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A Multi-Population Genetic Algorithm  

for Robust and Fast Ellipse Detection 

Abstract 

This paper discusses a novel and effective technique for extracting multiple ellipses from an 

image, using a Genetic Algorithm with Multiple Populations (MPGA). MPGA evolves a number 

of subpopulations in parallel, each of which is clustered around an actual or perceived ellipse in 

the target image. The technique utilizes both evolution and clustering to direct the search for 

ellipses – full or partial. MPGA is explained in detail, and compared with both the widely used 

Randomized Hough Transform (RHT) and the Sharing Genetic Algorithm (SGA). In thorough and 

fair experimental tests, utilizing both synthetic and real-world images, MPGA exhibits solid 

advantages over RHT and SGA in terms of accuracy of recognition - even in the presence of noise 

or/and multiple imperfect ellipses in an image - and speed of computation. 
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1. Introduction 

In this paper, we propose a novel Multi-

Population Genetic Algorithm (MPGA) for 

accurate and efficient detection of multiple 

imperfect (e.g. partial) ellipses in noisy 

images. This capability that the algorithm 

provides is genuinely useful for many real-

world image processing applications, such 

as: object detection and pattern recognition, 

scene characterization and event detection.  

      Rather than evolving a single population, 

as in traditional Genetic Algorithms, we 

evolve a number of subpopulations. These 

subpopulations simultaneously seek all 

potential optima, resulting in a dramatic 

increase in the GA’s ability to detect multiple 

ellipses (compared, for example, to the 

Sharing GA technique SGA) [10]). Indeed, 

not only is the leading edge of GA-based 

ellipse detection techniques advanced, but 

also the MPGA’s detection ability and 

computational efficiency are superior to 

those of the widely-used Randomized Hough 

Transform (RHT) [8].  

       Our MPGA algorithm employs both 

evolution and clustering to detect ellipses. In 

addition, the algorithm uses two 

complementary measures of fitness and 

specially designed forms of crossover and 

mutation. This results in a robust algorithm 

that performs very well on images with 

multiple ellipses, imperfect ellipses, and in 

the presence of noise. These are additional 

advantages that our algorithm has over other 

techniques such as RHT and SGA, whose 

performance degrade considerably in the 

presence of multiple ellipses or/and noise. 

     Section 2 provides the reader with some 

necessary background material, and 

discusses a number of related research 

articles. In section 3, the new algorithm is 

explained in detail. Section 4 presents and 

analyzes the experimental results; it 

compares the performance of MPGA with 

both RHT and SGA. Section 5 concludes the 

paper and summarizes planned future work. 
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2. Background 

In the literature, the Hough Transform (HT) 

is one of the most widely used techniques for 

location of various geometric shapes [8].  

Basically, the Standard Hough Transform 

(SHT) represents a geometric shape by a set 

of appropriate parameters. For example, a 

circle could be represented by the 

coordinates of its centre and radius, hence 3 

parameters.  In an image, each foreground 

(e.g. black) pixel is mapped onto the space 

formed by the parameters. However, since 

we are dealing with digital computers, this 

parameter space is quantized into a number 

of bins. Peaks in the bins provide the best 

indication of where shapes (in the original 

image) may be. Obviously, since the 

parameters are quantized into discrete bins, 

the intervals of the bins directly affect the 

accuracy of the results and the computational 

effort required to obtain them. For fine 

quantization of the space, the algorithm 

returns more accurate results, while suffering 

from large memory loads (for bins), and 

expensive computation - especially in high-

dimensional feature spaces. Hence, the SHT 

is most commonly used in 2 or 3-

dimensional feature spaces and is unsuitable 

for higher dimensional spaces.  Ellipses, for 

example, are five-dimensional.  More 

efficient HT based methods have been 

developed [5, 7, 9]. They improve efficiency 

by (a) exploiting the symmetrical nature of 

some shapes, and (b) utilizing intelligent 

means of dimensionality reduction. 

Nevertheless, both computational complexity 

and memory load remain a serious problem. 

      One of the fastest and most widely used 

variant of the Hough Transform is the 

Randomized Hough Transform proposed by 

Xu et al. [18]. It improves HT with respect to 

both memory load and speed. McLaughlin’s 

work [13] shows that RHT produces 

improvements in accuracy and computational 

complexity, as well as a reduction in the 

number of false positives (non-existent 
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ellipses), when compared with the original 

SHT and number of its improved variants. 

      The Genetic Algorithm (GA) is another 

interesting way for extracting ellipses. As 

early as 1992, Roth et al. [15] proposed a 

way of extracting geometric shapes using 

Genetic Algorithms [15]. Since then, a 

number of GA-based techniques have been 

developed for the purpose of detecting 

specific geometric shapes such as straight 

lines [2], ellipses [10, 11, 12, 14], and 

polygons [10, 11, 12].  

     Procter et al. [14] made an interesting 

comparison between GA and RHT. These 

two techniques have the following features in 

common: 

�� Representation of geometric shapes using 

minimal sets of parameters.  

�� Random sampling of image data. 

�� Sequential extraction of multiple shapes. 

     Their experiments clearly demonstrate 

that GA-based techniques return superior 

results to those produced by RHT methods 

when a high level of noise is present in the 

image but RHT methods are more attractive 

for relatively noise-fee images.  

