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Abstract: We present a new pipeline integrity surveillance system for long gas pipeline threat
detection and classification. The system is based on distributed acoustic sensing with phase-sensitive
optical time domain reflectometry (φ-OTDR) and pattern recognition for event classification. The
proposal incorporates a multi-position approach in a Gaussian Mixture Model (GMM)-based pattern
classification system which operates in a real-field scenario with a thorough experimental procedure.
The objective is exploiting the availability of vibration-related data at positions nearby the one
actually producing the main disturbance to improve the robustness of the trained models. The system
integrates two classification tasks: (1) machine + activity identification, which identifies the machine
that is working over the pipeline along with the activity being carried out, and (2) threat detection,
which aims to detect suspicious threats for the pipeline integrity (independently of the activity
being carried out). For the machine + activity identification mode, the multi-position approach for
model training obtains better performance than the previously presented single-position approach
for activities that show consistent behavior and high energy (between 6% and 11% absolute) with
an overall increase of 3% absolute in the classification accuracy. For the threat detection mode, the
proposed approach gets an 8% absolute reduction in the false alarm rate with an overall increase of
4.5% absolute in the classification accuracy.

Keywords: pipeline integrity threat monitoring; distributed acoustic sensing; fiber-optic; φ-OTDR;
pattern recognition

1. Introduction

Pipeline transmission is used as a transmission method to transport the energy sources
based on liquid or gas from the producing factories to the final users. Special attention is
needed from the factory operators in order to prevent unfortunate accidents [1,2], which can
produce human deaths. Moreover, most incidents around the factories related to natural
gas transmission happen when the pipelines are damaged by works carried out in their
surroundings. Therefore, cost-effective solution development allowing for continuously
monitoring suspicious activities that represent serious threats for the pipeline is a must.

Distributed Acoustic Sensing (DAS) technology can be effectively applied to this
task, since this allows to continuously interrogate urban areas by measuring the activity
occurring nearby a fiber-optic buried under the ground. Moreover, phase-sensitive Optical
Time Domain Reflectometry (φ-OTDR) in fiber-optics has been shown to be a suitable DAS
technology: Conventional φ-OTDR-based sensors can sense several tens of kilometers, with
spatial resolutions of a few meters, and have been shown to provide enough sensitivity to
allow the detection of simulated signals [3] and people walking over a buried fiber [4]. By
adding distributed optical amplification, sensing ranges of 100 km [5] and above 100 km
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have been demonstrated: In [6,7], vibrations of up to 250 Hz and 380 Hz, respectively,
were detected in a range of 125 km with 10 m resolution. In [8], vibrations were detected
in a range of 175 km with 25 m resolution. In [9], people intrusion is able to be detected
for 131.5 km fiber-optic with 8 m resolution. Intrusion detection and vehicle detection
were addressed in [10] on a 19 km fiber-optic path. Movements on the fiber-optic by hand
touching were successfully detected in [11] for 12 km fiber optic, and in [12] for 175 km
fiber-optic with 25 m resolution. Simulated sinusoidal signals areable to be detected within
60 km fiber-optic in [13]. Train monitoring with DAS has also been addressed: In [14], the
system successfully detected the train over the fiber-optic within 20 m precision error, and
in [15] the train movement was correctly detected along with its speed with an error of
5 km/h for trains running at 160 km/h. Regarding the detection bandwidth, which has
its bottleneck on the fiber length, vibrations of up to 40 kHz have been detected for short
distances (less than one kilometer) [16], vibrations of up to 8 kHz have also been detected
for 1 km distance [17], and vibrations of up to 20 kHz have also been detected for 10 km
distance [18].

1.1. Related Work

For pipeline surveillance, the combination of the DAS technology in long pipelines
with pattern recognition system (PRS) strategies, which aim to recognize the activity
being carried out, makes it effectively detect the vibration produced by a dangerous
activity so that the prevented action can be undertaken: In [19], three different events
(climbing, kicking, and raining) are classified from level crossing rate features extracted
from the acoustic signals. In [20], multi-scale wavelet decomposition is used to generate the
features for identifying human intrusion for mild, normal, and extreme weather conditions.
In [21], three different events (background noise, air movement, and hand perturbation)
were classified by employing singular spectrum analysis for feature extraction and neural
networks for classification. In [22], energy features based on the fast Fourier transform
(FFT) were extracted from the acoustic signals and a support vector machine was employed
to classify five different events (background noise, people walking with wind, shaking the
fence, people walking without wind, and vibration exciter). In [23], morphological features
based on time and space domains were used within the feature extraction stage, and the
relevance vector machine was employed for classifying three different events (people
walking, digging, and vehicles). In [24,25], three different events are aimed to be classified
(background noise, human intrusion, and hand clapping [24], and background noise,
digging, and vehicles [25]) from multi-scale wavelet decomposition and multi-scale wavelet
packet decomposition as features and a neural network-based pattern recognition strategy.

The works presented in [26–29] employ the same data as those used in this work and
aim to classify eight different classes (big excavator moving along the ground, big excavator
hitting the ground, big excavator scrapping the ground, small excavator moving along
the ground, small excavator hitting the ground, small excavator scrapping the ground,
plate compactor compacting the ground, and pneumatic hammer compacting the ground)
in a machine + activity identification task, along with threat detection, whereas in [30],
a system that addresses threat detection from the same data is presented. In [30], the
features are based on the FFT and the energy in frequency bands, and the classification is
carried out from Gaussian mixture modeling. The approach presented in [26] adds a new
machine + activity identification mode and two feature vector normalization schema to
the work presented in [30]. In [27], an augmented feature set (based on neural networks)
with respect to the one used in [26] was presented and system combination was based on
the different feature sets. The work presented in [28] incorporates a hidden Markov model
(HMM) approach for acoustic signal classification over [26] and the work presented in [29]
added this HMM approach to the system presented in [27].

