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Abstract: In the swelling and the dissolution of certain glassy polymers, three dis-
tinctive regimes are present. They are (1) the liquid solution wherein the disassociated
polymer molecules are carried away by diffusion, (2) the gel layer of rubbery polymer
containing large solvent concentration, and (3) the glassy phase of the polymer where
there is very little solvent penetration. The gel/liquid interface that separates the diffusion
of the disassociated polymer in the liquid solution from that of the solvent in the polymer
is characterized by a constant disassociation concentration. The position of this gel/liquid
interface is described explicitly either by a relationship between diffusion processes, or by
the rate of disassociation at the interface in addition to the diffusion processes, depending
on whether the disassociation rate exceeds the diffusion capability in removing the disasso-
ciated polymer molecules at the interface.

The glassy phase is characterized by a sharp decrease in several orders of magnitude of
the diffusion coefficient of solvent in gel-like and glassy polymers. The position of the
glass/gel transition, however, has to be determined implicitly from the diffusion problem.
The existence of the glass/gel transition presents some unique features in the Stefan
problem requiring special numerical considerations.

1. Introduction. One of the lithographic techniques in the fabrication of large-scale
integrated circuits is the use of polymers as electron beam resist materials. When a region
of a polymer film is exposed to an electron beam, it dissolves many times faster than areas
which have not experienced electron bombardment. By careful choice of solvents, a
pattern can be developed in the polymer surface with very good resolution and contrast.
The current direction of this technology is toward narrower lines and greater line density.
It is important that the geometric integrity of the patterns generated during E-beam
exposure be maintained during the development process. Consequently, a greater and
deeper understanding of the nature of polymer dissolution is needed. As may be well
understood, there are a variety of polymers which may serve as resist materials. The
description of the phenomena given here and the following mathematical representation
applies to a class of polymers for which diffusion is a predominant mechanism in the rate
of dissolution. Other phenomena such as bubble formation and cracking may be of
importance in other materials but these are excluded from this treatment.

The complexity observed in the diffusion of solvent in a glassy polymer was not
believed explicable in terms of nonlinear concentration dependence of the diffusion
coefficient alone [1]. The anomalous behavior was attributed to the stress fields that
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existed due to the nonhomogeneous swelling in the gel and in the glassy phase of a finite
polymer specimen. In the analysis of Wang and Kwei [2], the stress effect was represented
by a constant swelling rate independent of time as well as space in the gel layer of the
polymer. The diffusion coefficient was assumed to be a constant in their analysis, and the
constant swelling rate was regarded as a material property. The dissolution of the dis-
solving polymer into the liquid solution that is taking place simultaneously while the
polymer is swelling was ignored in their analysis.

The nonlinear concentration dependence of the diffusion coefficient of the solvent in
polymer is, however, well known to span 5 to 7 orders of magnitudes in the gel and in the
glassy phase of the polymer. In considering simultaneously the swelling and the dis-
solution of glassy polymer in one dimension, the only stress field that may exist in the
polymer is that of uniform hydrostatic pressure. Therefore, the kinematics of the swelling
and the dissolution may be described analytically without complications. The coupling
between the swelling of the polymer and the dissolution of the dissolving polymer in the
liquid solution may then be investigated. In a rational manner, some material properties
may be defined analytically, and, at the same time, they may be measured and verified
experimentally. Accordingly, Tu and Quano proposed a phenomenological model to
describe the kinematics of polymer dissolution. The physical concept and the experimental
verification of their model has appeared in [3]. The mathematical description consists of
(i) the diffusion of solvent in polymer, (ii) the diffusion of dissolved polymer in liquid
solution, and (iii) the characterization of the dissolution of polymer taking place at the
interface separating the two diffusion processes. The equations constitute a multi-phase
Stefan problem [4]. The mathematical derivations and the numerical methods used in the
integration scheme are presented here.