     Nevertheless, a straightforward 

implementation of GA-based shape detection 

methods, gives us a fitness function that 

lacks the flexibility necessary for the 

detection of multiple ellipses in an image. A 

fitness function with a single term, which 

only reflects how well a candidate shape 

matches an idealized ellipse, will drive the 

whole population towards a single global 

optimum. Hence, in the presence of multiple 

optima (ellipses), the final winner is obtained 

randomly. Moreover, when there are both 

perfect and imperfect ellipses, the latter, 

being locally optimum, will most likely be 

replaced with better (more perfect) 

individuals during evolution, and eventually 

ignored. 

     A possible and intuitive solution is to 

extract shapes sequentially, as in [2, 14 and 

15]. This entails removing detected shapes 
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from the image, one at a time, (sequentially), 

and iterating, until there are no more shapes 

that the program is able to detect in the 

image. It is clear that this approach involves 

a high degree of redundancy and, as such, is 

computationally inefficient. 

     Lutton et al. [10] improve the simple GA 

by using a Sharing technique, first 

introduced by Goldberg et al. [3] in 1987. 

This technique aims to maintain the diversity 

of the population by scaling up the fitnesses 

of local optima within the population (so that 

they would stand out).  

    Unfortunately, sharing is based on the 

assumption that the neighborhoods of local 

optima are less crowded (with individuals) 

than the neighborhood of the global optimum 

and that, therefore, the fitnesses of local 

optima will be enhanced by sharing. This 

assumption is not valid for our application, as 

imperfect ellipses may attract many 

neighbors with a high probability, as long as 

they contain a sufficiently large number of 

pixels. This will deflect the search from 

exploring potentially promising areas, and 

will, often, result in missed ellipses.  

     Fig. 1 provides a concrete example. After 

running the Sharing GA, to convergence, 

with a population size of 100, the individual 

(candidate ellipse) at the centre of the densest 

subpopulation of individuals, is represented 

in Fig. 1 (b) by an overlaid grey ellipse. 

Since the left ellipse is larger (in terms of 

pixels) than the right one, it is natural that the 

left ellipse will attract more individuals 

(ellipse candidates) around it. However, the 

ellipse on the left corresponds to a local 

optimum (with sub-optimal fitness), while 

the right perfectly formed ellipse corresponds 

to the global maximum (with the highest 

fitness). Hence, if the sharing function is 

applied: the fitness of the sub-optimal 

individual, will be shared with the rest of its 

dense subpopulation, and on the other hand, 

the fitness of the optimal individual will be 

shared with the rest of its less dense 

subpopulation. This will result in a global 

optimum (right ellipse), which is even more 
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pronounced relative to the local optimum 

(right ellipse) than the case was before the 

sharing function was applied. Therefore, 

sharing in this example defeats the purpose 

of the exercise.  

     Furthermore, Smith et al. [16] highlighted 

the fact that the computation of the distance 

of an individual to any/all other individuals 

in a population has a time complexity of 

, where N is the size of the population 

[16]. 

)( 2NO

     To overcome the various problems 

discussed above, with both RHT and SGA, 

we developed and tested a new multiple-

population GA, with the following key 

features:  

�� Parallel evolution of multiple 

subpopulations each focused on a 

potential elliptical pattern in the image; 

�� Clustering is used to effectively create 

and maintain the multiple 

subpopulations; 

�� Use of two fitness terms to enhance the 

overall fitness of local optima in an 

effective manner; 

�� Customized crossover and mutation 

operators to take advantage of specialized 

domain-knowledge; 

     Experiments show that this algorithm 

works well for multiple ellipses, imperfect 

ellipses, and high noise. 

3. The Multi-Population Genetic 

Algorithm 

The overall operation of the multi-population 

GA is presented graphically in Fig. 2. 

    Initially, a single population is created by 

creating a number of chromosomes who’s 

genes (see section 3.2) are randomly selected 

from the set of foreground pixels in the 

image. The population is then ranked in 

terms of both similarity and distance and 

searched for good candidates- if any. If, by 

chance, all the ellipses in the image are 

included in the first generation, the program 
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terminates. Otherwise, a clustering technique 

is used to divide the chromosomes into a 

number of clusters (or subpopulations). From 

that moment on, all the subpopulations are 

evolved, in parallel. If one of the 

subpopulations converges on an optimal or a 

suboptimal chromosome, then that whole 

subpopulation and the corresponding ellipse 

(in the image) are removed. This has the 

positive side effect of accelerating the search 

process, since the rest of the subpopulations 

will have one less ellipse to search for. The 

program, as a whole, terminates when all 

(full and partial) ellipses are found, or when 

a pre-set maximum number of generations is 

reached. 

     The following sections (3.1 - 3.6) detail 

the key steps of the MPGA algorithm, 

starting with an introduction to elliptic 

geometry and concluding with clustering. 

3.1 Ellipse Geometry 

Chromosomes, in the MPGA, are no more 

than candidate ellipses, and hence 

understanding the geometry of ellipses is 

essential to understanding chromosomal 

representation, within the MPGA. The ellipse 

equation can be written as: 

01222 22
������ fygxbyhxyax     (1) 

     Assuming we have five distinct points 

belonging to the perimeter of an ellipse, we 

can solve 5 linear equations, simultaneously, 

for a, h, b, g and f.  Hence, the geometric 

parameters (the long and short radii of an 

ellipse, the coordinates of the center; and the 

angle the long axis makes with the X-axis - 

or the rotation angle) for an ellipse are 

computed, by substituting the values of a, h, 

b, g and f, into a set of five equations, listed 

in [14]. 