A review of the target DAS + PRS scenarios can be found in [31], and an exhaustive
review of DAS + PRS strategies which includes a thorough methodology regarding database
construction can be found in [32].
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Combining DAS + PRS technology can also be used to solve some other problems,
such as the death of fishes in a fish farm addressed in [33] by taking preventive action
when a non-authorized work is carried out in the fish farm surroundings. PRS technology
can also be applied to smart grid infrastructure so that the critical issue is solved [34].
Moreover, edge computation is a growing technology in which DAS + PRS can also be
implemented [35]. By using this technology, regarding the smart factory research field, a
decision for each suspicious activity can be carried out so that the corresponding action
can be undertaken.

Regarding the PRS technology itself, evolutionary algorithms that aim to mimic the
behavior of the biological evolution such as the Chicken Swarm Optimization algorithm
and its variants [36] can also be applied.

Special attention also deserves the use of robots for pipeline surveillance: In [37], an
autonomous vehicle is employed to detect pipeline failures due to corrosion from Markov
decision processes. In [38], the robot is employed to detect leakage along the pipeline and
also integrates a mechanism to remove the obstacles the robot finds while traveling the
path. In [39], an ultrasonic signal-based robotic system was proposed to detect pipeline
defects. In [40], a two-leg robotic system is employed to monitor horizontal, vertical,
and coupling pipes. In [41], an autonomous robot based on an A* algorithm is used for
pipeline inspection. Video processing along with simulated annealing algorithms are used
in the robotic system presented in [42] to inspect gas pipelines. Gaussian processes with
covariance function for cylindrical structure representations have been employed in the
context of water pipeline inspection in [43]. A review of the use of robots for pipeline
inspection can be found in [44].

1.2. Motivation and Organization of This Paper

Many research works that combine DAS + PRS suffer from issues related to pattern
classification design and experimental evaluation setups: real classification and results are
not presented [45–50]; lack of details on both the system description and experimental condi-
tions [25,51–59]; data are not obtained in realistic field environments [15,25,49,51–53,58,60–77];
the lack of testing signals/classes to recognize [15,49,54,63,65,69–71,75,76].

In [26], we presented a pipeline integrity surveillance system based on:

• A φ-OTDR sensor (named FINDAS) [78] for acoustic signal acquisition.
• Feature extraction that outputs the feature vectors with spectral information for

acoustic signal representation.
• Feature vector normalization that employs the high-frequency content of the recorded

signals.
• Pattern classification from a Gaussian mixture model (GMM) whose training was

carried out from a single position for each recorded signal.

The pattern classification in [26] was based on a single-position training (so that it will
be considered our baseline here), which, for some activities, may produce poor models due
to data scarcity and the strong non-linear effects that are inherent to the fiber sensitivity
response. On the other hand, employing more data as training material does typically
build more robust models so that the pattern classification performance can be enhanced.
Taking into account the human cost for data acquisition/measurement, and the power
of DAS, which is able to simultaneously record several positions around the location
for which the disturbance is maximum (for example, 400 positions in our system, each
separated by 1 m) that comprise the vibration of the corresponding activity, we propose
a multi-position approach in this work. This consists of an augmented system based on
the use of the data acquired at several positions as the GMM training material, aiming to
produce more robust models to enhance the pattern classification performance, and also
provides insights about the actual limitations in the possible performance improvements.
Moreover, due to the existence of the fading points along with the fiber (i.e., fiber optic
positions that present null or very low sensitivity for the given perturbation no matter
whether these positions are close or not to the actual perturbation position), a method for
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selecting the fiber optic position/s employed for system training is required. Therefore,
the contribution of this work is 2-fold: (1) Building more robust GMMs that may enhance
the system performance by employing data recorded in multiple fiber-optic positions and
(2) presenting an intelligent multi-position selection method to avoid the fading points in
the fiber-optic when the perturbation occurs. To the best of our knowledge, this is the first
work that presents a multi-position approach for detecting threats to the pipeline integrity
from different fiber optic positions measured at the same time, and that is evaluated on
realistic environment conditions.

As in our previous work [26], the pipeline integrity surveillance system integrates
two operation modes: machine + activity identification, where both the machine and the
activity carried out are identified, and threat detection, where the occurrence of a suspicious
threat for the pipeline integrity must be detected.

The organization of the rest of the paper is as follows: Section 2 presents the DAS + PRS
strategy. The experimental procedure is described in Section 3. Experiments and results
are presented in Section 4. Discussion is given in Sections 5 and 6 concludes the work.

2. DAS + PRS: The Multi-Position Approach for Detecting Threats to the
Pipeline Integrity

The system integrates two different modes: machine + activity identification and
threat detection. In the first mode, the input acoustic signal is assigned to a certain
machine + activity pair. In the threat detection mode, the signal is simply assigned the
threat or non-threat class. The first mode is ideal for situations in which both the machine
and the activity carried out must be known. The second mode is ideal for cases in which
just a threat for the pipeline must be detected.