2. Mathematical description of physical phenomena. When a glassy polymer is being
dissolved in a solvent, three distinctive regimes exist: ({) liquid solution, (if) gel layer of
polymer and (iii) glassy phase of polymer. The physical phenomena occurring during the
dissolution will be described by means of the following physical parameters:

¢ Disassociation concentration (denoted by cg)—the volume concentration of the
polymer at the gel/liquid interface, 0 < ¢ < 1.

* Disassociation rate (denoted by R)—the rate in cm/sec at which the disassociated
polymer molecules are freed to diffuse into the liquid solution from the gel/liquid inter-
face.

e Glass/gel interface concentration (denoted by ¢;)—the volume concentration of the
polymer at which diffusion coefficient of solvent undergoes a sharp decrease (¢p <
ce < 1),

¢ Nominal diffusion coefficient of solvent in polymer (denoted by D,)—the diffusion
coeflicient of solvent in polymer at the gel/liquid interface (cm?/sec).

e Nominal diffusion coefficient of polymer in liquid solution (denoted by D,)—the
diffusion coeflicient of polymer in dilute solution (cm?/sec).

* Gel/liquid interface (denoted by y(¢))—position of the gel/liquid interface at time ¢
(cm).

e Glass/gel interface (denoted by x4(7))—position in the polymer where the volume
concentration is ¢ at time ¢, (1) < x4(2).

* Boundary layer thickness (denoted by B)—thickness in the liquid solution, measured
from the gel/liquid interface, at which the concentration of polymer may be taken to be
zero.
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It will be taken that the space coordinate x is directed into the polymer and x = 0 coincides
with the gel/liquid interface at time ¢ = 0. Thus y(0) = 0, (see the concentration profiles in
Figs. 7a and 8a). ¢r and R are dependent upon the molecular weight of the polymer, but
they are independent from each other in the model.

When the polymer is developed in the lab, the liquid solution is stirred mechanically. A
boundary layer exists between the surface of the polymer and the main stream of the
liquid solution. Hence, the dissolved polymer is swept away within the boundary layer in
the direction parallel to the surface. In this one-dimensional analysis, the boundary layer is
represented so that the dissolved polymer is removed at the edge of the boundary layer in
the direction of diffusion. v

We introduce the following notation in addition to that defined above:

c¢—volume concentration of polymer, 0 < ¢ < [;

¢'—volume concentration of solvent, ¢/ = 1 — ¢; _

H ,—initial thickness of polymer film when ¢ = 1, i.e., polymer occupies the region 0 <
x < Hpatt =0

f«(c)—numerical factor for the diffusion coefficient of solvent in polymer. Hence the
local diffusion coefficient of solvent in polymer is equal to Dfi(c). fi(c) > 0, fi(cr) = 1;

Sfo(¢)—numerical factor for the diffusion coeflicient of dissolved polymer in liquid
solution. Hence the local diffusion coefficient of polymer in liquid solution is equal to
Dpfp(c). folc) > 0, f(0) = 13

g(x, t)—local flux of dissolved polymer in liquid solution, cm/sec;

q'(x, t)—local flux of solvent in polymer, cm/sec; and

v(x, 1)—swelling rate of polymer at x and time ¢, cm/sec.

The local flux of solvent passing through any material point x in the polymer is given
in terms of the concentration of solvent ¢’ by

q'(x, 1) = =Dgfc)ac'/ox), x > y(1). N
Similarly, the local flux of polymer in liquid solution is given by
q(x, 1) = =Dyfp(c)(dc/dx), x < p(t). ()

1. The swelling of the polymer. As solvent diffuses into the polymer, the latter swells
at the rate v(x, ) equal in magnitude but opposite in direction to the flux g'(x, ) of the
solvent at x and ¢; hence

vix, t) = —q'(x, t), y@)y<x < H,. (€)]

However, at the gel/liquid interface, x = y(¢), the interface position is determined by the
equation

dy/dt = v(x = pr(), t) — glx =y (1), 1), 4)

where g(x = y~(¢), t) is the flux of dissolved polymer leaving the interface, and y*(¢)
indicate the gel and the liquid solution sides of the interface y(t), respectively. The effect of
swelling was investigated by Wang and Kwei [2] based on constant swelling rate, inde-
pendent of x and ¢.

