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ABSTRACT Sound Event Detection is a task with a rising relevance over the recent years in the field

of audio signal processing, due to the creation of specific datasets such as Google AudioSet or DESED

(Domestic Environment Sound Event Detection) and the introduction of competitive evaluations like the

DCASE Challenge (Detection and Classification of Acoustic Scenes and Events). The different categories

of acoustic events can present diverse temporal and spectral characteristics. However, most approaches use

a fixed time-frequency resolution to represent the audio segments. This work proposes a multi-resolution

analysis for feature extraction in Sound Event Detection, hypothesizing that different resolutions can be

more adequate for the detection of different sound event categories, and that combining the information

provided by multiple resolutions could improve the performance of Sound Event Detection systems.

Experiments are carried out over the DESED dataset in the context of the DCASE 2020 Challenge,

concluding that the combination of up to 5 resolutions allows a neural network-based system to obtain better

results than single-resolution models in terms of event-based F1-score in every event category and in terms

of PSDS (Polyphonic Sound Detection Score). Furthermore, we analyze the impact of score thresholding in

the computation of F1-score results, finding that the standard value of 0.5 is suboptimal and proposing an

alternative strategy based in the use of a specific threshold for each event category, which obtains further

improvements in performance.

INDEX TERMS Sound Event Detection, Multi-Resolution, DCASE 2020 Task 4

I. INTRODUCTION

U
NDERSTANDING the acoustic environment is an on-

going challenge for artificial intelligence which has

motivated several research fields. While some of them are

focused in the retrieval of information from specific kinds of

acoustic signals, such as automatic speech recognition [1],

[2], language or speaker identification [3], [4] (for speech

signals) or music information retrieval [5], [6] (for musical

signals), other tasks aim to determine the categories which

an audio recording belongs to, among a set of target classes

(e.g. human voice, vehicle, musical instruments) [7]. These

categories can either refer to different environments where a

recording can be obtained (e.g. inside a house or in a crowded

street) or to different actions or sources which produced

the obtained acoustic signals. In the former case, we talk

about acoustic scene classification [8], while in the latter the

problem at hand is sound event classification or detection [9].

Sound events can be defined as acoustic signals that have

a direct correspondence with particular occurrences in the

near environment. Hence, by hearing these sounds people can

infer that the event is happening somewhere around them.

Sound event classification and sound event detection (SED)

aim to solve this problem for machine perception. In the case

of sound event classification, signals are expected to belong

to one among a set of target categories, while the temporal

boundaries of the events are not relevant [10]. If multiple

categories can be assigned to each recording, the task is

called audio tagging [11]. The task that aims to find the time

limits of each event is sound event detection, which can be

monophonic (if only one event can be present at a given time)
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or polyphonic (if different events can overlap in time). In

every case, the set of target event categories is usually defined

by the field of application, ranging from a single target event

(e.g. speech activity detection) to potentially hundreds of

categories.

Training and developing modern systems for the afore-

mentioned tasks requires the use of large-scale labeled audio

event datasets. In the field of computer vision, the research

in object recognition was notably impulsed by the creation of

ImageNet, a large-scale, hierarchical image corpus [12]. This

motivated the creation of Google AudioSet, a large-scale au-

dio dataset consisting of more than two million ten-seconds

audio recordings, annotated according to an ontology of more

than 500 sound events [13]. In the recent years, research has

been carried out not only aiming to detect every category in

AudioSet, but also focusing on smaller, application-oriented

subsets of event classes. Recent editions of DCASE Chal-

lenge (Detection and Classification of Acoustic Scenes and

Events), one of the most relevant international evaluations in

this field, have employed subsets of the recordings specified

in AudioSet for tasks such as audio tagging and sound event

detection [14]–[16].

Regarding the creation of audio event datasets, audio

recordings are relatively easy to obtain from web resources

like YouTube1, Vimeo2 or Freesound3. However, it is costly

to annotate them with human-verified event labels, therefore

it is common for large-scale audio datasets to include only

weak labels (i.e. indications of the presence or absence of

each event in a recording, without time boundaries), usually

obtained in a semi-automatic manner. A certain amount of

label noise is likely to appear in the process of annotation,

due to involuntary omission or insertion of labels in the

ground truth [10]. Hence, additional challenges arise in the

learning process, such as developing algorithms which are

robust to label noise [17] and inferring the temporal locations

of events from weak labels [18]. Moreover, validating the

performance of the systems requires verified annotations and,

in the case of sound event detection, strong labels (indicating

temporal onsets and offsets, in opposition to weak labels).

For this purpose, smaller datasets have been curated with

human-revised annotations [19].

Over the recent years, most works in Sound Event De-

tection have employed deep neural network (DNN) models,

being particularly common those with convolutional and

recurrent stages [20]. These systems usually take as input

time-frequency representations of audio signals based in the

Short-Time Fourier Transform (STFT). The most frequent

type of audio feature in this task is the mel-spectrogram, a

two-dimensional representation of audio which uses the Mel-

frequency scale. For a given audio sample frequency (fs), the

temporal and frequency resolution of such representation is

defined by the parameters of the feature extraction process:

1http://youtube.com/
2http://vimeo.com/
3http://freesound.org/

the size of the FFT, the temporal window of the STFT and

the number of Mel filters.

We hypothesize that, due to the different temporal and

spectral characteristics of different kinds of acoustic events,

employing several resolution points in the feature extraction

process would improve the performance of sound event

detection systems. Following this idea, in this paper we

propose a multi-resolution approach for the task of sound

event detection.

The use of multiple input resolutions has been already

explored in several deep learning applications. One of them

is the task of object detection in the computer vision

field, which can be considered an analogous problem to

sound event detection. However, multi-resolution has dif-

ferent properties when dealing with image data or audio

features. In a picture, multiple resolutions can be helpful

to recognize objects at different scales [21], [22], but the

desired benefit when using more than one resolution in audio

applications is to exploit different details of the feature maps

with each resolution point. For instance, the use of two

different resolutions has been proposed to improve automatic

speech recognition in reverberant scenarios [23], in which a

wide-context window gives information about the acoustic

environment and reverberation, whereas a narrow-context

window provides finer detail about the content of the speech

signal. This is possible due to the existence of a trade-

off between time resolution and frequency resolution in the

extraction of Fast Fourier Transform-based audio features

[24] such as the mel-spectrogram, which is also the base for

the analysis proposed in this work.