The system integrates different modules, as shown in Figure 1, which depicts an aug-
mented architecture with respect to the one presented in [26]. The acquisition equipment in
Figure 1 is connected to a 45 km fiber-optic and consists of a DAS sensor in charge of mea-
suring the suspicious activities to create the so-called acoustic traces (i.e., acoustic signals).
The pattern recognition system integrates two different stages: the training and classifi-
cation stages. These two stages contain the feature extraction and feature normalization
modules, which are the same for both stages and aim to obtain the most significant features
from the acquired acoustic signals. In the training stage, the normalized feature vectors
corresponding to the training data are used to train the acoustic models from the signals
previously recorded by the sensor. The GMM training module is in charge of the model
building and also integrates the method for fiber-optic position selection. The labeling
for each suspicious activity or threat/non-threat depending on the system mode is also
needed in this stage so that the model for each suspicious activity or threat/non-threat can
be effectively trained. The classification stage integrates a pattern classification module that
employs the normalized feature vectors corresponding to the testing data and the models
previously trained in the training stage to make the corresponding decision (machine + ac-
tivity pair recognized in the machine + activity identification mode or threat/non-threat in
the threat detection mode) for each testing acoustic signal. All these modules are explained
in more detailed next.

2.1. Distributed Acoustic Sensing: Acquisition Equipment

2.1.1. System Description

The DAS system consists of a φ-OTDR-based sensor called FINDAS [78]. The system
architecture for the FINDAS sensor is presented in Figure 2. We provide here a short
summary of the sensor, and refer readers to [16] for more details on the sensing mechanism
and sensor configuration. The φ-OTDR employs Rayleigh scattering, which is an elastic
scattering (without frequency shift) of light, and measures the changes that appear in the
fiber state. The FINDAS sensor works with highly coherent optical pulses with a central
wavelength near 1550 nm, which are given to the optical fiber. The signal that is back-
reflected from the fiber-optic is then recorded, so that the interference pattern produced
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by the Rayleigh backscattering (i.e., the φ-OTDR signal) can be monitored with the same
fiber input. Carrying out a flight time mapping of the light inside the fiber, the φ-OTDR
signal received at a certain timestamp is related to a certain fiber position. If vibrations
are produced at a certain fiber-optic position, the relative positions in the fiber-optic of
the Rayleigh scattering centers will change, and the φ-OTDR signal will be accordingly
changed, which allows for distributed acoustic sensing [16].

Figure 1. Architecture of the multi-position approach for detecting threats to the pipeline integrity. The module that appears
in bold (i.e., Gaussian Mixture Model (GMM) training) is the new one with respect to [26].

LD

Control I&T

SOA

SG

Optical
Isolator

EDFA

Tunable
Bragg
Filter

Tunable
attenuator 1

Tunable
attenuator 2

21

3

Photodetector
Fiber under
test (FUT)

DATA
ACQUISITION

21

3

Figure 2. Architecture of the distributed acoustic sensing system FINDAS (phase-sensitive optical time domain reflectometry
(φ-OTDR)-based sensor).

Since the fiber-optic is not installed parallel to the pipeline, and in some positions,
there are fiber rolls for maintenance, a fiber-optic calibration between fiber distance and
location was carried out along the pipeline.

The FINDAS sensor has an (optical) spatial resolution of five meters (readout resolu-
tion of one meter) and is able to sense up to 45 km with standard single-mode fiber. The
sampling frequency for the signal acquisition was set to fs = 1085 Hz. When the energy of
the monitored vibrations for a certain fiber position is higher than a predefined threshold,
the acoustic samples on the top of the fiber are recorded by the FINDAS sensor to create a
20 s length acoustic trace. This acoustic trace is then given to the pipeline integrity threat
detection system (described next) for classification. The system allows for the detection
of multiple activities at different fiber-optic positions simultaneously, by giving a suitable
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threshold to each fiber position (that can be trained from past activity monitoring periods).
This strategy is used in the system to avoid false alarms, so that the classification stage
is only activated when there is a perturbation with an energy level above the previously
trained threshold. This approach for activity detection leads to a 100% accuracy in the
detection of the “no-activity” condition.

2.1.2. Signal Behavior

Both the physical process related to signal measurement and the different properties
that each sensed location conveys make the signal features vary considerably.

On one hand, the vibration propagation along the fiber is heavily influenced by: (1) the
distance from the machine that is carrying out a certain activity to the acquisition sensor,
(2) the ground characteristics (dry or wet, compact or soft, etc.), and (3) the mechanical
coupling of the fiber to the pipeline area. This causes that the acoustic signal recorded for
a certain activity possesses significant differences when the recording location changes.
Moreover, the background noise can also convey different properties for different locations
(due to the nearness of houses, animals, roads, factories, etc.).

On the other hand, the transduction function of a φ-OTDR-based sensor is non-linear,
which is particularly important for strong perturbations, as those considered in this work.
Moreover, due to the random characteristic of a φ-OTDR signal, certain points that are
distributed in a random way along the fiber (the so-called fading points [16]) may have low,
or even null sensitivity to fiber-optic vibrations. This can be solved by analyzing several
adjacent fiber-optic points to ensure that the recorded acoustic signal actually corresponds
to the suspicious activity for a given location. However, the fiber sensitivity can strongly
vary in a certain location from one point to another, even when they are close to each other.

Moreover, due to the so-called fiber losses, the optical power received from a certain
fiber-optic position at a distance of dm meters from the beginning of the fiber, denoted as
P(dm)—and hence the amplitude of the measured signals—will present an exponential
decay. The coefficient for the fiber attenuation is α ≈ 0.0002 dB/m with the FINDAS
operating laser wavelength (1550 nm). For a certain optical power at the beginning of
the fiber named as P(0), this equation stands: P(dm) = P(0) · 10(−2·dm ·α/10). Taking into
account the full round-trip of the light of the fiber, this generates a 3 dB decay for every
7.5 km. This means that the optical loss effects will be relevant for long distances (e.g., tens
of kilometers), as the scenario considered in this work is.

All these issues related to signal acquisition do undoubtedly affect the detection
performance, so considering them in the system design is a must.