2. The diffusion of solvent in the polymer, y*(t1) < x < H,. Observed from a co-
ordinate moving with the swelling rate v(x, ¢) of the polymer material at x, the local flux
of solvent is g'. The absolute flux of solvent as seen by the stationary observer is, therefore,
q' + c'v. Consequently, the conservation equation becomes

(ec'/ot) + (8/ox)[qg" + c'v] =0, yr()y <x < H,. (%)
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Since ¢’ = 1 — ¢, the above conservation equation may be expressed in terms of ¢ by means
of Egs. (1) and (3) in the form

(2c/ot) = De/ex)fu(c)ec/ax)), yr@) <x < H,. (6)
Initially, ¢’ = 0; hence
ox,t=0)=1, yr0)y=0<x<H,. (7

At the gel/liquid interface, x = p*(¢), the concentration is kept at constant ¢r . For an
impervious substrate at x = H, , the flux vanishes. Thus, the boundary conditions for ¢ are

c=cp atx =yp*@), t>0,

9c/6x =0 atx=H,, (>0 ®)

At the glass/gel interface, both ¢ and the flux D f,(c)(8¢/dx) must be continuous.

3. The diffusion of dissolved polymer in the liquid solution, x < y~(t). The swelling of
the polymer causes a bulk motion in the liquid phase (dilute solution) equal to the velocity
of the gel/liquid interface given by Eq. (4). Observed from a coordinate moving with the
liquid solution at velocity dy/dt, the local flux of polymer in the solution is g. The absolute
flux of polymer in solution (as seen from a stationary coordinate) is therefore ¢ + c(dy/dt).
Hence, the conservation equation becomes

ac é dy} _
— + — = | = <y (1). 9
at+ax[q+cdt 0, x <y ©)
Making use of Eq. (2), we derive the conservation equation in terms of ¢:
oc  dy dc 2 ac
it =P [fp(c)—a—x-] x <y (). (10)

ot drex Pax
Initially
ox,t =0) =0, x <y (0) =0. (1)

At the gel/liquid interface, x = y~(¢), the flux of dissolved polymer leaving the
interface is computed according to

g(x = y=(1), 1) = —Dpfp(c)dc/0x) atx =y~ (1), t=0. 12)

Depending on the condition at the gel/liquid interface, either of the following may take
place:

(i) Starting from time ¢ = 0, the flux given by Eq. (12) is limited by the disassociation
rate R of the disassociated polymer molecules that are available from the gel/liquid
interface. Hence,

—qx = y(0), 1) = D,fA(c) j—i “R  atx=y() 0<i<t., (13

for some t., provided ¢ < ¢r at x = y~(¢). Gradually, the concentration ¢ at x = y=(1),
which is zero at 1 = 0, increases as long as 0 < ¢ < ¢r at x = y~(¢). During these times, the
diffusion capability is always sufficient to carry away whatever dissolved polymer that is
available at the interface.

(if) Intheend, ¢ = cpatx = y~(¢) for ¢t > t. , because the diffusion capability becomes
insufficient to carry away the dissolved polymer molecules which continue to be available
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at the disassociation rate R. Thereafter, the concentration ¢ at x = y~(¢) is maintained at
cr . Hence

c=cr atx =y (), t>1. (14)

Att = t., both Egs. (13) and (14) are satisfied.

When condition (13) is valid we shall call this *“*Source-Limited Analysis.” When
condition (14) prevails we shall call this **Flux-Limited Analysis.”