3.2 Representation and 

Initialization 

We represent chromosomes (using Roth et 

al. approach [15]) with a minimal set of 

points on the shape’s perimeters.  Since we 

need 5 points, each chromosome contains 5 
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genes. And, since each gene (point) has both 

horizontal and vertical coordinates, the total 

number of numbers in a chromosome comes 

to 10. 

     There are, in the literature, alternative 

ways of chromosomal representation of 

ellipses. For example, Mainzer [11, 12] 

represents an ellipse using a set of five 

geometric parameters (see Fig. 3): a and b, 

which are the dimensions of the long and 

short axes of an ellipse, respectively; x0 and 

y0, which are the X and Y coordinates of the 

center; and finally �, the rotation angle. 

     In contrast, Lutton et al. [10] encode an 

ellipse using the center O; a point on its 

perimeter P; and rotation angle a. Lutton et 

al. (and so could Mainzer) claim that their 

representation is preferable to Roth’s 

representation of ellipses, since Roth’s 

chromosomes allow for redundancy, and 

their chromosomes do not. This is so, since 

many of Roth’s chromosomes (which are 5-

tuples of points) could belong to the same 

ellipse. 

     Nevertheless, the encoding of ellipses via 

their geometric parameters is also 

problematic. These techniques provide no 

guarantee that the resulting candidate ellipses 

will actually contain any point from any of 

the actual ellipses in the target image. Using 

these techniques amounts to blindly placing 

ellipses at randomly selected locations within 

the image, in the hope that some of them will 

partially overlap some actual ellipses in the 

image.  Hence, such algorithms spend a long 

(if not most of their) time evaluating the 

fitnesses of many chromosomes representing 

useless candidate ellipses. 

     Therefore, we choose to encode a 

chromosome with a set of 5 points, as Roth et 

al. did [15]. The redundancy problems 

identified by Lutton et al. can be avoided by 

disallowing identical chromosomes in the 

population. Two chromosomes are identical 

if their phenotypes (geometric parameters), 

and not genotypes (sets of points), are 

identical. 

 7



     The MPGA algorithm creates an initial 

population of between 30 and 100 

chromosomes, depending on the complexity 

of the target image. The five points 

comprising each new chromosome are 

selected, at random, from the set of 

foreground (or black) pixels in the target 

image. 

3.3 Fitness Evaluation 

Most of the reported work in this area, such 

as [10, 11, and 12], evaluates the fitness of a 

candidate ellipse (chromosome) by, 

essentially, counting the number of black 

pixels in the target image which coincide 

with the perimeter of the candidate ellipse. 

These black pixels may or may not belong to 

actual ellipses in the image. However, if 

many pixels in the actual image match a 

candidate ellipse then it is highly probable 

that theses pixels form part of an actual 

ellipse in the image.  

     To enhance the robustness of the 

matching function, Mainzer [11, 12] 

distinguishes pixels lying near the perimeter 

of a candidate (ideal) ellipse from those far 

from it, and assigns a penalty to the latter. 

Mainzer defines fitness S of a given 

candidate ellipse as:  

�
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    is a function that returns 1 if 

there exists a foreground pixel (x+i, y+j) 

coincident with, or close to a pixel (x,y) on 

the candidate ellipse. Otherwise the function 

returns 0. i and j are the horizontal and 

vertical displacements, respectively, between 

the two pixels. Finally, d is a constant 

(determined by the nature of the image). If 

there exists points in the image that exactly 

(i.e. i = 0 and j = 0) match every point in the 

candidate ellipse then this candidate ellipse 

will receive the maximum fitness of 1. 

),( jyixE ��

 In [10] Lutton et al. use a grey-level 

“distance image”, where each pixel’s grey 

value indicates its distance to the nearest 

contour point. This distance image is 
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computed from the original image using two 

morphological masks. Like Mainzer, they 

also punish points not exactly on the 

perimeter of a candidate ellipse, using a 

displacement factor. However, the 

construction of the distance image requires 

serious extra storage. And the manual tuning 

of the two distance parameters in the mask 

requires extra preparatory work, before the 

algorithm can be used. 

Lutton et al. [10] also introduced another 

fitness term that counts effective contour 

pixels “to favor bigger primitives [or 

shapes]”.  However, bigger shapes are not 

necessarily better ones; and the extent to 

which an actual pattern matches a candidate 

shape has nothing to with the patterns 

absolute length or size. 

     Neither of the measures of fitness 

discussed above satisfy our requirements. 

Our aim is to detect full as well as partial 

multiple ellipses with varying types and 

degrees of imperfections. Fig. 4 provides 

concrete examples of such shapes, where 

ellipse no. 3 shows a partial ellipse, and 

ellipse no. 2 is an ellipse with an irregular 

outline. These two measures of fitness are 

defined formally below. Therefore, we 

propose that the fitness of a given candidate 

ellipse is measured in terms of both (a) 

Similarity: how well the candidate’s 

perimeter matches (or not) the perimeter of 

an ideal complete ellipse; and (b) Distance: 

how close or far is the perimeter (or part of 

it) to the perimeter of an ideal ellipse (or part 

of it).  

A. Similarity (S) is defined as: 

total

d
jyixE

S yx ji

#

),(

),( ,
�

��

�              (3) 

       The value of S belongs to [0, 1], with 1 

indicating a perfect match and 0 no match at 

all. For a given point (x,y) on a candidate 

ellipse, the term  returns 1 if 

there is a point in the target image that 

coincides with, or is close to (x,y); otherwise 

 returns 0. 

),( jyixE ��

),( jyixE ��
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The terms i and j represent the horizontal 

and vertical displacements, respectively, 

between a point on the ideal ellipse and the 

corresponding actual point in the image.  Fig. 