2.2. Feature Extraction

Feature extraction is used to obtain the most meaningful information present in the
acoustic signals (i.e., traces) recorded by the FINDAS in the so-called feature vectors. Each
acoustic trace (with 20 s length) is first divided into 1 s length segments (so-called frames),
so that a feature vector representing each frame is computed. For feature vector computa-
tion, each frame overlaps 95% (i.e., 1030 values for the sampling frequency fs = 1085 Hz)
with the previous one so that a smooth change in each frame is produced. This means that
a smooth change also occurs in the feature vector representation, as shown in our previous
work [26]. Then, the FFT is applied to each frame to obtain the corresponding spectral
information by converting it from the time-domain to the frequency-domain, since the
acoustic traces from the machines and activities recorded presented a consistent spectral
pattern that is suitable for further classification, as shown in [26]. The number of points of
the FFT is set to 8192 as in [26] (therefore each frequency bin comprises 0.066 Hz, being
542.5 Hz the maximum available frequency in the acoustic signal). Then, the energy values
corresponding to 100 frequency bands with a 100 Hz bandwidth are computed from the
obtained spectral information (this 100 Hz bandwidth was shown to be the best in prelimi-
nary experiments and was used in our previous work [26]). Therefore, these energy values
are the values stored in a feature vector, which will be denoted as x f .
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2.3. Feature Vector Normalization

After the raw initial features have been computed in the feature extraction stage, a
sensitivity-based normalization [26] for each feature vector x f normalizes each energy
value by the energy above the used bandwidth (i.e., from 100 Hz to 542.5 Hz), as shown in
Equation (1):

x f n(i) =
x f (i)

Ehigh
1 ≤ i ≤ 100, (1)

where x f n(i) denotes the position i in the 100-dimensional normalized feature vector, x f (i)
denotes the position i in the 100-dimensional raw feature vector, and Ehigh denotes the
energy from 100 Hz to 542.5 Hz in a given frame.

This feature vector normalization approach deals with the signal degradation re-
lated to the distance between the sensed location and the FINDAS sensor. Therefore,
100-dimensional normalized feature vectors comprise the output of this module at the end.
These new feature vectors x f n are the input to the pattern classification stage.

2.4. Pattern Classification

The pattern classification strategy is based on GMMs, widely used in pattern recogni-
tion (e.g., speech [79], image [80], and video [81] recognition, etc.).

The use of GMMs for system modeling is suitable since these models need a reasonably
limited amount of training data to obtain a good pattern recognition performance [82].
Moreover, GMMs provide a straightforward method with which a linear combination of
Gaussian functions can effectively represent a large class of sample distributions (i.e., the
so-called training and testing data).

Therefore, considering a certain GMM named λ, the corresponding probability that a
certain data vector (or simply data) x f n belongs to the class represented by that model λ

can be obtained, which will be denoted as p(x f n|λ).

2.4.1. Multi-Position Selection

From all the 400 positions recorded by FINDAS (separated by 1 m each) during signal
acquisition around the given sensed location for each timestamp and a certain activity,
an intelligent procedure to select the positions that will be used for model training (i.e.,
multi-position selection) is needed, given that the activity carried out on the top of the fiber
will impact a wide fiber-optic segment nearby the actual activity location.

In our previous work [26] we simply selected the position with the highest energy,
as this was supposed to correspond to the position with the highest sensitivity, thus
avoiding fading points. The energy computation was carried out with the same parameter
configuration as that used for feature extraction.

In this work, we present an N-highest energy position approach. To do so, the N
positions which present the N-top highest energies according to the feature extraction
parameters, have been chosen for GMM training. The objective here is to augment the
amount of training data, while keeping a good expected sensitivity.

2.4.2. Training

From a subset of the acoustic traces recorded by FINDAS for a certain class k, which
comprises the training subset, the training stage consists of model construction by esti-
mating the parameters of each GMM λk. The Expectation-Maximization algorithm [83] is
employed to estimate the model parameters for the GMM from a maximum likelihood
criterion. It must be noted that this model training is just needed once, so that all the classifi-
cation processes employ the set of trained GMMs. In this work, several positions have been
used to carry out the GMM training, with the criteria described in the previous subsection.
To do so, a GMM for a certain class is trained with a variable number of highest energy
sensed positions. To cover a reasonably wide range of possibilities, we run experiments for
N = {1, 2, 4, 7, 11}. It must be noted that the highest energy sensed positions are computed
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on a frame-by-frame basis so that the highest energy sensed position/s is/are computed
every 1 s and the corresponding normalized feature vectors are used for GMM training.

2.4.3. Classification

With the trained models, classification is carried out on a fully independent data
subset, which is called the testing subset, to find the class represented by the model ĉ with
the maximum posterior probability. This is carried out for a given input feature vector x f n

from the Bayes’ rule as follows:

ĉ = argmax
k

p(x f n|λk)p(λk)

p(x f n)
= argmax

k

{p(x f n|λk)}, (2)

where a uniform prior probability for each class is assumed (i.e., p(λk) = 1/C, where C is
the number of classes (in our case C = 8 in the machine + activity identification mode and
C = 2 in the threat detection mode)). Given that we use a supervised strategy for system
training, our proposal is able to detect the activities for which we can generate a trained
model. Since the same data are used for the machine + activity identification and threat
detection modes, all the possible threats produced by the machine + activity pairs in the
database can be detected. However, as shown in [84], which also bases on a GMM system,
our proposal is expected to work reasonably well even for detecting threats from activities
not included in the database due to the threat model generalization capability.

Classification is carried out on a frame basis from the highest energy position frame.
Therefore, a classification decision is obtained for every 1 s frame within every 20 s length
acoustic signal. Given the configuration parameters in the feature extraction, there are
415 decisions for each 20 s length acoustic signal in total.