Our multi-resolution approach relies on two key aspects:

one of them is the choice of the time-frequency resolu-

tion points to be considered, while the other one is the

method employed to combine the different resolutions. Thus,

the intermediate stages between feature extraction and the

combination of resolutions (e.g. the topology of the neural

network models) are not affected by this approach and can be

considered as black-boxes to be used by the multi-resolution

system.

Considering that multi-resolution can be implemented in-

dependently of the underlying sound event detection systems,

the potential improvements in performance are complemen-

tary to those that could be obtained by optimizing the hyper-

parameters of the neural networks. Therefore, through this

approach, multi-resolution could be added to other DNN-

based sound event detection systems in a similar manner.

The proposed analysis is tested using a state-of-the-art

system, the baseline for DCASE 2020 Challenge Task 4

“Detection and Separation of Sound Events in Domestic

Environments” [25]. The aim of this challenge is to make

use of unlabeled and weakly-labeled recordings, together

with strongly-labeled synthetic audio clips, to train systems

that predict the temporal locations of ten different event

categories in audio recordings. Furthermore, an additional

contribution of this paper is an exploration of the impact of

different score thresholding strategies in the performance of

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3088949, IEEE Access

D. de Benito-Gorrón et al.: A multi-resolution CRNN-based approach for semi-supervised Sound Event Detection in DCASE 2020 Challenge

FIGURE 1. Ground truth event annotations provided for an audio segment of
the Validation set. The horizontal bars represent the time intervals where each
event category is active. Several categories can be active at the same time.

the systems.

The rest of the paper is structured as follows: Section II

presents the evaluation metrics, the dataset and the most com-

mon approaches of the DCASE Challenge Task 4. Section

III introduces the multi-resolution analysis, explaining its

motivation and giving details about the definition of different

resolution points. In Section IV the experimental framework

is described, discussing the details of the models employed,

the model fusion process, the F1-score thresholding and the

post-processing of scores. Section V contains the results for

the different experiments, discussing the impact of multi-

resolution and thresholding in the performance of sound

event detection, as well as a study of the behavior of over-

lapped events, the impact in execution times, and an analysis

of the relationship between the results for each category and

the characteristics of the audio. Finally, Section VI highlights

the conclusions of this work.

II. SOUND EVENT DETECTION IN DCASE 2020
CHALLENGE

A. DCASE 2020 TASK 4: “DETECTION AND

SEPARATION OF SOUND EVENTS IN DOMESTIC

ENVIRONMENTS”

The goal of DCASE Challenge 2020 Task 4, “Detection

and Separation of Sound Events in Domestic Environments,”

is to explore the use of both labeled and unlabeled data

to build systems for sound event detection, considering a

set of ten event categories drawn from the AudioSet on-

tology. The target categories describe acoustic events typi-

cally found in domestic acoustic scenes: Speech, Dog, Cat,

Alarm/bell/ringing, Dishes, Frying, Blender, Running water,

Vacuum cleaner and Electric shaver/toothbrush. The task

consists on determining the starting and ending time of each

event found in the audio segments, considering that more

than one event category can be active at the same time. An

example is provided in Fig. 1.

Systems are evaluated by means of the F1-score metric,

widely used to measure performance in Sound Event Detec-

tion tasks [26]. In order to compute F1-score, some inter-

mediate metrics have to be computed: True Positives (TP),

False Positives (FP), and False Negatives (FN). Different

definitions of these statistics lead to either event-based or

segment-based F1 metrics.

For event-based metrics, each instance of an event in the

ground truth and each event predicted by the system are

considered in order to count TPs, FPs, and FNs. Usually, a

collar-based approach is taken, considering some tolerance

(collar) for the estimations of onset and offset times. A

prediction is considered correct if the difference between the

predicted time and the ground truth is equal or lower than

the collar for both the onset and the offset times. The value

of collars in DCASE 2020 Task 4 is 200ms for onsets and

max(200ms, 0.2×event length) for offsets, hence the offset

collar is more tolerant for longer events, which often present

more diffuse endings.

Segment-based metrics, on the other hand, compare the

ground truth with the system predictions in short time in-

tervals. Each interval can be counted as a TP, a FP, or a FN

depending on its ground truth label and the system prediction.

While event-based metrics give the same importance to each

event, in segment-based metrics longer events are considered

more relevant, as they contain more time intervals. Segment-

based metrics are more robust to short pauses between events

that may not be reflected in the ground truth labelling.

The F1-score for a given category is then obtained from

the number of TPs, FPs, and FNs.

F1 =
2× TP

2× TP + FP + FN
(1)

The global F1-score can be obtained in two different

manners. On the one hand, micro-averaged F1-score gives

equal weight to each event ocurrence, thus the predominant

categories in the dataset are given more importance. In con-

trast, macro-averaged F1-score gives the same weight to each

category, independently of the number of occurrences.

Event-based, macro-averaged F1-score is the primary met-

ric in DCASE 2020 Task 4, whereas PSDS (Polyphonic

Sound Detection Score) is proposed as a complementary

measure of performance [27]. PSDS aims to solve several

issues of the F1-score as a performance metric for Sound

Event Detection:

• Single operating point. F1-score is defined using a

single decision threshold for each event category. More-

over, such decision threshold is usually set at 0.5 for

every category by default, with no evidence of this

value being optimal. On the contrary, PSDS considers

a set of thresholds linearly distributed between 0 and 1,

averaging the performance of the system in each one of

them. Thus, PSDS is independent of the choice of the

decision threshold.

• Subjectivity in ground truth. Human annotators can

label the starting and ending time of events in each

audio segment with sufficient precision, however, these

labels are not objective because the same recording

could be correctly labelled in several different ways. For

instance, a short event that happens three times in a brief

lapse of time could be labelled by some annotators as

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3088949, IEEE Access

D. de Benito-Gorrón et al.: A multi-resolution CRNN-based approach for semi-supervised Sound Event Detection in DCASE 2020 Challenge

three different occurrences of the event, but as a single

occurrence by others. When evaluating a system with a

collar-based metric (e.g. event-based F1-score), none of

the possible system outputs would be correct for both

labeling options. In order to overcome this problem,

PSDS takes a different approach to the comparison of

predictions and labels, based on intersections rather than

time collars.

• Importance of cross-triggers. When training a sound

event detector with multiple target categories, some of

the false positive predictions can match a different event

class. These are called cross-triggers, and taking them

in consideration can provide a better understanding of

errors in the detectors. Cross-triggers are more usual

between acoustically similar categories, therefore they

might indicate a bias in data rather than a flaw in the

model.