5 shows how an actual point (Q) is 

determined and how the distance between 

this point and the corresponding point (P) on 

the candidate ellipse is computed. 

In Fig. 5, the dashed arc belongs to an 

ideal template with centre C. The solid arcs 

belong to actual (full or partial) ellipses in 

the image. If P does not coincide with any 

point in the image (in which case, P=Q), then 

a line is extended from C passing through P, 

and radiating outward. A fast search, based 

on Brensenham’s algorithm [6], is initiated 

along this line until a point (Q) on some 

pattern is found. This point is the 

corresponding actual point, and the 

horizontal and vertical displacements 

between it (Q) and P represent the i and j 

terms, respectively, used in the computation 

of distance . jid ,

4
||||

,

ji

ji ed
�

�              (4) 

#total is the total number of pixels on the 

candidate ellipse’s perimeter. 

     To compute S efficiently, we further 

assume that the ideal template is centered at 

the origin of coordinates with a horizontally 

aligned long axis (see Fig. 6).  

     A classic midpoint ellipse algorithm [6] is 

then used to traverse the perimeter of this 

candidate ellipse. This algorithm uses 

favours integer computation, and it only 

computes a quarter of the ellipse’s perimeter. 

All the other points in the remaining 3 

quadrants are obtained from symmetry. Each 

computed pixel is matched to its “actual” 

ideal position using: 
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 (x, y)  are the original coordinates and 

( , ) are the transformed coordinates. 

Finally, the term E  is replaced 

Tx Ty

),( jyix ��
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by , giving us the final form 

of the similarity equation: 

),( jyixET
��
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B. Distance (D) is defined as: 

eff

d
y yx

ji

#
), ),(

,�
�           (7) 

        D ranges from [0, � ) The term d is 

defined in (9) above. #eff is the total number 

of points on the actual ellipse that were 

successfully matched with points on the ideal 

ellipse. One reason for using #eff here instead 

of #total is that actual ellipses may be 

missing parts of their perimeter, i.e. there 

may be partial or highly irregular ellipses in 

an image. 

ji ,

     Similarity is the main measure, since it is 

directly observable by the human eye. 

However, distance is particularly important 

for cases where multiple ellipses are present 

in the image, and especially when complete 

ellipses (with high similarity) as well as 

imperfect ellipses (with relatively low 

similarity) exist. We aim to seek those 

candidates with good similarity and small 

distance, or those with acceptable similarity 

but excellent distance. Obviously if, for a 

given candidate ellipse, both of these 

measures return bad values, then this 

candidate can be reasonably ignored as noise. 

     Again, Fig. 4 shows an example of an 

image with perfect and imperfect ellipses. 

Table 1 lists the fitness values (in terms of 

both similarity and distance) for the best 

three candidate ellipses produced by an 

MPGA run. There will exist in the population 

many other candidate ellipses, but all the fit 

ones will eventually cluster around these 

three highly fit candidates. 

     Without distance, it is highly possible that 

the population will converge towards ellipse 

1, while ignoring the other two (very real) 

ellipses in the rest of the image. However, 

with distance included, candidate ellipses 

converging on ellipses 2 and 3 will be ranked 

highly in terms of distance. Since the ellipses 
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converging towards these two ellipses will 

have acceptable similarity but excellent 

distance, this will result in a reasonable 

clustering (and hence subdivision) of the 

population, instead of complete domination 

by ellipse 1 candidates. 

     In MPGA, fitness is computed in the 

following manner: the 10 numbers of each 

chromosome are substituted in 5 

simultaneous ellipse equations. If the 

equations fail to produce a solution then this 

chromosome does not represent any kind of 

ellipse. Hence, this chromosome is assigned 

the minimum fitness of 0. If the equations 

produce a solution, then equations (6 and 7) 

are used to compute the similarity and 

distance of this chromosome. These two 

values together represent the fitness of the 

evaluated chromosome. 

3.4 Termination Conditions 

MPGA starts its run with a single population. 

However, it usually splits it into a number of 

evolving subpopulations. The termination of 

the evolution of any one of these 

subpopulations occurs independently of the 

termination of the rest of the subpopulations. 

A subpopulation terminates if any one of the 

following conditions is fulfilled:  

Condition 1: Optimal Convergence.  If there 

exists one (or more) “optimal” chromosomes. 

An optimal chromosome is one with S > 0.95 

and D < 10; 

Condition 2: Sub-optimal Convergence. If 

there exists one (or more) “good” 

chromosomes and 30 generations have 

passed without the evolution of an optimal 

chromosome. A good chromosome is one 

with S > 0.7 and D < 10; 

Condition 3: Stagnation.  500 generations 

have passed without the fulfillment of either 

Condition 1 or 2.  

Also, a subpopulation is effectively 

terminated when it is merged with another 

subpopulation (see section 3.5). 
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3.5 Clustering: Migration, 

Splitting and Merging 

A subpopulation is called a cluster. The 

centre of a cluster is the chromosome with 

the greatest similarity. If more than one 

exists then the one with the least distance is 

declared the centre. 

     In the MPGA algorithm, the algorithm 

starts with a single population (or cluster) in 

which individuals are ranked in terms of both 

similarity and distance. The initial single 

population, and later subpopulations, are 

manipulated through a clustering process. 

This process involves Migration, Splitting 

and Merger (explained below). 

     In each subpopulation, all good 

chromosomes (S>0.7 and D<10) are either 

kept in their own cluster or placed into a 

different existing or newly-created cluster. 