3. Experimental Procedure

3.1. Database Description

For a fair comparison, the database used in the experiments is the one used in our
previous work [26].

The database (i.e., the acoustic traces) was recorded over a real gas transmission
pipeline managed by Fluxys Belgium S.A. (a GERG (The European Gas Research Group)
partner). This means that our system is tested in a real environment. The FINDAS sensor
was located at one end of the fiber which runs in parallel to the pipeline. Six different
locations (named from LOC1 through LOC6) were used for acoustic trace recording. These
locations aim to cover different pipeline “reference positions” selected at high distances
from the FINDAS sensor (see Table 1) to produce feature variability in terms of ground
conditions (e.g., concrete, grass, etc.) and evaluate the system in sensing limit conditions.
The recordings were also carried out in different days, times, and weather conditions (e.g.,
sunny day, rainy day, etc.) to produce feature variability in terms of weather conditions
(see Table 1). For data recording, before each machine starts its activity in each location,
a reference position was manually selected in each location by measuring the fiber optic
meter with good sensitivity when a certain machine is carrying out a certain activity (in our
case, the plate compactor while compacting the ground was chosen). Once the reference
position was chosen, 400 m were recorded (200 m at the left and right sides of that reference
position) for each machine + activity pair in each location. Figure 3 shows an example of the
furthest LOC6 location recording conditions, and Table 2 presents the machine + activity
pairs recorded in each location. Time duration and the threat/non-threat labeling used
in the threat detection mode of the system are also presented for each machine + activity
pair and location. The decision on the activities to be considered as threats or non-threats
(i.e., threat/non-threat labelling) was taken by the GERG project partners, depending
on whether they could actually lead to pipeline damage. It must be noted that the time
duration refers the time each machine is carrying out the corresponding activity. However,
there are 400 fiber-optic positions (i.e., 400 m) being simultaneously recorded. The machines
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employed for database recording along with an aerial view of a machine working on the
ground are presented in Figure 4.

LOC6

Machinery
operation area

Reference 

position (RP)

200 m
eters recorded

from
 RP at this side 

200 m
eters recorded

from
 RP at this side 

Recorded fiber segment 

Fiber

Pipeline

Figure 3. Location 6 (LOC6) recording scenario, reproduced with permission from [26]. RP stands
for “reference point”, referring to the center of the machine operation area.

Table 1. Recording location details (slightly modified with permission from [26]).

LOC1 LOC2 LOC3 LOC4 LOC5 LOC6

Distance from
FINDAS (km)

22.24 22.49 23.75 27.43 27.53 34.27

Ground
condition

Grass & clay in
agricultural

field

Grass in
agricultural

field

Concrete, grass & clay
Next to public street
Private house nearby

Wet clay in
agricultural

field

Clay in
agricultural

field
Grass in forest

Weather
condition

Sunny/cloudy Sunny Sunny Rainy Cloudy Sunny

Table 2. Experimental database. ‘Big excavator’ represents a 5 ton Kubota KX161-3. ‘Small excavator’ represents a 1.5 ton
Kubota KX41-3V. Slightly modified with permission from [26].

Machine Activity
Duration in Each Location (in seconds) Threat

Non-Threat
LOC1 LOC2 LOC3 LOC4 LOC5 LOC6 Total

Big
excavator

Moving along the ground 1100 1100 3540 1740 1620 4160 13,260 Non-threat
Hitting the ground 120 140 240 220 80 260 1060 Threat

Scrapping the ground 460 460 920 620 200 580 3240 Threat

Small
excavator

Moving along the ground 600 500 1700 820 820 1660 6100 Non-threat
Hitting the ground 200 180 220 220 80 240 1140 Threat

Scrapping the ground 420 340 780 360 180 520 2600 Threat

Pneumatic
hammer

Compacting ground 660 0 580 1320 0 1320 3880 Non-threat

Plate compactor Compacting ground 740 0 740 1240 0 1680 4400 Non-threat
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(a) (b)

(c) (d) (e)

Figure 4. Database machines: (a) big excavator; (b) small excavator; (c) pneumatic hammer; (d) plate compactor; and
(e) aerial view (figures (a–d) are reproduced with permission from [30]).

3.2. Evaluation Metrics

The main metric employed for testing the two system modes (i.e., machine + activity
identification and threat detection) is the classification accuracy. For the machine + activity
identification mode, the accuracy represents the ratio between the number of correctly
classified testing frames corresponding to the machine + activity pairs and the total number
of testing frames for the machine + activity pairs. A hit (i.e., the machine + activity pair
is correctly detected) is produced in the system when both the machine and the activity
recognized by the system coincide with those of the ground truth and are within the
machine + activity ground-truth time span. For the threat detection mode, a threat is
correctly detected in case the system outputs the occurrence of a threat (i.e., the DAS + PRS
strategy classifies the testing frame as a threat) within the threat ground-truth time span.

For the machine + activity identification mode, the confusion matrix will also be
presented for additional result analyses. This confusion matrix presents the percentage of
testing frames for a given class that have been classified as any of the other classes.

For the threat detection mode, we also present the Threat Detection Rate (TDR) and
the False Alarm Rate (FAR). The TDR represents the percentage of threat testing frames
that are classified as a threat, and the FAR corresponds to the percentage of non-threat
testing frames that are classified as threats. For the TDR, the higher the better, whereas for
the FAR, the lower the better.