PSDS introduces two criteria to define TPs and FPs. The

Detection Tolerance Criterion (DTC) sets a minimum inter-

section between a prediction and ground truth labels of the

same class for such prediction to be considered relevant.

Non-relevant predictions are counted as FPs. On the other

hand, Ground Truth intersection Criterion (GTC) controls the

minimum percentage of a ground truth label that must be

covered by relevant predictions of its class to be considered

as a TP. A third rule, the Cross-Trigger Tolerance Criterion

(CTTC) is defined to set the necessary intersection between a

non-relevant prediction and ground truth labels of a different

class for the prediction to be considered a cross-trigger.

For each of the three criteria, a parameter ρ defines the

corresponding ratio of intersection. In DCASE 2020 Task 4,

the value of these three parameters is fixed to ρDTC = 0.5,

ρGTC = 0.5, and ρCTTC = 0.3.

Moreover, two cost parameters are introduced. αct defines

the cost of cross-triggers in the PSDS score, while αst

penalizes the instability of TP rates across different classes.

By combining the value of these parameters, three PSDS

configurations are defined as follows:

• PSDS (αct = 0, αst = 0)

• PSDS Cross-Trigger (αct = 1, αst = 0)

• PSDS Macro (αct = 0, αst = 1)

B. DESED DATASET

The dataset used in DCASE 2020 Task 4 is DESED (Domes-

tic Environment Sound Event Detection) [28], [29]. DESED

is composed of real and synthetic audio recordings. Real

recordings are obtained from AudioSet segments, extracted

from YouTube, while synthetic recordings are generated by

overlapping foreground event clips from the target categories

over background recordings of domestic environments. The

generation of synthetic audio clips is performed with the

Scaper library [30], using foreground audios from Freesound

and backgrounds from the SINS dataset [31].

The DESED dataset for DCASE 2020 Task 4 is divided

into different subsets:

• Synthetic training set (2584 clips). Synthetic record-

ings with strong labels.

• Weakly-labeled training set (1578 clips). Real record-

ings from AudioSet with weak labels.

• Unlabeled training set (14412 clips). Real recordings

from Audioset which contain events from the set of

target categories, with no labels provided.

• Validation set (1168 clips). Real recordings from Au-

dioSet with human-annotated strong labels.

• 2020 Evaluation set. Real recordings from YouTube

and Vimeo with human-annotated strong labels (for

system ranking), and synthetic recordings with strong

labels (for result analysis). Ground truth labels are

not publicly available, but results can be obtained by

sending automatic annotations to the organizers of the

evaluation.

C. EXISTING APPROACHES TO SOUND EVENT

DETECTION

Existing trends in Sound Event Detection systems can be

described by observing the submissions to the DCASE Task

4 evaluations over the recent years. Since 2018, the same

set of sound event categories is used, as well as a similar

organization for the dataset.

Taking into account that Sound Event Detection aims

to infer the temporal locations of events in a given audio

recording, in general terms the input to the system is some

representation of the audio segment, while the final output is

a list of predictions indicating the starting and ending times

and the category of the event detected. Hence, the Sound

Event Detection task can be interpreted as an independent

two-class classification problem (presence or absence) for

each target event category, as described in Fig. 2.

In particular, DCASE Task 4 proposes an scenario where

only a small portion of the audio corpus is annotated.

Moreover, these annotations were exclusively weak labels

in DCASE 2018 [20], while in 2019 an additional subset

with strongly-labeled, synthetic recordings was introduced

[16]. To deal with the lack of strong labels, several semi-

supervised learning methods have been proposed. Pseudo-

labeling [32] was the most popular approach until the success

of the mean-teacher scheme [33]. Pseudo-label trains a first

system using only the labeled data, and uses such system

to generate labels for the unlabeled recordings. Then, a

final system is trained using the labeled and pseudo-labeled

data. On the other hand, mean-teacher involves a single

training process, with a student model and a teacher model

which uses the exponential moving average of the student

model weights. In addition to the usual classification cost,

a consistency cost is defined to learn from unlabeled data,

encouraging the system to provide consistent outputs when

the input is corrupted with a slight amount of noise [34].

Sound event detection systems usually consist on convo-

lutional neural networks (CNN), recurrent neural networks

(RNN), or neural networks combining convolutional and

recurrent stages (CRNN): among the top-10 submissions to
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FIGURE 2. Block diagram describing the general pipeline of a Sound Event
Detection system with K target categories.

the last three editions of the DCASE Challenge Task 4, every

participation employed at least one of the listed models [16],

[20], [35].

The most recurring type of input feature is the mel-

spectrogram, a time-frequency representation of the audio

which is widely used for many sound analysis tasks. The ex-

traction process starts with a Short-Time Fourier Transform

(STFT), which applies a Discrete-Time Fourier Transform

to a moving temporal window of the audio signal, resulting

on a bidimensional representation of the evolution of the

spectrum in time. A bank of mel-filters is then used to map

the spectra to the auditory Mel-scale, obtaining the mel-

spectrogram. Almost every submission to DCASE Task 4 in

its last three editions uses mel-spectrogram features, while

some participants used other types of representations such

as MFCC (Mel-Frequency Cepstral Coefficients), ∆ features,

CQT (Constant-Q Transform), or the raw waveform.

Some research has been carried out trying to apply differ-

ent resolutions at some point of the detection process. For

instance, controlling the size of a median filter during the

post-processing according to the average temporal duration

of the target category [36], [37]. Other existing approach is

to process the audio segments with two different temporal

resolutions, one aiming to optimize audio tagging perfor-

mance and the other trying to specialize in temporal local-

ization of events [38]. However, these approaches use input

features that limit the audio representation to a particular

time-frequency resolution.

In order to determine the temporal boundaries (onset and

offset) for each prediction, binary decisions have to be made.

Considering that the usual output of neural networks for

two-class classification problems is a sigmoid-based score

bounded between 0 and 1, a decision-making criterion has to

be defined. The standard approach is to set a threshold value

th ∈ (0, 1), so that the presence of an event is predicted

when the score is above th. In the systems proposed for

DCASE 2018 and 2019 Challenge Task 4, the value for

this threshold is usually set to th = 0.5, without further

justification for choosing such value. Nevertheless, some

different thresholding strategies have been proposed, such as

double-thresholding [39] or dynamic thresholding [40].