All not-good chromosomes are simply left in 

their own cluster (and are eventually 

eliminated be selection- see section 3.6).  

     The Euclidean distance ED between a 

good chromosome and the various existing 

cluster centers determines whether this 

chromosomes remains in its own cluster or 

moves. ED is computed as follows: given 

two sets of ellipse parameters (a1, b1, x1, y1, 

ω1) and (a2, b2, x2, y2, ω2): 

5
)()()()()( 2

21
2

21
2
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2

21
2

21 �� ���������
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     (ai, bi) is the long and short axis, (xi, yi) is 

the center and  ωi is the orientation. When a 

chromosome migrates from subpopulation A 

to subpopulation B, it replaces the weakest 

chromosome in the latter, and the vacancy in 

the former is filled by the processes of 

evolution (see section 3.6). 

A. Migration. If the Euclidean distance 

between a chromosome and its own cluster 

centre is lower than a pre-defined threshold 

t1 then this chromosome is moved to another 

cluster. To determine which one, the ED 

between this chromosome and every other 

cluster center is measured. If one or more 

cluster centers is closer to it than t1 then the 
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chromosome moves (migrates) to the cluster 

with the closest centre to it.  

B. Splitting. If the algorithm is unable to find 

a cluster (with a centre) sufficiently close to a 

migrating chromosome, then a new cluster is 

created around this chromosome. This action 

is called splitting. 

C. Mergeing. An empirically-derived 

threshold �  is used to define the minimum 

allowable Euclidean distance between any 

two different cluster centers. As two different 

clusters may evolve toward a single (local or 

global optimum), any two clusters with 

centers closer to each other than �  are 

merged. This is done by taking the fittest 

50% (in terms of similarity) of the 

chromosomes in each cluster and placing 

them in the new merged cluster. This action 

is called merging.  

d

d

     All clusters are checked periodically 

(every 30 generations), to see whether some 

of them could be merged. Merging is barred 

for the first 50 generations, and (as stated) is 

only possible after each periodic check.  This 

is so because early or/and frequent mergers 

would greatly reduce the diversity of the 

whole population.  

     Hence, through the three processes of 

migration, splitting and merger, clustering 

works to maintain a number of 

subpopulations that are independently 

evolved towards local and global optima. 

Evolution is explained in the next section. 

3.6 Evolution: Selection and 

Diversification 

Evolution proceeds mainly via Selection and 

Diversification. Selection eliminates those 

chromosomes in the population that are not 

very fit, focusing the search on promising 

areas of the fitness surface. On the other 

hand, diversity is achieved via crossover and 

mutation, which together serve to direct the 

search towards new and potentially 

promising areas. In MPGA, selection is 

realized using Elitism and Fitness 
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Proportional Selection. Diversification is 

realized via Crossover and Mutation. 

      During evolution of a subpopulation, 

elitism copies the fittest 15% of the current 

generation (by similarity) into the next 

generation, without modification. Following 

that, two chromosomes are selected from the 

whole current population. The probability of 

selecting a chromosome is proportional to its 

relative fitness (similarity). The two 

chromosomes are crossed-over, with 

probability 0.6. The result, whether it is two 

new chromosomes or the original parent 

chromosomes, are mutated (on a bit-wise 

basis) with probability 0.1. This process of 

selection and crossover-mutation continues 

until the next generation is complete. As 

stated, we use constant size subpopulations 

of between 30 and 100 chromosomes. 

     Finally, every new chromosome 

introduced into the next generation is tested 

to see if it is a good chromosome or not 

(S>0.7, D< 10); if it is not then it is left in the 

same subpopulation. If however it proves to 

be a good chromosome then it is tested for 

migration-splitting, and is then either kept in 

its current subpopulation or moved to another 

existing or new subpopulation (see section 

3.5). 

     In MPGA, Crossover and Mutation are 

special operations designed specifically for 

shape detection applications. We describe 

them in detail below, starting with crossover. 

     Given the fact that (a) the overall 

population is divided into a number of 

subpopulations, each effectively clustering 

around an ellipse in the image; and (b) each 

chromosome is defined by a set of points on 

the perimeter of an ellipse, we can assert that 

simple single point crossover is an effective 

method of crossover for our application. A 

pivot is selected at random, and the parent 

chromosomes’ genes on either side of the 

pivot are swapped to create the offspring. See 

Fig. 7. 

     The effect of the crossover operation, on 

the actual ellipses represented by the 

chromosomes, is shown in Fig. 8.  
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     For mutation, we define a new mutation 

operator, configured specifically for our 

application. First a gene (or point) is 

randomly selected from the chromosome that 

we intend to mutate. As shown in Fig. 8, this 

point acts as the starting point for a path (r) 

that traverses the perimeter of a pattern, until 

a (pre-set) maximum number of points is 

traversed, or an end- or intersection point is 

reached. If r > 10, the remaining genes 

(points) are also picked, at random, from this 

path. As long as the starting point lies on a 

promising candidate ellipse, it is highly 

possible that the other points will do so as 

well. This method of mutation greatly 

enhances the possibility of mutating a given 

chromosome into a better one. 

     Fig. 9 illustrates the mutation process. 

The original genes are P1, P2, P3, P4, and P5. 

The starting point, P1 is selected and path r is 

traversed. The other new genes, Q2, Q3, Q4, 

and Q5 are randomly selected from path r, 

and copied into the mutated chromosome. 

Hence, the new chromosome becomes 

(P1Q2Q3Q4Q5). 