4. Experiments and Results

Since the recording location plays an important role in system performance as shown
in our previous work [26], to meet the specifications regarding database recording and
experiments shown in [32], and for a proper comparison with our previous work [26],
the experiments were carried out from a leave-one-out cross-validation (CV) with 6-folds,
where each fold contains the acoustic traces recorded in a single location. In each fold, five
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locations were used for GMM training, whereas the other location was used for testing.
The final testing results are computed from the average of the individual testing results for
each fold.

For the machine + activity identification mode, results are presented in Table 3. They
show that increasing the number of positions for GMM training leads to better overall per-
formance. However, if we examine the individual performance per class, the gain is not so
clear. It can be seen that for activities with a single mechanic behavior (that will be referred
to as flat activities) and high-energy machine + activity pairs (i.e., big excavator+moving,
big excavator+hitting, and small excavator+moving pairs), using more data for GMM train-
ing leads to more robust models so that the class identification performance is improved.
This is due to the fact that flat activities are easier to detect since they integrate a single
behavior that remains stable in the fiber-optic along several positions. On the other hand,
high-energy activities get more benefit of using several positions for model training, since
the spread of the energy across the fiber-optic indicates the presence of a certain activity.
These classes, which represent 62% of all data, contribute to the best overall performance.
However, for activities that include more than one behavior and whose energy is lower
(i.e., scrapping, which can include hitting, and compacting, whose energy is lower than the
moving and hitting activities), increasing the number of positions does typically reduce
the system performance. The only exceptions are for small excavator + scrapping pairs,
which could be due to a more consistent behavior than the counterpart big excavator, and
the pneumatic hammer + compacting pair, whose energy may extend up to fewer meters
to indicate the given activity.

Table 3. Results for the machine + activity identification mode by varying the number of positions used in the GMM
training with the best result for each class and the best overall accuracy in bold font. Confidence intervals are shown
for a 95% confidence. Green cells show values within the confidence interval for the best performance value (i.e., statis-
tically non-significant differences). The values shown between brackets denote the number of frames that belong to the
corresponding class.

Machine + Activity Identification

Big Excavator Small Excavator Pneumatic
Hammer

Plate
Compactor

Average
Accuracy
[740360]

# positions Moving
[275145]

Hitting
[21995]

Scrapping
[67230]

Moving
[126575]

Hitting
[23655]

Scrapping
[53950]

Compacting
[80510]

Compacting
[91300]

N = 1 49.1 ± 0.2% 20.1 ± 0.5% 26.0 ± 0.3% 50.5 ± 0.3% 13.8 ± 0.4% 30.2 ± 0.4% 71.8 ± 0.3% 39.5 ± 0.3% 45.2 ± 0.1%
N = 2 49.9 ± 0.2% 24.9 ± 0.6% 24.8 ± 0.3% 51.9 ± 0.3% 13.3 ± 0.4% 30.5 ± 0.4% 72.2 ± 0.3% 38.3 ± 0.3% 45.6 ± 0.1%
N = 4 51.6 ± 0.2% 27.6 ± 0.6% 23.2 ± 0.3% 53.8 ± 0.3% 12.0 ± 0.4% 30.1 ± 0.4% 72.7 ± 0.3% 37.6 ± 0.3% 46.4 ± 0.1%
N = 7 53.7 ± 0.2% 29.9 ± 0.6% 21.3 ± 0.3% 55.9 ± 0.3% 10.0 ± 0.4% 29.1 ± 0.4% 72.6 ± 0.3% 37.7 ± 0.3% 47.3 ± 0.1%

N = 11 55.7 ± 0.2% 31.9 ± 0.6% 19.7 ± 0.3% 57.5 ± 0.3% 8.1 ± 0.3% 27.4 ± 0.4% 72.6 ± 0.3% 37.1 ± 0.3% 48.0 ± 0.1%

Regarding the statistical significance of the results, Table 3 also includes statistical
confidence values for a 95% confidence interval, and to ease the statistical significance
analysis, we have included a green background color to the cells around the one with the
best results with non-significant differences. It can be seen that even when the results are
not statistically significant for all the classes when comparing them (the best performance
obtained using N = 11 positions is statistically significant with the other cases in 3 out of
the 8 classes), the average accuracy when using N = 11 positions is statistically significant
as compared with all the other cases. Moreover, the use of more than N = 1 position for
system training is shown to be significant for 4 out of the 8 classes when compared with
the baseline (i.e., N = 1 position).

For the threat detection mode, results are presented in Table 4. They show that
increasing the number of positions also leads to better overall accuracy. However, this is
due to the best FAR and the fact that the number of non-threats in the system is higher
than the number of threats (77.5% vs. 22.5%). Looking at the TDR, it can be seen that
increasing the number of positions for GMM training does actually reduce the threat
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detection capability. The threat model is built from all the threat activities, and these
include many different behaviors (hitting and scrapping), which results in a more blurred
model so that using more positions for training may generate a less robust model for real
threat detection. This is confirmed by the fact that only a few machine + activity pairs get
statistically significant improved performance when several positions are used in modeling
them, as shown in Table 3.

Table 4. Results for the threat detection mode by varying the number of positions used in the GMM
training with the best result for each metric in bold font. ‘TDR’ stands for threat detection rate
and ‘FAR’ for false alarm rate. Confidence intervals are shown for a 95% confidence. Green cells
show values within the confidence interval for the best performance value (i.e., statistically non-
significant differences). The values shown between brackets denote the number of frames that belong
to the corresponding class, where the number below FAR represents the number of non-threats in
the database.