The second boundary condition at the boundary layer is given by

c=0 atx =y (t) — B. (15)

Since f,(0) = 1, the rate of removal of dissolved polymer may be computed according to

x =y (t)— B. (16)

_ c
g = — D_a_;a

Returning to the gel/liquid interface given by Eq. (4), its velocity may be expressed in
terms of ¢ by using (1), (2), and the condition fy(cr) = 1:

dy oc ﬂ‘
—_—= D —— —
i ofo(cC) rr D,— e (17)

3. The Stefan problem. Introducing the dimensionless time variable r defined by
7 = Dg/Hp7?, (18)

and normalizing all linear dimensions with respect to the initial film thickness H, , we can
define the following dimensionless parameters:

y*r) = y()/Hp , xi*(1) = x()/H, , B* = B/H, , (19)
r*=D,/D;, R* = H,R/D,, x* = x/H, .
A. Summary of mathematical formulation.
1. Diffusion of solvent in polymer, y**(7) < x* < 1. The differential equation (D.E.)
can be written as

2= o] 0)
with the initial condition (I1.C.)
cx*,r=0)=1, y**0)=0<x* <1 (21)
and the boundary conditions (B.C.)
c=cr x*=ypH(r), T>0; ;XC* =0, x*=1, 7>0. (22)

2. Diffusion of dissolved polymer in the liquid, y*~ (1) — B* < x* < y*~ (7).
D.E.:

dc _ _ dy* oc 43

]
- x_9_| g
aT dr ax* tr 6x*|:fp(c)8x*] ’ (23)
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I.C.:
cx*, 7 =0) =0, —B* < x* < y*~(0) = 0, (24)
B.C.:
c=0, x*=y*(r)— B, (25)
(/) source-limited analysis, if 0 < ¢ < cpatx* = y*(7),0 <7 < 7
SolcXoc/ax*) = R*,  x* = y* (1), (26)
(ii) flux-limited analysis, 7 > 7,
¢ = Cp, x* = y*~ (7). 27)

When 7 = 7., both Eqs. (26) and (27) are satisfied.

3. Free boundary condition.
ac
- —4 . (28)
ey OXM gl yrig

dy* ac
4. Continuity conditions at the glass/gel transition, x* = x¢*(7).

dr r*fpe) ox*

C =

= Cg,
X*=x;*"(T)

x*=xg*+(7)

[fs(c) Eii*] . pein [fS(C) aaxc*

B. Similarity variables.

The solution to the equations summarized above is singular at 7 = 0. The singularity
can be built into the mathematical solution by the introduction of the similarity variable ¢
and a new time scale n [4] defined by

. 9)

E — x*T*l/Z’ n —_ Tuz, (30)
and by letting
y¥(r) = n{(n), xe*(7) = nZs(n). 30
1. Diffusion of solvent in polymer, {*(n) < £ <n71,
D.E.:
¥ dc 1, dc 1 ac
< gc L L A 32
ag[fS(C)Cag} Yt T I (32)
B.C.:
c = ()F ) E = §‘+(n)a
gc _ S
ag - 0» é =7 ’
(or c =1, ¢ — o, whenn — 0). (33)

2. Diffusion of dissolved polymer in liquid, {~(n) — B*n™! < £ < {(n),
D.E.:
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N PN noe 1
B.C.:

¢ =0, §=¢() — B*q,

(i) source-limited analysis, if 0 < ¢ < crat§é = (y), 0 < g < g

SocX8c/08) = R*n, &= ¢ (n),
(i) flux-limited analysis, n > 71.:
c=cr, §£={"().
When n =

1. , both Egs. (36) and (37) are satisfied
3. Free boundary condition.