III. MULTI-RESOLUTION ANALYSIS
The main hypothesis for the experiments presented in this

paper is that sound event detection systems can benefit from

using different time and frequency resolutions in the feature

extraction process, instead of using a single resolution point,

which is the most common approach in previous works. This

idea is motivated by the fact that acoustic events can present

very different temporal and spectral characteristics. A similar

approach was proposed recently for the task of automatic

speech recognition [41], obtaining modest but consistent

improvements despite the types of sounds to be classified

(human phones) were much more similar.

The distribution of the time durations of the examples in

each class have been computed over the Synthetic Training

set and are presented in Fig. 3 as a histogram for each cate-

gory. The figure shows that the distribution of time durations

vary very significantly depending on the event class. While

some categories tend to have very short examples (Alarm

bell/Ringing, Cat, Dishes, Dog, or Speech), others present

more diverse lengths (Electric shaver/Toothbrush, Frying, or

Running water).

During the extraction of mel-spectrogram audio features,

a particular time-frequency resolution point is defined by the

set of parameters used, given the sample rate (fs) of the audio

segment. Such parameters are the number of samples of the

DTFT (N ), the type of window used in the STFT, its length

(L) and hop size (R), and the number of filters of the Mel

filter bank (nmel). Varying the values of these parameters,

the temporal and the frequency resolutions of the resulting

features will be different. There is a compromise between the

time and frequency resolutions, as increasing one of them

implies decreasing the other one.

In order to illustrate the convenience of using multi-

ple time-frequency resolutions to represent different sound

events, Fig. 4 provides an example where two mel-

spectrograms are displayed for the same audio segment

which belongs to the class Electric shaver/Toothbrush, using

two different time-frequency resolution points. The acous-

tic event presents some frequential components that remain

constant in time, resulting in horizontal lines in the mel-

spectrogram. Such lines are much better captured by the

second mel-spectrogram, which offers a higher frequency

resolution.

A second example is provided in Fig. 5, representing an

VOLUME 4, 2016 5
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FIGURE 3. Histograms of the durations of each event category in the Synthetic Training set.

FIGURE 4. Two representations of the same audio segment belonging to the category Electric shaver/Toothbrush. Each representation is a mel-spectrogram
extracted using a higher temporal resolution (left) and a higher frequency resolution (right).

Alarm bell/Ringing audio segment using two different resolu-

tions. At the beginning of the segment, some repetitions of a

tone can be observed, which could be a representative aspect

of this event category. However, the different repetitions are

better represented in the left mel-spectrogram, which offers a

higher temporal resolution.

Taking the resolution of the baseline system as a reference,

we define four additional resolution points. The five working

points used share in common with the baseline the use of a

sample rate of fs = 16000 Hz and the use of a Hamming

window, while the other parameters (N , L, R, nmel) are

modified to increase the time resolution or the frequency

resolution. The configuration of each resolution point is de-

scribed below, and the values of the parameters are presented

in Table 1.

1) BS (Baseline). The baseline uses an analysis win-

dow of length L = 128 ms and a window hop of

R = 15.94 ms (255 samples). Both parameters are

related to the temporal resolution of the analysis. On

the other hand, the frequency resolution is limited by

the width of the main lobe of the Hamming window,

8π/(L−1) = 8π/2047 rad/sample, which corresponds

to a frequency resolution of 4/2047 × 16000 ≈ 31
Hz. However, this frequency resolution is later more

limited in a non-linear way by the use of the Mel

filterbank with 128 filters.

2) T++ (Twice better time resolution). We halve the anal-

ysis window to a length of L = 64 ms and the window

hop to R = 8 ms, which essentially doubles the time

resolution. We also halve the number of Mel filters,

which along with the previous changes roughly halves

the frequency resolution.

3) F++ (Twice better frequency resolution). We double

the analysis window length to L = 256 ms and the

window hop to R = 32 ms, which essentially halves

the time resolution. We also double the number of Mel

6 VOLUME 4, 2016
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FIGURE 5. Two representations of the same audio segment belonging to the category Alarm bell/Ringing. Each representation is a mel-spectrogram extracted
using a higher temporal resolution (left) and a higher frequency resolution (right).

TABLE 1. FFT length (N ), window length (L), window hop (R) and number of
Mel filters of the five proposed time-frequency resolution working points.

Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 255 384 512
nmel 64 96 128 192 256

N , L, and R are reported in samples, using a sample rate fs = 16000Hz.

filters, which along with the previous changes roughly

doubles the frequency resolution.

4) T+ (Intermediate point between BS and T++). Analy-

sis window of length L = 96 ms, window hop R = 12
ms. An intermediate number of Mel filters is used

(nmel = 96).

5) F+ (Intermediate point between BS and F++). Anal-

ysis window of length L = 192 ms, window hop

R = 24 ms. An intermediate number of Mel filters is

used (nmel = 192).

IV. EXPERIMENTAL FRAMEWORK
Our experiments have been performed using a Convolutional

Recurrent Neural Network (CRNN) based upon the Baseline

System of DCASE 2020 Task 4. As in the baseline system,

the features are extracted from the audio signals without a

pre-processing stage such as a noise reduction module. In

order to incorporate multi-resolution analysis into the model

described by the Baseline, first we adapt the model to each

resolution point, training a model for each resolution, and

then we perform model fusion with the resulting models.

A. MODEL STRUCTURE AND TRAINING

Following the configuration of the Baseline System, the

models are trained by means of the Mean Teacher method

(described in Section II-C). The mel-spectrogram features

are fed to the convolutional stage of the model, formed by

seven 2D-convolutional layers with kernels of size 3×3. The

number of filters is 16 for the first layer and is doubled in

each layer until a maximum of 128. The activation function

is the Gated Linear Unit (GLU).

TABLE 2. Dimensions of the max-pooling layers in the convolutional stage,
adapted for each resolution point.

Resolution nmel Pooling sizes [time, mel]

T++ 64 [2, 1], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]
T+ 96 [2, 1], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 3]
BS 128 [2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]
F+ 192 [2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 3]
F++ 256 [2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 4]

There is a total of seven max-pooling layers in the model, one after each
convolutional layer. The total pooling factor is always [4, nmel].

Each convolutional layer is followed by a max-pooling.

In order to reduce the different input mel-frequency sizes

to a single dimension as done in the baseline system, the

pooling size in the mel-frequency dimension is modified in

the networks used for the different time-frequency resolution

points, as specified in Table 2. The total pooling factor of the

convolutional stage is 4 in the time dimension and nmel in

the mel dimension.

