@ v; must be produced between t; and t;;.

Definition

Clock h = (t;)jen+, ti € N1, is strictly periodic if and only if:

EInEN+*, Vi € N, tiy1 —ti=n

@ 7(h) = n: the period of h. p(h) = ty: the phase of h.

@ (n,p): the clock a such that 7(a) = n and ¢(a) = w(a) * p
(p € Q).

15 / 28

Context Synchronous Data-Flow Languages CA Multi-Periodic Synchronous Language) Implementation Conclusion

Periodic clock transformations

Transformations that produce new strictly periodic clocks:
@ Division: m(a/ k) = k x (), p(a/ k) = p(a) (k € NT*)
@ Multiplication: m(a * k) = w(a)/k, o(a* k) = ¢o(a) (k € NT*)

@ Phase offset: m(a —. q) = (a), p(la —. q) = p(a) + g * 7(a)
(g€ Q)

o a2
a2

16 / 28

Context Synchronous Data-Flow Languages (A Multi-Periodic Synchronous Language) Implementation Conclusion

Why a new class of clocks 7

@ To clearly separate two complementary notions:

@ A strictly periodic clock defines the real-time rate of a flow.
@ A Boolean clock specifies on this rate the activation condition of
the flow.

@ Strictly periodic clocks and their transformations are statically
evaluable.

@ This is mandatory to enable efficient scheduling.
@ Boolean clocks can emulate strictly periodic clocks but they are not
statically evaluable.

Strictly periodic clocks do not replace Boolean clocks, they
complement them.

17 / 28

If the flow x has clock «:

@ xx "k has clock o * k.

@ x/"k has clock o/ k.

@ x~>q has clock a —_ q.

tag 0O 2 4 6 8
X X1 X2 X3
X x"2 X1 X1 Xp Xo X3
x/"2 X1 X3
X ~>1/2 X1 X

Julien FORGET (ONERA)

A Multi-Periodic Synchronous Data-Flow Language

C

18 / 28|

Context Synchronous Data-Flow Languages (A Multi-Periodic Synchronous Language) Implementation Conclusion

Reminder: the Mission Safing Unit

-
<]
EEFENSSSJESSESSSSSSSEEESSEESEEEEEEEEEEE, | LSS S A E S NSNS SEEEEEEEEEEEEsEsfEEEEEEEEg
R /
BASIC_OP »1 APPLY_CMD :: UPSTREAM »| DOWNSTREAM
A . . : 5
2 Basic Task: 10HZ x 1 Control Task: 2Hz
A EEEEEEEN II IIIIIIIIIIIIIIIIIIII ' IIIIIII L N B NN NN N N R R NN NNERERERRRNHSSHNEHRSESESB:EH:RSHMNEHSSESESHEH~SHSE.]
i
Sensors Actuators

Repeat the same behaviour indefinitely: Input-Compute-Output.

19 / 28

Context Synchronous Data-Flow Languages (A Multi-Periodic Synchronous Language) Implementation Conclusion

Programming the MSU: Step 1

Define each “functional” node:

imported node basicOp(i,j) returns (o,p);

imported node A(i) returns (o); ...

wcet basicOp=40; wcet applyCmd=20; wcet A=30;

wcet B=10; wcet C=20; wcet D=40;wcet E=10; wcet F=30;

node upStream (i) returns (ol,o02)

let
ol=A(B(i)); o02=C(i);
tel
node downStream (i) returns (o)
let
<I>=D(E(F(i))):
te

20 / 28

Context Synchronous Data-Flow Languages CA Multi-Periodic Synchronous Language) Implementation Conclusion

Programming the MSU: Step 2
Assemble the functional nodes:

— assembling nodes
node msu(fromEnv) returns (toEnv)
var bopl,h bop2,usl ,h us2,ds;
let
bopl, bop2=basicOp (fromEnv,(0 fby ds)x"5);
toEnv=applyCmd ((0 fby usl)x"5,bopl);
usl, us2=upstream(bop2/75);
ds=downStream (us2);
tel

— optional level: clock instanciation + activation condition
node main(c,fromEnv: rate (100,0))

returns (toEnv: rate (100,0) when c)
let

toEnv ,toOtherMSU=(msu(fromEnv ,otherMSU)) when c;
tel

21 / 28

© Context

© Synchronous Data-Flow Languages
© A Multi-Periodic Synchronous Language
@ mplementation

© Conclusion

Julien ForGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language

22 / 28]

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Clmplementation) Conclusion

Ensuring program correction

Static analysis:
@ Typing: the program only combines values of the same type.
@ Causality analysis: no loop in the data-dependencies.
@ Initialisation analysis: included in the clock calculus in our case.
@ Clock calculus: the program does not access to undefined values.

@ Scheduling: the program respects its real-time constraints.

Only then: generate the code corresponding to the program.

23 / 28

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Clmplementation) Conclusion

The Clock Calculus: checking program
synchronism

@ An expression is well-synchronized if it does not access to undefined
values.

@ The role of the clock calculus is to verify that a program only uses
well-synchronized expressions.

@ Well-synchronized programs cannot go wrong: if the program is
well-synchronized then its semantics are well-defined.

The clock calculus on strictly periodic clocks can be implemented
as a type system with simple sub-typing constraints.

24 / 28

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language (Implementation) Conclusion

Scheduling: from a synchronous program to a
set of real-time tasks.

@ Transform the program into a set of tasks.
@ Compute the real-time characteristics of each task.

@ Schedule the resulting set of tasks.

Obtaining tasks:
@ Tasks=imported nodes.
@ Precedences=data dependencies.

Let ck; be the clock of task 7;. pparent(ck;) denotes the closest
strictly periodic clock parent of ck; (in case ck; is Boolean).

@ T; = m(pparent(ck;))

@ r; = ¢(pparent(ck;))

@ (; is known from the node wcet declaration.
@ d =T,

25 / 28

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Clmplementation) Conclusion

Scheduling multi-periodic dependent tasks

Problem: Few scheduling algorithms support multi-periodic tasks
related by precedence constraints.

Solution (ongoing work):

@ Automatically encode precedences in the real-time attributes of the
tasks (Chetto90).

@ Use an EDF scheduler.

@ The use of preemptions avoids to manually split the slow task into
several sub-tasks.

26 / 28

© Context

© Synchronous Data-Flow Languages
© A Multi-Periodic Synchronous Language
O Implementation

© Conclusion

Julien ForGET (ONERA) A Multi-Periodic Synchronous Data-Flow Language

27 / 28|

Context Synchronous Data-Flow Languages A Multi-Periodic Synchronous Language Implementation

Conclusion

The language:

@ Provides a high level of abstraction.

@ Enables flexible description of multi-rate communicating systems.

@ Provides automatic code generation, the correction of which is
proved formally.

Main benefits:
@ Avoids manual scheduling (vs classic synchronous languages).

@ Prevents non-deterministic communications (vs asynchronous
languages).

Future work: define the scheduling of a program.

—Conclusion

28 / 28

	Context
	Synchronous Data-Flow Languages
	A Multi-Periodic Synchronous Language
	Implementation
	Conclusion

