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A multi-resolution Gaussian process model for the analysis

of large spatial data sets.

December 2, 2013

Abstract

A multi-resolution basis is developed to predict two-dimensional spatial fields based on
irregularly spaced observations. The basis functions at each level of resolution are constructed
as radial basis functions using a Wendland compactly supported correlation function with
the nodes arranged on a rectangular grid. The grid at each finer level increases by a factor of
two and the basis functions are scaled to have a constant overlap. The coefficients associated
with the basis functions at each level of resolution are distributed according to a Gaussian
Markov random field (GMRF) and take advantage of the fact that the basis is organized as
a lattice. Several numerical examples and analytical results establish that this scheme gives
a good approximation to standard covariance functions such as the Matérn and also has
flexibility to fit more complicated shapes. The other important feature of this model is that
it can be applied to statistical inference for large spatial datasets because key matrices in
the computations are sparse. The computational efficiency applies to both the evaluation of
the likelihood and spatial predictions. Although our framework has similarities to fixed rank
Kriging, the model gives a better approximation to situations where the nugget variance is
small and the spatial process is close to interpolating the observations.

Keywords: Spatial estimator, Kriging, Fixed Rank Kriging, Sparse Cholesky Decomposi-
tion, Multi-resolution
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1 Introduction

Statistical methodology for spatial data is a well developed field and has roots in

geostatistics and multivariate analysis. More recently the breakthroughs in Bayesian

hierarchical models have added rich new classes of models for handling heterogenous

spatial data and indirect measurements of spatial processes. This development in

spatial statistics is coincident with emerging challenges in the geosciences involving

new types of observations and comparisons of such observations to complex numeri-

cal models. For example, as attention in climate science shifts to understanding the

regional and local changes in future climate there is a need to analyze high resolution

simulations from climate models and to compare them to surface and remotely sensed

observations at fine levels of details. These kinds of geoscience applications are charac-

terized by large numbers of spatial locations. The application of standard techniques is

often not feasible or at least will take an unacceptably long time given typical computa-

tional resources. Moreover, geophysical processes tend to have a multi-scale character

over space that requires statistical methods that do not assume a simple parametric

model for dependence across a region. This work develops a new statistical model that

addresses both of these challenges; our model is applicable to large data sets and has

a flexible covariance model and so fills a gap in current statistical methodology.

We assume that spatial observations {yi} are made at unique two-dimensional

spatial locations, {xi}, for 1 ≤ i ≤ n according to the additive model:

yi = ZT
i d+ g(xi) + ǫi (1)

where Z is a matrix of covariates and d a vector of linear parameters, g is a smooth

surface and ǫi are mean zero measurement errors. The parameters d represent fixed

effects in this model and g is assumed to be a realization of a random process with the

form

g(x) =
m∑

j=1

cjφj(x). (2)

Here φj , 1 ≤ j ≤ m, is a sequence of fixed basis functions and c is a vector of

coefficients distributed multivariate normal with mean zero and covariance matrix,

ρP . The parameter ρ > 0 is useful as a leading scaling parameter for the covariance
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matrix, P , that may also depend on other parameters. Thus the model for g is a sum

of fixed basis functions with stochastic coefficients.

The statistical problem in this setting is to determine g at locations where observa-

tions are not available and quantify the uncertainty of the spatial predictions. Given

our main goal to develop an acceptable methodology to handle large data sets, per-

haps in a nearly interactive mode, we seek to balance the complexity of the models

and methodology with feasibility for effective data analysis. We will focus on maxi-

mum likelihood estimates of parameters in the covariance and other components from

(1) and (2). For inference on the spatial process we will focus on the conditional dis-

tribution of g given the data and other statistical parameters. This basic approach

to inference can be expanded to a Bayesian hierarchical approach, where our model

and the computational scheme can play a central role in the core of any Bayesian

computation.

Our approach combines the representation of a field using a multi-resolution basis

with statistical models for the coefficients as a process on a lattice. In this sense it

is a blending of ideas from Fixed Rank Kriging ( Katzfuss and Cressie 2011, Cressie

and Johannesson 2008) and stochastic partial differential equations (SPDE) including

the work in Lindgren and Rue (2007), Rue and Held (2005) and Lindgren et al. (2011)

(LR2011). It is useful to view the unknown spatial process in (2) as a sum of L

independent processes, gl(x) for 1 ≤ l ≤ L, each with a different correlation scale and

marginal variance, {αl}.

g(x) =
L∑

l=1

√
αlgl(x) (3)

In this way the overall spatial dependence of g can be much more complex than the

spatial dependence of each of the individual components. The multi-resolution struc-

ture has a similarity with wavelet estimators although we do not assume orthogonality

of the basis functions or sparsity in the coefficients. Each component, gl is defined as a

basis function expansion as in (2). The main principle is to expand the two-dimensional

spatial field in families of radial basis functions that are organized on regular grids of

increasing resolution and correspond to the schematic of a sum of L independent pro-

cesses. The radial basis functions have compact support and like wavelet bases give
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computational efficiencies because of this feature. In our treatment, each increase in

resolution will be by a factor of two and the levels associated with finer spatial scales

will have more basis functions. Conversely the representation has a parsimony in that

the coarser scales require fewer basis functions to approximate the stochastic processes.