      Hence, evolution hand-in-hand with 

clustering (which mainly precedes but also 

acts during evolution) direct the various 

subpopulations to local and global optima 

centered on the various ellipses in the target 

image. 

4. Experimental Results and 

Analysis 

This section compares the performance of the 

MPGA, SGA and RHT algorithms, using 

synthetic and real-world images. To carry out 

a fair comparison between these three 

different algorithms, we use (a) the same 

method for computing fitness, in terms of 

similarity and distance (described in section 

3.4), and (b) the same numerical technique 

for computing the geometric parameters of 

an ellipse (see section 3.1). This neutralizes 

any advantages that may be gained via using 

more efficient methods, which reduce 
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dimensionality or utilize symmetry [5, 7, 9, 

13]. 

     All our experiments were run on an Intel 

Xeon 2.66 GHz w/ 512 KB of cache, 512 

MB DDR RAM and running Red Hat Linux 

8.0.3.2-7.  

We have two main categories of test data, 

which are synthetic images and real world 

images.  Accuracy here, is defined as the 

ratio of correctly detected ellipses, in relation 

to the total number of ellipses actually 

present in the target image. If over detection 

occurs, then that is reflected in the false 

positive statistics.      

4.1 Synthetic Images 

The synthetic images are comprised of two 

sets, set A and set B.  Set A is partitioned 

into 7 collections of 50 images each (totaling 

350 images). These collections are used to 

test the algorithms’ performance on images 

with different numbers of ellipses. Hence, the 

first collection contains 50 images of single 

ellipses, the second collection contains 

images of two ellipses, and so on. The final 

collection contains 50 images of 7 ellipses.  

Set B, on the other hand, is used to test the 

algorithms’ performance on noisy images. 

Hence, this set is made of 5 collections of 50 

images each (totaling 250 images). The first, 

second, third, fourth and fifth collections 

contain images with 0%, 0.5%, 1%, 3% and 

5% salt-and-pepper noise, respectively.  

The ellipses in the synthetic image 

database are not all full and perfectly formed 

ellipses; we make sure that some images in 

both sets have at least 1 partial or deformed 

ellipse. A typical example is presented in 

Fig. 10 (with numerical results presented in 

Table 2). In this figure there are 5 ellipses, 2 

of which are malformed. The figure also 

shows the results, in terms of detected 

ellipses, of applying MPGA, RHT and SGA 

to this image. 

     As seen in Fig. 10 (b), RHT misses the 

smallest ellipse since the probability of 

locating it is smaller than the probability of 

locating the other larger ellipses. The fitness 
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values shown in Table 2 are those of 

similarity and not distance (or some 

combination of the two) because: (a) 

similarity is the only measure/factor of 

fitness used by all these three algorithms, and 

(b) similarity is more intuitive than any 

combination of measures, since it closely 

corresponds the human conception of 

similarity between shapes.  

In reference to Table 2, MPGA returns 

better fitness values than RHT, for ellipses 1, 

2 and 3. This is because MPGA, via 

evolution, executes an iterative and parallel 

search, focused at different localities of the 

of the search space, while the RHT carries 

out a one-shot blind search through the 

whole space. 

     Fig. 11 contrasts the performance of the 

three algorithms in terms of accuracy as well 

as average CPU running time. Fig. 11(a) 

shows that the accuracy of SGA decreases 

dramatically as the number of ellipses 

increase. Similarly, the accuracy of RHT also 

decreases gradually from 100% for one 

ellipse to approximately 80% for seven 

ellipses. In contrast, MPGA outperforms the 

other two algorithms by maintaining an 

almost perfect level of detection accuracy, 

and slightly dipping to around 98%, for 

images with seven ellipses.  

     Fig. 11(b) demonstrates the clear 

advantage that MPGA has over both RHT 

and GAS in regards to speed time. It graphs 

the amount of CPU time utilized (on 

average) by the various algorithms for the 

detection of images with 1-7 ellipses. There 

is almost no difference in speed for images 

with 4 or less ellipses. However, for 5 or 

more ellipses, MPGA realizes a clear and 

widening gap in speed. 

     Fig. 12(a) shows a typical image with 5% 

pepper-and-salt noise. Ellipses detected by 

MPGA are shown in Fig. 12(b) 

     Generally, RHT is more liable to false 

positives (i.e. the detection of non-existing 

ellipses). Fig. 12(c) demonstrates that. Table 

3 presents the exact numerical results. 
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     Fig. 13 shows the performance of these 

algorithms on noisy images. Again, MPGA 

shows considerable robustness in the 

presence of salt-and-pepper noise, while 

simultaneously operating faster than the 

other two algorithms. 

     Many false positives are observed for 

RHT with high noise, as Fig. 14 shows. This 

fact further fortifies our claim (in section 1) 

that RHT searches the space and accumulates 

votes blindly. Therefore non-existing ellipses 

may get enough votes in highly noisy 

images, as is the case in Fig. 14. 

4.2 Real World Images 

Large, carefully constructed databases of 

synthetic images (600, in our case) provide 

the bases for comprehensive tests, which also 

provide specific feedback about potential 

problems with detection algorithms. 

Nevertheless, it is real-world images that 

determine the difference between a genuinely 

useful and purely academic novel algorithm. 

Hence, we have amassed three databases of 

intentionally different types of images: hand-

written English letters, microscopic cell 

images and road signs.  The databases are of 

varying size, but contain images that were 

collected, prior to even the design of MPGA. 