At the end of the convolutional stage, the input features

have been shaped into a temporal sequence with length

L which is fed to the recurrent stage of the model. Such

recurrent stage is formed by two layers of bidirectional gated

recurrent units (bi-GRU) with 128 units each. Finally, an

attention pooling layer is applied with sigmoid activation,

obtaining a temporal score sequence for each target category.

B. MODEL FUSION

We define a model fusion method that allows us to combine

the scores generated by several CRNN models before further

post-processing, such as thresholding or median filtering,

with no additional parameter tuning. These models have to

be trained individually beforehand, and they can employ dif-

ferent input features, namely the mel-spectrograms computed

at different time-frequency resolution points as described in

Section III, or could be as well trained with the same input

features but different configurations.

For a given category i, a sound event detection system

performs a classification between classes {θi,0; θi,1}, mean-

ing absence or presence of event i, respectively. For each
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classification task (i.e. for each target category), a detector

j generates a score s
(j)
i as a time series with a given time

resolution or frame rate. By convention, lower scores show

a stronger support to θi,0, while higher scores support θi,1.

In the proposed systems, each of the scores is taken from

the output of a sigmoid layer trained with a cross-entropy

criterion. The scores are then between 0 and 1, and can be

interpreted as the posterior probability of the presence of the

event category i, P (θi,1|x) = 1 − P (θi,0|x), where x is the

observation of the audio segment.

The fusion procedure is performed as follows. In order to

handle the different frame rates of score sequences generated

with different feature resolutions, the first step is an interpola-

tion. Let J be the number of models to combine, each score

sequence s
(j)
i is interpolated along the temporal dimension

to fit a target frame rate, obtaining a set of J score sequences

(t
(1)
i , . . . , t

(J)
i ). The target frame rate is chosen as the highest

frame rate of the J model outputs to be combined. Then, the

resulting sequences have N time frames each, being N the

number of frames of the sequence with the highest frame rate:

t
(j)
i = (t

(j)
i,1 , . . . , t

(j)
i,N ).

Afterwards, the logit operator is applied frame-wise, in the

following way:

l
(j)
i,n = logit(t

(j)
i,n) ≡ log

t
(j)
i,n

1− t
(j)
i,n

(2)

Then, the logit scores of the model fusion, li are computed

frame by frame as the average of the logit scores from each

model j.

li,n =
1

J

J∑

j=1

l
(j)
i,n (3)

As a final step for the model fusion process, the sigmoid

operator is applied to the resulting logit score sequences li,
obtaining the final score sequences si for each category i.
Then, these sequences are post-processed as described in

Section IV-C, in order to obtain temporal predictions. The

whole process is described in Fig. 6.

C. SCORE POST-PROCESSING

Evaluating a system by means of F1-score requires convert-

ing the score sequences si into timestamps which mark the

start and the end of each event. For such purpose, defining a

threshold th is necessary in order to obtain a set of predic-

tions. The most common value for such threshold, used by

the Baseline System, is thi = 0.5 for every category i.
In the case that the posteriors P (θi,1|x) were properly

computed (i.e. calibrated) and the prior probabilities of the

evaluation set were P (θi,1|x) = P (θi,0|x) = 0.5, the previ-

ous approach would be the optimal decision in a Bayesian

scenario. However, in the scenario of DCASE Challenge

Task 4 the prior information of the 2020 Evaluation set was

not known and could not be estimated reliably. Moreover, the

cost of Bayes decisions and the F1-score are not comparable

metrics, and therefore, even with an optimal Bayesian deci-

sion scenario, it is not guaranteed that the F1-score will be

optimized. As a consequence, there is no reason whatsoever

to support th = 0.5 as an adequate decision threshold.

Aiming at choosing a more optimal threshold for decision-

making under the F1-score criterion, we tested two options:

1) Applying thi = 0.5 for every event category, as done

in the Baseline

2) Choosing the optimal threshold for each category em-

pirically, as that which maximizes F1 over the Valida-

tion set.

It is worth noting that he choice of specific thresholds for

each category does not apply in the case of PSDS metrics,

since PSDS is not dependent on the threshold.

As a final stage, median filtering is applied to the binary

scores with a window length of 450 ms. The purpose of

median filtering is to clean impulsive peaks which are not

representative of the presence or absence of acoustic events.

The filtered binary vectors can be considered temporal pre-

dictions over which F1 or PSDS metrics can be computed.

V. RESULTS AND DISCUSSION
A. SINGLE-RESOLUTION RESULTS

In the first place, experiments were carried out using single-

resolution systems with no model fusion involved. A model

was trained five times with different random initializations

for each one of the resolution points described in Table 1. The

models are based on the Baseline System of DCASE 2020

Challenge Task 4, adapting the pooling sizes according to

the time-frequency resolution as specified in Table 2. Taking

into account that the BS resolution point coincides with

the baseline system of DCASE Challenge 2020 Task 4, the

results obtained using this resolution constitute the common

benchmark for the aforementioned task.

The results of the single-resolution models are presented

in Table 3 as the mean and the standard deviation of the

F1-scores obtained with the five trainings. Observing the

performances for each event category, it can be noted that

different resolution points hold the best average result for

different classes, supporting our hypothesis that different

time-frequency resolutions are better suited to detect certain

types of events.

Some classes achieve better results when employing

higher temporal resolutions, for example Dog, Blender, or

Running water, while the clearest tendency to achieve a better

performance with a higher frequency resolution is shown by

the category Electric shaver/toothbrush. The BS resolution

point, used by the Baseline System, achieves the best result

only for the category Cat.

B. MULTI-RESOLUTION RESULTS

The model fusion process described in Section IV-B allows

to combine models trained at different time-frequency resolu-

tion points, thus obtaining multi-resolution systems. The goal

is to achieve better performance thanks to the complementary

information supplied by the different resolutions.
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FIGURE 6. Block diagram describing the model fusion procedure for class i with J models. After the interpolation step, each sequence t
(j)
i

is N time frames long,
where N is the length of the longest sequence s

(j)
i

. The logit, average, and sigmoid operations are performed for each time frame n ∈ [1, N ]. Therefore, the
resulting sequence si is also N time frames long.

TABLE 3. Event-based F1-score (%) over the Validation set for each event category obtained with different time-frequency resolution working points.