_,2d
35 E=¢—m ot E='(+(rn'
4. Continuity conditions at the glass/gel interfaces, £ = Zs(n)

Em) = 2r*f p(C)

E=Z;*m

ac¢
[fS(C)gg]g=z(,-—(n) [fS(C) 35] f=zetim

4. Solution for small time.

1. Initial solution. Setting n =

0 dC l icf__ + o
dg[fs )C ]+2£d$_07 §‘0 <£<

CO—CF’ £=§'0+a

=1, §o @,

wd| ;o oonde | 1 o de e }

=0,
dc® L
_‘E - 09 g - g-o )

dc’
B
£=Co™ dt £=$or

= C'{ = 0o,
§=2Go~ E=Zagot

fo o,

r*fp(c") dE

CO

folc®

dE

C
0
£=2uo fS(C) dg E=Z(;o+,

0, Egs. (32) through (39) become.

275

(34)

(35)

(36)

37N

(38)

(39)

The solution for small time may be investigated by a
power series expansion in 5 [4]. Accordingly, we derive the following

(40)

(41)

(42)
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where ¢° indicates the mathematical solution corresponding to the casen = 0, and {, = {(n
= 0), Zso = Zin = 0). Eq. (41) gives immediately

c® =0, —o < £ < (. (44)

The solution for ¢°, {,, and Z;, may be determined by a *‘shooting method™ using a
subroutine which solves, for an arbitrary {, the “initial value problem” in the space
variable £ of the ordinary differential equation

d [ ) _dc':| L, dé _

dt fS(C)CdE + 3 3 dt =0, §<E< o, 45)
with one initial condition obtained from (40-2) and the other obtained by using (44) in
(42):

it

¢ = cr, de/dt = -3¢, até = {. (46)
Among all solutions ¢, ¢, we look for ¢, such that ¢°() — 1. Since we anticipate a very
sharp concentration gradient across the glass transition concentration in the polymer, this
nonlinear initial value problem is integrated numerically with mesh size in £ according to
the square root of the diffusion coefficient factor f(¢).

Assuming that the above initial solutions ¢°, {,, and Z, are valid for small 7 — 0, they
can be interpreted in terms of the dimensionless space variables x* and 7 (or the physical
variables x and t) by means of Egs. (30), (18), and (19). Thus, the gel/liquid interface y()
is given, approximately for t — 0, by

y(t) = Hpfon = So(Dt)™. (47
The glass/gel interface xs(¢) may be computed approximately for 1 — 0 according to
xa(t) = HpZoon = Zeo Dst)?. (48)

The concentration profile ¢(x, ), approximated for t — 0, may be computed from c°(£).

2. Solution for small 7. For sufficiently small 5, 0 < n << 5., assume that Egs. (32)
thru (39) may be linearized upon the solution ¢°, {, . Eq. (38) in its linearized difference
form gives immediately

dc®
-2 =$. (49)
£={o~ d¢ £=¢ot °

sty = 20t Se

To the first order in n, express c(£, 7) = ®(§) + nc'(§). The linearized problem in terms
of ¢'(¢£) becomes:
(i) Diffusion of solvent in polymer.

D.E.
d 0 Oic-‘- _!. 49_1— -l_ 1 + ©
Eg-[fs(c)c a’E} + 5 € 5 ¢ Cot < & < oo, (50)
B.C.:
ct=0,¢=¢7 dct/dE = 0, § -, 5D

The solution is

) =00 <§< . (52)
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(i) Diffusion of dissolved polymer in liquid solution, (notice that f,(c®) = I).
D.E.

L et 1 | - _

d£2+ (E_g-o)zg"zf', <E<{$G, (53)
B.C.:

det/dt = R*, &£ = &, ¢t=0¢(—> —, (54)

The boundary-value problem of Eqgs. (53), (54) may be solved numerically to yield ¢'(£),
—o < £ <.
Consequently, the solution for small #, 0 < 7 << 5. may be approximated by
$m) = &
cg,m= ¢), " <E <o, (55)
=ncl(§), —o < & <&

where ¢°(£), {,* < £ < = is obtained from the “initial value problem” given by the Egs.
(45) and (46), and c'(§) is the solution of the boundary value problem given by Egs. (53)
and (54).