From each of those databases, 50 images, are 

selected at random, and then used for the 

purpose of assessing the real-world 

performance of MPGA, RHA and SGA. On 

visual inspection, we noticed that these 

images contain: all kinds of combinations of  

perfect and deformed ellipses, noise levels, 

and other geometric shapes (e.g. lines).  

Fig. 15(a) shows a typical handwritten 

character with elliptical curves detected. 

     In Table 4 we can see that MPGA is 

slower than RHT. As discussed in section 1, 

when the image is relatively simple and 

noise-free and does not have many 

overlapping patterns, RHT is expected to run 

faster than MPGA. However, RHT still 

suffers from false positives, as Fig. 15(c) 

shows, and generally, in pattern recognition, 
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accuracy of detection is of a higher priority 

than speed of processing. 

     Fig. 16(a) is a typical microscopic image 

of cells. Here, MPGA shows its obvious 

advantage over RHT and SGA in both 

accuracy and speed. Although RHT 

approximates all eight cells, it suffers from 

large misplacement (see cells labeled: a, b, c 

and d, in Fig. 16(d)) and long running times; 

SGA fails to detect even a single ellipse. 

Table 5 contains the exact numerical results. 

     Fig. 17 is a typical image of a road sign. 

We can see that neither RHT nor SGA is able 

to detect partial ellipses, especially when 

there are also perfect ellipses in the image. 

They are generally slower than MPGA in this 

kind of complicated images. Table 6 presents 

the exact numerical results. 

     Table 7 gives out the overall performance 

for real world images. From the table we can 

see that SGA is almost totally ineffective 

with complicated real world images; it 

returns an average accuracy of less than 20%.  

RHT suffers from long computation times 

and high false positive rate. 

     There are some false positives (6.9048%) 

for MPGA as well, because for some 

polygons, the algorithm may sometimes 

approximate them with ellipses. One possible 

solution is to detect low dimensional shapes 

first (such as lines), and remove these from 

the image, before detecting circles and 

ellipses. This way, the process can be both 

made more efficient and more accurate. 

5. Conclusions and Future Work 

This paper presents a new GA, one which 

uses (a) multiple-populations and an 

elaborate process of evolution-clustering to 

(b) efficiently and accurately detect (c) 

multiple potentially-deformed full and partial 

ellipses in noisy images. This algorithm, was 

thoroughly tested on a large number of 

synthetic and three types of real-world 

images, and compared to the very widely-

used RHT and one of the best-available GA-

based ellipse detection technique: SGA. 
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Despite the conceptual complexity of the 

MPGA algorithm, the program implementing 

the new algorithm performed, generally 

speaking, more efficiently and more 

accurately than both RHT and SGA. 

However, this does not mean that there is no 

room for improvements. 

     We intend to improve the MPGA by 

getting to: 

1. Detect (and remove) lines and polygons, 

first, so that any complicated images can be 

analyzed within a reasonable period of time; 

2. Run without the need for prior tuning of 

GA parameters, such as mutation and 

crossover probabilities. This can be done by 

incorporating the ideas of Parameterless 

GAs, which we have already experimented 

with, successfully, but only tested using 

mathematically-defined fitness surfaces. 
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Tables 

 

Table 1 Fitness of Ellipses in Fig. 4 

Ellipse Similarity Distance Center Major Axis Minor 
Axis 

Orientation

1 0.975758 0.102167 (282, 236) 88 37 0 

2 0.876588 0.255647 (235, 127) 67 67 0 

3 0.724566 0.302721 (116, 184) 96 52 90 

Table 2 Parameter Values for Ellipses Detected in Fig. 10 

Algorithms Center Major 
Axis 

Minor 
Axis 

Orientation 
(o) 

Fitness Time (sec) 

(71, 54) 29 29 0 0.970238 

(152, 123) 81 73 0.76 0.955702 
1(259, 80) 47 42 1.03051 0.934348 

2(196, 176) 78 72 -3.9616 0.822264 

MPGA 

3(125, 168) 91 74 0.533168 0.790112 

19.93 

(152, 123) 81 73 0.964792 0.976567 
1(260, 79) 48 42 -1.38724 0.810691 

2(195, 172) 78 78 0 0.680005 

RHT 

3(124, 169) 90 73 4.89973 0.663584 

31.25 

(153, 123) 81 73 1.05523 0.968314 SGA 

(126, 169) 91 75 2.18694 0.678744 
172.42 
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Table 3 Parameter Values Ellipses Detected in Fig. 12 

Algorithms Center Major 
Axis 

Minor 
Axis 

Orientation 
(o) 

Fitness Time (sec) 

(103, 104) 78 46 90 0.991525 

(161, 102) 79 45 89.2954 0.968645 

(106, 91) 74 43 -0.5067 0.955948 
MPGA 

(174, 127) 85 53 0.56718 0.847435 

54.88 

(161, 103) 79 45 -89.5019 0.933849 

(174, 126) 84 53 0 0.82058 

(117, 95) 60 60 0 0.531464 

(90, 80) 55 55 0 0.511258 

(99, 75) 27 27 0 0.417344 

RHT 

(126, 151) 22 19 -67.7653 0.338096 

2670.24 

(103, 104) 79 45 90 0.984774 

(161, 102) 79 44 89.3833 0.979715 SGA 

(106, 92) 74 43 0.698993 0.96429 

1267.67 

Table 4 Parameter Values Ellipses Detected in Fig. 15 

Algorithms Center Major 
Axis 

Minor 
Axis 

Orientation 
(o) 

Fitness Time 
(sec) 