T++ T+ BS F+ F++

Alarm bell / ringing 42.1 ± 1.5 43.8 ± 2.1 42.0 ± 1.4 42.2 ± 3.1 41.0 ± 2.0
Blender 32.9 ± 3.2 32.3 ± 1.4 27.4 ± 1.6 30.0 ± 2.6 30.9 ± 3.9
Cat 38.4 ± 1.8 40.0 ± 1.8 41.0 ± 2.1 39.3 ± 3.9 34.7 ± 2.3
Dishes 20.8 ± 1.5 21.9 ± 1.1 20.8 ± 2.1 22.6 ± 1.7 21.0 ± 1.2
Dog 15.1 ± 0.7 17.1 ± 2.6 16.5 ± 1.0 12.3 ± 1.1 12.8 ± 2.7
Electric shaver / toothbrush 32.8 ± 4.2 35.5 ± 4.7 37.2 ± 2.9 36.2 ± 5.4 41.1 ± 2.9
Frying 23.5 ± 2.2 23.9 ± 2.3 20.9 ± 4.8 23.9 ± 2.2 22.2 ± 2.6
Running water 31.7 ± 3.3 29.8 ± 2.2 30.4 ± 2.6 27.6 ± 1.8 27.2 ± 1.6
Speech 42.7 ± 3.1 47.1 ± 2.9 45.2 ± 1.5 46.2 ± 2.6 46.3 ± 1.8
Vacuum cleaner 40.1 ± 1.7 39.9 ± 2.3 38.9 ± 3.3 44.5 ± 4.1 40.1 ± 5.0

Total macro 32.0 ± 1.3 33.1 ± 0.9 32.0 ± 1.1 32.5 ± 1.5 31.7 ± 1.0

Mean ± standard deviation computed across 5 trainings with random initializations.

Following this idea, two multi-resolution models are pro-

posed: a three-resolution model (3res) which combines the

baseline resolution BS with the resolution points T++ and

F++, and a five resolution model (5res) combining the five

resolution points defined (BS, T++, F++, T+, and F+).

To obtain these models, the model fusion procedure is em-

ployed with one model per resolution point. Thus, 3res is a

combination of three single-resolution models, and 5res is

a combination of five single-resolution models. As shown

in Table 4, both multi-resolution systems outperform the

single-resolution systems in terms of macro-averaged F1 over

the Validation set, with 5res obtaining a higher performance

(39.8%) than 3res (38.2%).

However, it is necessary to determine whether the im-

provements in performance are due to the combination of

several resolutions rather than solely to the combination

of different models. In order to achieve this, an additional

combined model is proposed which performs a model fusion

with five models trained with the BS resolution point and

different initializations (5×BS). Such combined model was

found to outperform the individual models trained with the

same resolution in terms of macro-averaged F1 over the Val-

idation set, but with a lower performance (36.9%) than 3res

or 5res. Therefore, we conclude that, although model fusion

allows to improve performance even in a single-resolution

setting, the multi-resolution approach is able to obtain further

improvements in terms of macro F1-score.

Aiming to compare the results of single-resolution and

multi-resolution models, the F1-scores obtained by the com-

bined models (3res, 5res, and 5×BS) over the Validation

set are presented in Table 4, next to those obtained using

the BS resolution point (previously presented in Table 3).

The improvements are consistent in every category when

increasing the number of resolution points involved.

In terms of the mean macro-averaged F1-score computed

across five random initializations of each system, the 3res

model obtains 6.2 points more than the single-resolution

model BS. In the case of the 5res model, an improvement

of 1.6 points is observed with respect to 3res, which makes a

total improvement of 7.8 points with respect to the macro-

averaged F1-score achieved by the BS model. Moreover,

some categories seem to benefit of the multi-resolution anal-

ysis more than others: it is the case of Blender, which

obtains 27.4% with BS and 44.6% with 5res, or Vacuum

cleaner, which obtains 38.9% with BS and 54.6% with 5res.

According to the single-resolution results shown in Table 3,

the BS resolution is the least fitted to the detection of these

two types of events, which would explain a higher impact of

multi-resolution in these categories.

Regarding the PSDS metrics, the multi-resolution analysis

has been found to achieve improvements as well. The PSDS

has been computed for the single-resolution models trained
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TABLE 4. Event-based F1-score (%) results over the Validation set.

Event Category BS 3res 5res 5×BS

Alarm bell / ringing 42.0±1.4 46.0±0.8 46.9±0.8 43.7±1.1
Blender 27.4±1.6 43.2±4.3 44.6±3.2 37.6±0.6
Cat 41.0±2.1 43.7±1.9 44.8±0.5 41.6±0.6
Dishes 20.8±2.1 23.4±1.5 24.7±1.0 23.3±0.9
Dog 16.5±1.0 18.1±1.5 18.9±1.7 18.3±0.7
E.shaver/toothbrush 37.2±2.9 43.8±1.8 45.8±3.2 41.2±0.5
Frying 20.9±4.8 28.0±3.8 29.6±2.5 23.6±3.5
Running water 30.4±2.6 36.7±3.1 38.5±1.4 36.0±1.4
Speech 45.2±1.5 47.3±1.5 48.9±1.1 47.5±0.6
Vacuum cleaner 38.9±3.3 51.4±3.5 54.6±2.9 44.7±1.6

Total macro 32.0±1.1 38.2±1.1 39.8±0.8 35.8±0.7

Mean ± standard deviation computed across 5 random initializa-
tions of each system.

TABLE 5. PSDS, PSDS cross-trigger, and PSDS macro results over the
Validation set.

αct αst BS 3res 5res 5×BS

PSDS 0 0 0.584 0.657 0.666 0.635
PSDS cross-trigger 1 0 0.498 0.595 0.609 0.564
PSDS macro 0 1 0.400 0.467 0.479 0.451

αct is the weight related to the cost of cross-trigger. αst is the weight
related to the cost of instability across classes.

with the BS resolution points as well as for the combined

models 3res, 5res, and 5×BS, using the configuration pro-

posed for the DCASE Challenge 2020 Task 4. The results

over the Validation set are shown in Table 5, showing that

the PSDS scores obtained are higher when using more dif-

ferent resolution points. Such effect is observed in the three

configurations: PSDS, PSDS cross-trigger, and PSDS macro.

Moreover, the combination of five models with the same

resolution (5×BS) achieves a higher PSDS performance than

each individual model (BS) on its own, but does not reach

the results of multi-resolution models 3res and 5res.