I

5. Asymptotic behavior. It was found that the diffusion in the liquid solution estab-
lishes a ‘‘steady state” in very short time. Henceforth, the concentration in the liquid
solution at the gel/liquid interface, denoted by ¢, , remains constant. Also, the flux of the
disassociated polymer in the liquid solution reaches the maximum diffusion capability in
removing the disassociated polymer molecules from the gel/liquid interface, and it is given
by the constant D,c,/B. Consequently, the free boundary condition, Eq. (28), becomes
(assume fp(c) = 1)

dy* _ rc,  oc
dr ~ B* OX* puoyntiy (56)
Thus, one derives the following asymptotic behaviors:

I. While the glassy phase remains present, and 0 < xs*(7) << 1, the concentration in
the polymer may attain a constant profile that recedes with a constant front velocity U. In
order to determine U, one considers the asymptotic behavior of the solution for the
diffusion problem defined by Egs. (20) and (22), for y**(r) < x* < o, such that

dy*
dr

where u(7) > 0 and u(7) approaches, asymptotically, to U.
Define the moving space coordinate X at 7 > 7* >> 0, for some 7*:

= u(7),

X =x*¥— y¥r)=x* - {y*(r*) + fTu(T')dT'}. 1))
T*
In terms of X and 7, Egs. (20) and (22) become

% g5 - Fel o e,
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At steady state, d¢/87 — 0 and u(r) — U. The first integral of the steady state problem is
given by

fs(o) C— + Uc=U. (59)

In particular, at X = 0, i.e. x* = p*(7), ¢ = cr, fi(cr) = 1; hence

ac _ ¢ 1 —c¢r
ax* xr=y*t(r) oX X=0 =U—"— Cr ’ (60)
Substitution of Eq. (60) and dy*/dr = U into Eq. (56), one obtains
U = cpr¥c,/B*. (61)
The concentration profile in the polymer may also be determined according to
ac
— = U X > 0. 62
% = Vaey (62)

2. Eventually, the glassy phase will disappear in the polymer, when x;*(r) — 1. The
concentration rapidly approaches ¢r uniformly throughout the polymer, and the last term
in Eq. (56) becomes negligible. Hence, dy*/dr — r*c,/B* asymptotically until complete
dissolution, y* — 1.

6. Results for initial swelling. We have investigated three types of polymer dis-
solution. The concentration dependence factor fy(c) of the diffusion coefficient of the
solvent in the polymer are given, respectively, by

10 o

100 \\ \
10-0 \\c e\

T T T T T T T T 1

0 10 20 30 40 5'0 60 70 80 90 100
C (PERCENT)

FiG. 1. Diffusion coefficient factors for types 4, B and C.
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100,07

87. 54

62.51

S0. 04

37.54

¢ (PERCENT)
=
l{’

T T T T T T T T T T T 1

-1.2 -0.8 -0.4 0.0 0.4 6.8 1.2 1.6 2.9 2.4 2.8 3.2 3.6

FiG. 2. Similarity solutions for type 4 polymer and CF = .05, (.05), .25.

A) fc) = 1,0 < ¢ < 1. This is dissolution of a rubbery polymer. No glassy phase
exists. An example is that of the dissolution of polyisobutylene in mineral oil.
B) fi(c) may be approximated algebraically by

Sy =1,0 < ¢ <0.65,
= 10 exp(—10,000 X (¢ — 0.65)* X (0.85 — ¢)), 0.65 < ¢ < 0.75, (63)
= 10 exp (—20c + 14),0.75 < ¢ < 1.

The glass transition concentration is taken to be ¢ = .75. This type represents the
dissolution of polystyrene in methyl ethyl ketone {7].
C) f«(c) may be approximated algebraically by

fie) = 1,0 < ¢ <025,
10 exp (=96 X (¢ = .25 X (5 — 8¢)),0.25 < ¢ < 0.5, (64)
=107%,05<c< 1.

The glass transition concentration is taken to be ¢ = .35. This type represents the
dissolution of polystyrene in amylacetate {7].