Threat Detection

# positions TDR
[166830]

FAR
[573530]

Accuracy
[740360]

N = 1 80.7 ± 0.5% 40.3 ± 0.4% 64.5 ± 0.3%

N = 2 80.3 ± 0.5% 39.2 ± 0.4% 65.2 ± 0.3%

N = 4 78.7 ± 0.5% 37.4 ± 0.4% 66.3 ± 0.3%
N = 7 76.7 ± 0.6% 35.0 ± 0.4% 67.6 ± 0.3%

N = 11 74.4 ± 0.6% 32.6 ± 0.4% 69.0 ± 0.3%

Table 4 also includes the results of the statistical-significance analysis for a 95% con-
fidence interval, and to ease the statistical significance analysis, it employs the same
background-color convention as that used in Table 3. In this case, the differences when
using N = 11 positions are only statistically significant for the FAR metric, but, as in the
machine + activity identification mode, the average accuracy is statistically significant.

For the machine + activity identification mode, the confusion matrices for N = 1
and N = 11 positions in the GMM training, which are the configurations that obtain, in
general, the best class performance, are presented in Tables 5 and 6, respectively. To avoid
cluttering, the confusion matrix values below chance (i.e., 1/8 = 12.5%) have been deleted
and cell background color information has been added for better visualization and analysis.
They show similar trends. In general, it can be seen that the diagonal contains the highest
values for each class, except for the hitting activity, which is confused with scrapping and
moving, and scrapping activity, which is confused with hitting. Scrapping includes hitting,
and hitting class contains the lowest amount of data (and therefore training data), which
derives in a less robust GMM, even though more positions are used for training.

Table 5. Confusion matrix of the multi-position approach for detecting threats to the pipeline integrity for N = 1 position-
based GMM training for the machine + activity identification mode (which represents the single-position approach chosen
as baseline [26]). Each cell contains the classification accuracy. The values shown between brackets denote the number of
frames that belong to the real class.

Recognized Class

Big Excavator Small Excavator Pneumatic

Hammer

Plate

Compactor

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting

R
ea

lc
la

ss

Big
excavator

[275145] Moving 49.1 13.8 12.8

[21995] Hitting 20.0 20.1 20.4 15.6

[67230] Scrapping 26.0 20.4

Small
excavator

[126575] Moving 13.2 50.5

[23655] Hitting 15.4 13.8 28.0 16.1

[53950] Scrapping 16.8 14.3 30.2 16.1

Pneumatic hammer [80510] Compacting 71.8

Plate Compactor [91300] Compacting 22.4 39.5
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Table 6. Confusion matrix of the multi-position approach for detecting threats to the pipeline integrity for N = 11 position-
based GMM training for the machine + activity identification mode. Each cell contains the classification accuracy. The
values shown between brackets denote the number of frames that belong to the real class.

Recognized Class

Big Excavator Small Excavator Pneumatic

Hammer

Plate

Compactor

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting

R
ea

lc
la

ss

Big
excavator

[275145] Moving 55.7 22.1

[21995] Hitting 23.5 31.9

[67230] Scrapping 17.5 21.1 19.7 16.3

Small
excavator

[126575] Moving 14.5 57.5

[23655] Hitting 15.8 12.7 26.0 16.8

[53950] Scrapping 14.5 27.4 17.2

Pneumatic hammer [80510] Compacting 72.6

Plate Compactor [91300] Compacting 24.4 37.1

4.1. Computational Time Analysis

Since this system aims to on-line monitor possible threats to pipeline integrity, the
time response of the system is a critical issue. To show that the system is able to work in
real-time, a computational time analysis for each of the system modules (feature extrac-
tion+normalization and pattern classification) has been carried out. It must be noted that
the time response of the feature extraction and normalization stage does not depend on the
number of models. However, the time response of the pattern classification stage varies
depending on the number of system models, since the recorded acoustic trace has to be
compared with all the system models. Experiments were carried out on an Intel Quad
Q9550 2.83 GHz processor (Intel, Santa Clara, CA, USA) and 4GB RAM. The time response
of each of the system modules is shown in Table 7. It can be seen that the system works in
real-time, since the time response is less than one second for both system modes. It can
also be seen that each new model added to the system increases the time response of the
pattern classification by 10 msec. By analyzing the total time response of the system it can
be claimed that, after the FINDAS sensor records one suspicious 20 s length acoustic trace,
the machine + activity identification mode lasts 0.22 s to make a decision, and the threat
detection mode lasts 0.16 s to make a threat/non-threat decision.

Table 7. Computational time of the system modules (in milliseconds). ‘MAC’ stands for machine + ac-
tivity identification mode, TD for threat detection mode, and ‘Feat. Ext. + Norm.’ for Feature
extraction + normalization.

System Mode Feat. Ext. + Norm. Pattern Classification Total

MAC 140 80 (8 models) 220
TD 140 20 (2 models) 160

4.2. Comparison with Other Works

Before describing the comparison results, it is worth mentioning that our purpose in
this work is to show that increasing the training data with the multi-position approach
is able to improve the system performance with respect to the use of a single position
for model training. Therefore, our baseline selection was that of [26], which significantly
improved our first proposal in [30]. Our decision to base our current proposal in [26] was
to assess the actual robustness of the improved training strategy with a relatively simple
pattern recognition strategy. After the selected baseline, we proposed several alternative
systems [27–29], mainly based on the use of more powerful feature extraction and pattern
recognition approaches, so that we carried out a comparison with respect to these other
works that employ the same database.
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The comparison results for the machine + activity identification mode are presented
in Table 8. It must be noted that the results obtained are worse than those obtained
in [27,29], but our proposal exhibits a better average accuracy when compared with [28].
This improvement with respect to [28] shows that the use of multiple positions for system
training (even when using less robust GMM-based acoustic models) gets more benefit than
the more robust HMM-based acoustic models on a single-position approach.

Table 8. Machine + activity identification mode result comparison with previous works [26–29] with the best result
in bold font. Green cells show values within the confidence interval for the best performance value (i.e., statistically
non-significant differences).