C. SCORE THRESHOLDING RESULTS

Whereas the experiments described in sections V-A and V-B

employ a threshold th = 0.5 for every category, additional

experiments have been carried out aiming to determine the

adequacy of such approach for F1-score decisions. For this

purpose, we have taken the 5res model as a starting point,

and we have studied its performance in each category in

terms of event-based F1-score using different values for the

threshold, considering 50 values linearly distributed from

th = 0 to th = 1. It should be noted that this analysis does

not affect the PSDS performance, which is not dependent on

the threshold value.

Following this procedure, we obtain the results presented

in Fig. 7. Observing the F1 curves, it can be observed that the

optimal value of the threshold usually differs from th = 0.5.

Moreover, the election of th affects the performance differ-

ently in each category.

Aiming to improve the performance by tuning the values

of the thresholds for each category, we define a new model,

5res-thr, which is based upon the 5res model but uses a

specific threshold thi for each category, instead of a global

TABLE 6. Binarization thresholds used in the 5res-thr system.

Threshold

Alarm bell / ringing 0.31
Blender 0.49
Cat 0.65
Dishes 0.31
Dog 0.69
E. shaver / toothbrush 0.61
Frying 0.29
Running water 0.45
Speech 0.83
Vacuum cleaner 0.65

TABLE 7. Event-based F1-score (%) results of a multi-resolution model with
global thresholding th = 0.5 (5res) and with specific thresholds for each class
(5res-thr) over the Validation set.

Event Category 5res 5res-thr

Alarm bell / ringing 47.2 48.2

Blender 49.5 50.0

Cat 45.2 47.3

Dishes 23.9 25.2

Dog 18.6 22.3

E. shaver / toothbrush 46.8 49.0

Frying 29.7 34.3

Running water 39.6 41.6

Speech 49.9 55.6

Vacuum cleaner 58.7 61.0

Total macro 40.9 43.4

threshold th = 0.5. The thresholds are chosen as those

which maximize the F1 performance for each category over

the Validation set. Following this criterion, the resulting

thresholds are listed in Table 6. The performances of 5res

and 5res-thr over the Validation set are compared in Table

7, where it is shown that the choice of specific thresholds

allows to increase the performance in every category, and up

to 2.5 points in F1 macro. However, it should be noted that

the results of 5res-thr over the Validation set represent the

best-case scenario, where we know the optimal thresholds,

whereas these optimal values differ from one dataset to

another. In order to test the threshold tuning approach in a

more realistic scenario, we have compared the performances

of 5res and 5res-thr over a different dataset, the Public

Evaluation set, showing the results in Table 8. Although the

performance does not increase in every category, the 5res-

thr achieves a higher overall F1-score. Additionally, 5res and

5res-thr models were submitted to the DCASE Challenge

2020 Task 4, both outperforming the Baseline System and

also obtaining a higher overall F1 performance by using

class-specific thresholds [42].

D. EVENT OVERLAP ANALYSIS

When tackling the problem of polyphonic sound event de-

tection, it is possible to encounter multiple event categories

coinciding in time. Generally, such overlap constitutes a

particularly challenging scenario for sound event detectors,

because one of the events can mask the others, making them

more difficult to recognize and thus producing False Negative
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FIGURE 7. F1-scores obtained by the 5res model in each category with different threshold values. The blue curve represents the F1 performance over the
Validation set, marking the best result with a blue vertical line. The black curve represents the performance in the Public evaluation set. The intersection of the blue
line and the black curve indicates the performance over the Public evaluation set using the threshold chosen with the Validation set. The optimal threshold for the
Public Evaluation set is marked with a green vertical dashed line, whereas the default threshold (0.5) is marked with a grey vertical dotted line.

TABLE 8. Event-based F1-score (%) results of a multi-resolution model with
global thresholding th = 0.5 (5res) and with specific thresholds for each class
(5res-thr) over the Public Evaluation set (eval 2019).

Event Category 5res 5res-thr

Alarm bell / ringing 46.5 47.8

Blender 44.2 43.7
Cat 66.2 68.4

Dishes 25.4 23.5
Dog 18.7 23.9

E. shaver / toothbrush 53.2 56.0

Frying 40.6 36.0
Running water 31.8 31.9

Speech 51.3 59.3

Vacuum cleaner 52.8 57.6

Total macro 43.0 44.8

errors.

However, taking into account that different resolutions are

more fitted to capture certain event classes, the proposed

multi-resolution approach should be able to improve the

results for overlapped events.

In order to compare the performance of our systems in

the scenario of event overlap, we have divided the DESED

Validation set into two subsets: a non-overlapped subset, con-

taining the events that do not coincide in time with any other

class, and an overlapped subset, which contains the events

which occur at the same time than other categories in their

entirety. Given that the main problem of overlapped events is

the appearance of False Negative errors, we have studied the

event-based Recall metric (R), which is the component of the

event-based F1-score that is affected by false negatives:

R =
TP

TP + FN
(4)

The results of macro-averaged recall over the Validation

set and both subsets are presented in Table 9. It can be

observed that the recall metric is consistently lower for the

overlapped subset than for the complete Validation set. On

the other hand, the recall metric when considering only non-

overlapped events is very similar to that of the Validation

set, which was the expected result considering that the non-

overlapped subset constitutes the majority of the Validation

set. In every case, the multi-resolution approach provides

better results considering the mean recall of five systems with

different random initializations.

In terms of relative improvement, the impact of multi-

resolution is more accentuated in the overlapped subset. With

the 3res model, the mean recall increases from 10.6% to

13.5%, which constitutes a 27.8% relative improvement. The

mean recall over this subset experiments a further increase

when using five resolutions, reaching 14.8%, a 40.0% rela-

tive improvement with respect to the BS system.

In contrast, the relative improvement is considerably lower

when considering the whole validation set (13.1%) or only

the non-overlapped subset (12.6%). This fact seems to sug-

gest a larger impact in the correct detection of overlapped

events.

However, these results need to be taken with caution, since

the analysis was limited by the lack of overlapped events

in most of the classes, as shown in Table 10. Moreover, the

improvement in mean recall in the case of overlapped events

does not seem statistically significant, given the standard de-

viations found in the multi-resolution results with overlapped

events.
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TABLE 9. Event-based recall (%) results of the systems over the Validation set, the Non-overlapped Validation subset, and the Overlapped Validation subset.
Relative improvement is given with respect to the BS model. The highest relative improvement for each system is highlighted in bold.