The concentration dependence factors fs(c) of these three types are plotted in Fig. |
and will be referred to, henceforth as types 4, B, and C, respectively.

The practical range of the disassociation concentration c¢r is 0 < ¢r < .25. The initial
solutions ¢®(§) for ¢r = .05, (.05), .25 are shown in Figs. 2, 3, 4 for the types 4, B and C,
respectively. The effect upon initial swelling due to these three types of polymer dis-
solution is shown in Fig. 5 for ¢ = .15. The gel/liquid interface y(¢) and the glass/gel
transition x(¢) are proportional to (D,)"/? as given by Egs. (47) and (48), respectively, for
small time ¢. Hence the thickness of the gel layer in the polymer increases, for small time 7,
according to
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100.17

87. 51

75. A

S0.

37. 51

25.

(PERCENT)

c

T T T T T T T T T T
-1.2 -1.0 -0.8 -0.8 0.4 -0.¢ 0.0 0.2 0.4 0.6 0.8 1.0

FiG. 3. Similarity solutions for type B polymer and CF = .05, (.05), .25.

10¢.07

87. 5

75. 0

S0. 1+

37.54

25. 01

(PERCENT)

[
T T
-8oe -749¢ -60C

r
[

T T T T
02 -433 -330 -250 -100 9 109 200
I 3SLER

FiG. 4. Similarity solutions for type C polymer and CF = .05, (.05), .25.

9
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160,07

c s | //~/'/A‘ 77777777
87. 9 : 1 o -
H i L~
! P
75. 0 | /
62. 54 : /
50. 01
37,5
25. 1
c
= 12,54
[
&
< U.ﬂl T T T T T T T T T T T 1
1.2 6.9 0.6 0.3 0.6 0.3 0.6 6.9 1.2 1.5 1.8 2.1 2.4
£
FiG. 5. Similarity solutions for polymer types 4, 8, C (CF = 15).
xa(t) = ¥(t) = (Zco — $o)(Dst)'2. (65)

The values of Z, and §, are plotted in Fig. 6.

7. Numerical integration of the Stefan problem. The solution for small time derived
in Sec. 4 is valid for 0 < n << 5. . To continue the solution of the Stefan problem, Egs. (20)
thru (29) have to be integrated numerically. Using a technique suggested by Crank [5] and
modified by Tadjbakhsh and Liniger [6], the method consists of the following steps:

(/) The moving gel/liquid interface y*(7) is extrapolated to the forward time level by
means of an explicit forward difference expression of Eq. (28).

(i) The differential equations (20) and (23) are first linearized upon the solution at 7
and then replaced by the Crank-Nicholson difference operators. By this means, the
concentration profiles of the forward time level can be determined algebraically.

(i) Until the establishment of 7., as 7 < 7, when ¢ < ¢p at x* = y*~(7), the analysis
remains source-limited, and the boundary condition (26) is to be used. Thereafter, 7 > 7.,
and the boundary condition (27) of the flux-limited analysis will be used.

For type A polymer dissolution, no glass transition exists, and no numerical complica-
tion was encountered in the calculation. Some results are presented in {3]. However, when
the glass transition does exist, as in polymer dissolution of types B and C, we observe,
from Figs. 3, 4 and 5, (a) there is a very sharp concentration gradient near the glass
transition and (b) there is a very sharp inflection as ¢ — 1 in order to satisfy the condition
oc/ox* = 0 at x* = 1 in Eq. (22). Consequently, very stringent conditions must be
imposed on both the mesh size Ax* and the time step size A7 in the integration scheme.
This in fact constitutes a very sharp boundary layer in which the exact concentration
distribution is not of great interest, but for which the rate of motion is important. For this
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FIiG. 6. Gel layers for polymer types 4, B, C.

reason and because of the extreme difficulty of carrying out a difference solution, we have
turned to a further approximation for the numerical solution.