(75, 52) 17 10 -42.8732 0.871649 
MPGA 

(84, 81) 29 6 31.5684 0.486901 
8.50 

(84, 81) 27 6 32.9764 0.493482 

(72, 55) 22 9 -46.8089 0.466301 RHT 

(61, 73) 38 7 -65.1084 0.25563 

1.08 

SGA None Detected 
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Table 5 Parameter Values Ellipses Detected in Fig. 16 

Algorithms Center Major 
Axis 

Minor 
Axis 

Orientation 
(o) 

Fitness Time 
(sec) 

(70, 110) 24 12 78.7455 0.884863 

(41, 57) 23 18 -26.4053 0.871432 

(111, 101) 20 14 -19.6434 0.855267 

(272, 112) 22 16 82.1506 0.844027 

(48, 133) 27 16 -89.4256 0.841953 

(242, 63) 27 15 -33.6307 0.837715 

(144, 23) 20 14 26.6459 0.734521 

MPGA 

(107, 53) 24 11 22.4682 0.649748 

26.71 

(47, 133) 25 17 87.6509 0.747763 

(38, 58) 20 20 0 0.644028 

(70, 112) 25 13 78.18 0.74799 

(243, 63) 27 16 33.7181 0.805789 

(89, 48) 44 12 18.0898 0.34089 

(147, 24) 17 14 34.4332 0.639102 

(106, 101) 26 14 -14.8053 0.478279 

RHT 

(271, 113) 19 16 48.1021 0.627391 

1015.98 

SGA None Detected 

Table 6 Parameter Values Ellipses Detected in Fig. 17 

Algorithms Center Major 
Axis 

Minor 
Axis 

Orientation 
(o) 

Fitness Time 
(sec) 

(224, 200) 188 188 0 0.993062 

(223, 200) 157 157 0 0.908382 

(255, 160) 39 36 9.34395 0.654582 
MPGA 

(264, 161) 79 79 0 0.401485 

140.68 

(224, 200) 188 188 0 0.993062 RHT 

(223, 201) 158 156 0 0.908279 
335.08 

(224, 200) 188 188 0 0.993062 
SGA 

(222, 200) 157 157 0 0.886644 
378.74 
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Table 7 Performance of MPGA, SGA, and RHT for Real World Images 

Algorithms Accuracy (%) Average CPU time (sec) False positives (%) 

MPGA 92.761 134.58 6.9048 

SGA 15.113 370.39 0 

RHT 64.387 809.73 18.633 
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Figures 

 

  

(a)  (b) 

Fig. 1 Global and Local Optima 
(a) a Large Imperfect Ellipse (Left) and a much Smaller Perfect Ellipse (Right) 

(b) Locally-Optimum Candidate Ellipse Overlaid on top of Left Ellipse  
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Fig. 2 Summary Flow Chart of MPGA Algorithm 

 

 
 

 

 

 

 

Fig. 3 The Geometric Parameters of an Ellipse 
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Fig. 4 Perfect and Imperfect Ellipses 

 
 

 

Fig. 5 Matching of a Candidate Ellipse, Point by Point, to Potential Actual Ellipses in an 
Image 

 
 

 

 

 

 

 

 

Fig. 6 2D Geometric Transformation of Ellipse 

 

 

 

Fig. 7 Result of Crossing-Over Two Chromosomes: Genotypic View 
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Fig. 8 Result of Crossing-Over Two Chromosomes: Phenotypic View 

      

 

 

 

 

Fig. 9 Mutation Operation 
 

  

(a)            (b) 

 

(c)          (d) 

Fig. 10 A Typical Image with Multiple Ellipses: Detected Ellipses Overlaid in Thick Grey 
Line 

(a) Original Image (b) Ellipses Detected by MPGA (c) Ellipses Detected by RHT  (d) Ellipses 
Detected by SGA 
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         (a)       (b) 

Fig. 11 Comparing the Performance of RHT, SGA and MPGA when Detecting Multiple 
Ellipses in an Image 

(a) Accuracy vs. Number of Ellipses (b) CPU Time vs. Number of Ellipses 
 

 

  

(a)    (b) 

  

(c)    (d) 

Fig. 12 A Typical Noisy Image with %5 Salt & Pepper Noise: Detected Ellipses Overlaid in 
Thick Grey Line 

(a) Original Image (b) Ellipses Detected by MPGA (c) Ellipses Detected by RHT (d) 
Ellipses Detected by SGA 
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Fig. 13 Comparing the Performance of RHT, SGA and MPGA when Detecting Ellipses in 
Noisy Images 

(a) Accuracy vs. Ratio of Noise in Image (b) CPU Time vs. Ratio of Noise in Image  
 

 

Fig. 14 False positives for different noise level 
 

 

   

       (a)        (b)        (c)   

Fig. 15 A Typical Handwritten Character (Capital R): Detected Ellipses Overlaid in Thick 
Grey Line - SGA Failed to Detect a Single Ellipse 

(a) Original Image (b) Ellipses Detected by MPGA (c) Ellipses Detected by RHT 
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(a)      (b) 

    

(c)     (d) 

Fig. 16 A Typical Image of Cells taken through a Microscope (at 40x) - SGA Failed to Detect 
a Single Ellipse 

(a) Original Image (b) Pre-processed Image (c) Ellipses Detected by MPGA (d) Ellipses 
Detected by RHT 

 
 

 

  

(a)     (b) 

  

(c)     (d & e) 

Fig. 17 Typical Road sign Image 
(a) Original Image (b) Pre-processed Image (c) Ellipses Detected by MPGA (d) Ellipses 

Detected by RHT (e) Ellipses Detected by SGA 
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