Big Excavator Small Excavator Pneumatic
Hammer

Plate
Compactor

Accuracy

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting

[27] 66.1 ± 0.2% 22.2 ± 0.5% 33.7 ± 0.4% 57.9 ± 0.3% 14.3 ± 0.4% 36.6 ± 0.4% 78.4 ± 0.3% 41.3 ± 0.3% 54.9 ± 0.11%
[28] 44.5 ± 0.2% 35.9 ± 0.6% 31.5 ± 0.4% 46.6 ± 0.3% 31.6 ± 0.6% 53.1 ± 0.4% 78.4 ± 0.3% 31.4 ± 0.3% 45.7 ± 0.11%
[29] 69.8 ± 0.2% 22.6 ± 0.6% 34.6 ± 0.4% 63.9 ± 0.3% 14.0 ± 0.4% 45.4 ± 0.4% 83.0 ± 0.3% 45.5 ± 0.3% 59.1 ± 0.11%

Baseline [26] 49.1 ± 0.2% 20.1 ± 0.5% 26.0 ± 0.3% 50.5 ± 0.3% 13.8 ± 0.4% 30.2 ± 0.4% 71.8 ± 0.3% 39.5 ± 0.3% 45.2 ± 0.11%
This work 55.7 ± 0.2% 31.9 ± 0.6% 19.7 ± 0.3% 57.5 ± 0.3% 8.1 ± 0.3% 27.4 ± 0.4% 72.6 ± 0.3% 37.1 ± 0.3% 48.0 ± 0.11%

The system comparison for the threat detection mode is shown in Table 9. It can be
seen that the multi-position approach obtains the best overall accuracy and the lowest
false alarm rate. This confirms our conjecture that the approach presented in this work,
aiming to increase the number of data for model training from the multi-position selection
approach, is able to improve the system performance even though a more powerful set
of features and classifiers are employed in the single-position approach (used in all the
other systems [27–29]), at the cost of missing some threat detection capability. Moreover,
the multi-position selection approach improves both the TDR and the FAR (and hence the
overall accuracy) with respect to [30]. This is due to the effectiveness of the multi-position
selection approach and the feature vector normalization stage.

Table 9. Threat detection mode result comparison with previous works [26–30] with the best result
in bold font. ‘TDR’ stands for threat detection rate and ‘FAR’ for false alarm rate. Green cells show
values within the confidence interval for the best performance value (i.e., statistically non-significant
differences).

Threat Detection

TDR FAR Accuracy

[27] 81.1 ± 0.5% 35.4 ± 0.4% 68.3 ± 0.3%

[28] 91.0 ± 0.4% 53.7 ± 0.4% 56.4 ± 0.3%

[29] 89.1 ± 0.4% 39.4 ± 0.4% 67.0 ± 0.3%
[30] 68.1 ± 0.6% 55.6 ± 0.4% 49.7 ± 0.3%

Baseline [26] 80.7 ± 0.5% 40.3 ± 0.4% 64.5 ± 0.3%

This work 74.4 ± 0.6% 32.6 ± 0.4% 69.0 ± 0.3%

5. Discussion

Although the results have shown that the multi-position approach presented in this
work generally improves the classification accuracy, there are some limitations that should
be mentioned:

• For the machine + activity identification mode, not all the machine + activity pairs
get benefit from the use of multiple positions for GMM training. Results suggest that
only the high energy and flat activities are effectively addressed with them. However,
since suspicious activities for pipeline integrity are typically generated from high-
energy events (i.e., sudden impacts to the pipeline or heavy machinery), the approach
presented in this work is valid for addressing them. Concerning the activities that
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involve more than one single behavior, more research is needed to effectively detect
them with the multi-position approach.

• For the threat detection mode, the use of multiple positions for GMM training does
increase the accuracy. However, this is at the cost of missing real threats. Due to
the FAR being reduced in a greater extent with respect to the TDR reduction (8%
FAR vs. 6% TDR), we consider that this system mode is a valid approach for saving
unnecessary work for the system operator while detecting three out of four real
threats.

• As any supervised machine learning classification system (as the GMM approach
presented in this work is, and as all the other approaches presented in the literature
for DAS + PRS are), only the activities for which a model has been previously trained
will be accurately detected. Although the threat detection mode is able to detect the
threats produced by the activities carried out by the machines presented in Table 2, it
was shown in [84] that the supervised strategy based on the GMM approach is able to
work reasonably well for detecting threats produced by activities that have not been
seen in the training stage due to the threat model generalization capability.

6. Conclusions and Future Work

We have presented an augmented system with respect to our previous work in [26],
which is able to continuously monitor a 45 km-long pipeline for identifying possible threats.
The novelty presented in this work relies on a procedure to select and use different fiber-
optic positions, synchronously recorded, for model training. The system has been tested in
a real-field environment in two different modes: machine + activity identification, where
the machine and activity are aimed to be identified, and threat detection, where only the
occurrence of a threat for the pipeline integrity must be detected.

The results of a rigorous experimental procedure suggest that, for activities with
consistent behavior and high energy, using multiple positions for model training leads
to better performance, whereas for multiple-behavior and low-energy activities, using
multiple positions reduces the system performance. Regarding threat detection, we have
shown that the multi-position approach is able to both reduce the false alarm rate and
increase the overall accuracy significantly.

As future work, we plan to extend the work with deep learning approaches, oriented
towards a more robust data augmentation strategy and also to improve the system perfor-
mance. We also plan to apply the multi-position selection approach presented in this work
to our additional systems [27–29]. Finally, we will also extend our proposal to be used in a
biomedical field for biomedical signal processing.
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