In order to investigate the swelling and the dissolution of glassy polymer, it is assumed
that the concentration profile in the glassy state of the polymer may continue to be
approximated by ¢%(§) derived in Sec. 4. In the gel layer, the concentration is so deter-
mined that the concentration is continuous at the glass/gel transition, x* = xs*(7),
satisfying the first continuity condition in Eqgs. (29) throughout the duration of the
existence of the glassy phase. Thereafter, the boundary condition d¢/dx* = O at x* = 1 in
Eq. (22) is again employed after the disappearance of the glassy phase. In view of the fact
that the thickness of the gel layer, xg*(7) — y*(), varies in 7, the mesh size in the gel layer
is allowed to vary accordingly.

8. Results and discussion. Some examples of the numerical results are shown in
Figs. 7a,b, 8a,b and 9 for polymer dissolution of the types 4, B and C, respectively. Figs.
7a and 8a show the concentration profiles at ten successively selected time steps. Figs. 7b,
8b and 9 show the following quantities as functions of the time 7:

The gel/liquid interface y*(7), marked by YIF,

The glass/gel interface x;*(7), marked by XGS,

The polymer concentration at the substrate x* = 1, marked by CINF,

The polymer concentration in the liquid solution at the gel/liquid interface y*(r),

marked by CPIF,

The rate at which the dissolved polymer is removed at the edge of the boundary layer

in the liquid solution, marked by SINK.
The input data are:
Polymer original thickness, H, = 1 cm,
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FiG. 7a. Concentration profiles for type A polymer dissolution.

Boundary layer thickness, B = .1 cm,

Nominal diffusion coefficient of solvent in polymer, D, = 107® cm?/sec,

Nominal diffusion coefficient of dissolved polymer in solution, D, = 5 X 1077 cm?/sec,
Disassociation concentration, ¢ = .25,

Disassociation rate, R = .1 cm/sec.

By examining Figs. 7, 8 and 9, we observe the following:
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FIG. 7b. Times series plots for type 4 polymer dissolution.
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FiG. 8a. Concentration profiles for type B polymer dissolution.

1. For type B dissolution of glassy polymer, Fig. 8a exhibits the three distinctive
regimes, (/) the liquid solution, 0 < ¢ < ¢, (i) the gel layer, ¢r < ¢ < ¢, and (iif) the
glassy phase, ¢ — 1, in the concentration profiles of the first five selected time steps,
corresponding to XGS = .001, .2, 4, .6, .8 and 7 < 1.4 (see Fig. 8b).

2. The concentration profile in the liquid solution reaches a ‘“steady state” near 7 =
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F1G. 8b. Time series plots for type B polymer dissolution.
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FiG. 9. Time series plots for type C polymer dissolution (small time).
Cr = 0.25
.015 when the curve SINK approaches the constant value c/B* = 2.5 asymptotically (see
Fig. 9). For 7 >> .015, the concentration profiles follow the motion of the poly-
mer/solution interface y*(7) without change in shape (see Figs 7a and 8a). Consequently,
numerical integration of the concentration profile in the liquid solution is not needed for 7
>> .015.

3. For the type C dissolution, there is very little swelling, y,..n* ~ —.017, in Fig. 9 as
compared to ymi»* =~ —.338 in Fig. 7b of type A and to yn.;,* =~ —.25 in Fig. 8b of type B.
The maximum gel layer thickness is about (x¢* — y*)max = .045, occuring in relatively
short time, 7 =~ .1, Thereafter, the dissolution is described by the following asymptotic
behaviors: (i) the concentration in the polymer attains constant profile that recedes with
constant front velocity dy*/dr = dxg*/dr = 3125, given by Eq. (61), until the dis-
appearance of the glassy phase in the polymer at about 7 = 3.3, and (ii), the dissolution
continues at the rate approaching the final asymptotic velocity dy*/dr = 1.25, until
complete dissolution [8].

A more complete set of results and a description of the physical application will be
found in [3]. Physical implications of the asymptotic behavior are discussed in [8].
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