Model
Macro-averaged Recall (%)
Validation Rel. Imp. % Non-overlapped Rel. Imp. % Overlapped Rel. Imp. %

BS 36.1±0.8 - 36.4±0.5 - 10.6±0.9 -
3res 39.4±1.1 9.2 39.4±1.1 8.4 13.5±5.6 27.8

5res 40.9±0.8 13.1 40.9±0.7 12.6 14.8±5.6 40.0

Mean ± standard deviation computed across 5 random initializations of each system.

TABLE 10. Number of events included in the Validation set, the
Non-overlapped Validation subset, and the Overlapped Validation subset for
each target category.

Event Category Validation No overlap Overlap

Alarm bell / ringing 420 412 3
Blender 96 88 0
Cat 341 337 1
Dishes 567 403 162
Dog 570 551 16
E. shaver / toothbrush 65 54 0
Frying 94 92 0
Running water 237 226 3
Speech 1754 1396 338
Vacuum cleaner 92 82 1

Total 4236 3641 524

E. RESOURCE ANALYSIS

In Section V-B, it has been shown that the combination of

multiple resolutions is able to provide improvements in terms

of F1-scores. However, it would be relevant to know the

impact of multi-resolution in terms of execution times.

For this reason, we have measured the time required by the

baseline system (BS) and by the multi-resolution systems

3res and 5res to perform the feature extraction process and

generate predictions for the DESED Validation set (181

minutes of audio).

Each system has been run five times, using 15 CPU cores

for feature extraction and a Nvidia GeForce RTX 2080 GPU

for the forward pass of the neural networks. Averaging the

five executions, we have computed a 0.02× real time factor

for the BS model. In the same manner, we have measured a

0.04× factor for the 3res model and a 0.07× factor for the

5res model.

It can be observed that the increase of the execution time

is lower than the number of resolutions. This is due to the

existence of two different stages in the test process. The first

stage is repeated for each resolution, and consists of the mel-

spectrogram feature extraction and the forward pass of the

CRNN, after which the score sequences for each resolution

are obtained. Afterwards, the scores from each model are

averaged and binarized by means of a threshold, and the F1

metrics are computed: this process is performed only once,

regardless of the number of resolutions involved.

F. FEATURE ANALYSIS

Aiming to give insights into the different temporal and spec-

tral characteristics that make a given event category more

adequate for a certain resolution point, we have studied the

variations in time and frequency of the mel-spectrogram

features in the DESED Validation set.

As a first step for this analysis, we have selected the mel-

spectrogram features of the events that are not overlapped in

time with any other in-domain event, in order for overlapped

events not to interfere in the analysis of other categories.

Rather than the entire audio segments, we have only consid-

ered the relevant time interval for each event, i.e., from the

onset time to the offset time.

For these mel-spectrograms, we have obtained the first

differences (∆-features) in each axis, which indicate the

change of energy with respect to the previous time step (in

the time axis) or the adjacent mel-filter (in the frequency

axis). Let them be called ∆t and ∆f . In order to obtain the

most reliable measures in each axis, ∆t has been computed

from the T++ resolution with a time step of four frames,

which corresponds to a 50% overlap of the analysis window

of feature extraction, and ∆f has been computed from the

F++ resolution.

We have computed the standard deviation of the ∆-

features between consecutive temporal frames (σ∆t,i) and

between adjacent mel filters (σ∆f,i) for each event category

i. A higher standard deviation means that the variations

in the corresponding axis are larger. Aiming to obtain a

measure which determines whether the variations in time

or in frequency are predominant for a certain category, we

have computed the ratio ri between the mean values of the

standard deviations for each category i:

ri =
σ̄∆t,i

σ̄∆f,i
(5)

A higher ri implies that the corresponding event category

has its predominant variations in the time axis. Therefore,

a higher time resolution should, in principle, be able to

capture such events with more detail. In Table 11, the ratios

ri for each category are presented. When comparing these

values with the best performing resolution point for each

category in Table 3, it can be observed that the only category

that performs best with F++, Electric shaver/toothbrush,

presents the lowest ratio (0.31). Additionally, the class with

the highest ratio, Dog (0.71), obtains its best performance

using the T+ resolution.

However, the relationship between the ratio value and the

best performing resolution point is not perfect for every

category. In fact, the analysis can be complemented with the

average length of each event category, which was already

described in Section III and Fig. 3. Those categories that
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TABLE 11. Value of the ratio ri = σ̄∆t,i/σ̄∆f,i for each category.

Event Category ri
Alarm bell / ringing 0.56
Blender 0.59
Cat 0.52
Dishes 0.61
Dog 0.71
E. shaver / toothbrush 0.31
Frying 0.57
Running water 0.59
Speech 0.58
Vacuum cleaner 0.58

present long events, such as Frying or Vacuum cleaner, obtain

better results with the F+ resolution, while short-duration

categories like Speech or Alarm bell/ringing perform better

with T+.

VI. CONCLUSION
In this work we present a method to better modelling the dif-

ferent temporal and spectral characteristics of sound events

in the task of Sound Event Detection. We hypothesize that

features extracted using different time-frequency resolution

parameters are able to represent certain event categories in a

more recognizable way. Hence, in contrast to most current

approaches which use a single time-frequency resolution

during the feature extraction process, we propose combining

the information from several resolution points to improve the

performance of the detectors.

In order to test our hypothesis, we take as a starting

point the Baseline System of DCASE 2020 Task 4, which

consists of a Convolutional-Recurrent Neural Network that

is trained using mel-spectrogram features. By training this

system with different feature resolutions, we observe that

each sound event category obtains a higher performance at

different time-frequency resolution points. This supports our

idea that different resolutions are more suited to represent

certain sound event classes.

Afterwards, aiming to combine the information of each

resolution point into a multi-resolution system, a model

fusion procedure is defined that operates over the scores of

the CRNNs. We obtain the final scores as the average of the

scores of each individual model, without additional trainable

parameters. Such process could be applied to other score-

based systems.

Using the DESED Validation set to test the performance

of the systems, we find that multi-resolution models are able

to outperform single-resolution models in every category in

terms of event-based F1-score, and also in terms of the PSDS

metric, with longer execution times, but still much faster than

real-time performance.

Additionally, we have explored the impact of the threshold

used to define the event predictions, finding that its usual

value th = 0.5 is not necessarily the optimal setting. We are

able to improve the performance of a multi-resolution model

by choosing specific thresholds for each category using

the DESED Validation set. Although the optimal thresholds

change when using a different dataset, the specific thresholds

obtain a better result in terms of macro-averaged F1-score

over the DESED Public Evaluation set.
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