The spatial dependence among the coefficients for each level of resolution is modeled

using a Gaussian Markov random field (GMRF), specifically a spatial autoregressive

(SAR) model. The fact that the basis functions are organized on a lattice gives the

SAR a simple form along with its precision matrix, which we denote as Q = P−1. The

benefit of this approach is that Q is sparse even though P itself can be dense. Thus, g

can exhibit long range correlations among coefficients widely separated in the lattice

even though the precision matrix is sparse. We have found that this combination of

a multi-resolution basis with companion GMRFs for the coefficients at each level can

approximate standard families of covariance functions such as the Matérn, but also

provides a rich model for more general spatial dependence. It should be noted that

we make no assumption on the distribution of observation or prediction locations even

though the latent components of our model will exploit regular grids. We are also able

to give some analytical results that suggest why this model can approximate a range

of spatial processes exhibiting different degrees of smoothness.

Many of the ingredients for this model are not new, however, their particular com-

bination with a view towards efficient computations for large and irregular spatial data

sets has not been exploited in previous works. The key is to introduce sparsity into

the computations in a way that does not compromise covariance models with long

range correlations and models with many degrees of freedom. This is achieved by

using compactly supported radial basis functions and computing the precision matrix

of the basis coefficients directly, not the covariance matrix. In addition we add some

normalizations that reduce the degree of artifacts from using a discrete basis. The

net result is a flexible covariance model that has rank comparable or greater than the

number of spatial locations and where spatial prediction, conditional simulation and

evaluation of the likelihood can be done on a modest laptop computer.

Recent work on statistical methods for large spatial data sets has used a fixed rank
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Kriging approach to make computations feasible. This can either take the form of

a small number of basis functions and an unstructured and dense P matrix such as

in Cressie and Johannesson (2008) or large number of basis functions and a sparse

model such a Markov random field for Q (Eidsvik et al. 2010). An insightful approach

was suggested in Stein (2008) and later in Sang and Huang (2011) where a low rank

process was combined with a process that has a compactly supported covariance. This

superposition of two processes anticipates our model where we consider a mixture

of covariances at multiple scales. Reflecting the fact that the likelihood calculation

carries most of the computational cost, there has been work on approximations to the

likelihood for spatial models by binning the observations and using spectral methods

(Fuentes 2007) or considering a partial likelihood (Michael L. Stein 2004) or pseudo

likelihood (Caragea and Smith 2007). Our approach differs from these papers in that

we are able to compute the likelihood exactly.

The next section describes the fixed rank Kriging model and its likelihood under a

setting where the process and measurement errors have a Gaussian distribution. This

section also gives details of the basis function construction and the particular Markov

random field used for the basis coefficients. Section 3 outlines the computational algo-

rithm and gives some timing results. The approximation properties of this basis/lattice

model are reported in Section 4 with the proofs of the asymptotic results relegated to

the Appendix. Section 5 provides an example for a climate precipitation data set for

the North American region, which is analyzed using a standard Matérn covariance and

the multi-resolution model. Section 6 contains conclusions. Much of the computations

in this paper can be reproduced using the LatticeKrig package in R, which serves as

a supplement for implementing the numerical methods and a ready source for the data

set.
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2 Spatial model

2.1 Process and observational models

Based on the set up in the introduction g will be a mean zero, Gaussian process with

covariance function:

COV (g(x), g(x′)) =
m∑

j,k=1

Pj,kφj(x)φk(x
′). (4)

With respect to the observation model in (1) we assume that ǫi are uncorrelated,

normally distributed with mean zero and covariance σ2W−1. Here we assume that

σ2 is a free parameter of the measurement error distribution and W is a known but

sparse precision matrix. In most applications W is diagonal or just the identity. Let Φ

be the regression matrix with columns indexing the basis functions and rows indexing

locations. Φi,j = φj(xi). With these definitions one can now reexpress (1) in matrix

vector notation as

y = Zd+ Φc+ e

and collecting the fixed and random components we have

y ∼ MN(Zd, ρΦPΦT + σ2W−1). (5)

As a last step it is useful to reparametrize this model to better mesh with the

computations and in some instances to simplify formulas. Let λ = σ2/ρ and we

reparametrize σ in terms of λ and ρ ( i.e. σ2 = λρ). Now set Mλ = (ΦPΦT + λW−1)

and (5) is the same as

y ∼ MN(Zd, ρMλ) (6)

2.2 Spatial estimate

From (6) we have the log likelihood

ℓ(ρ, P, λ,d) = (−1/2)(y − Zd)T (ρMλ)
−1(y − Zd)− (1/2)log|ρMλ|+ (n/2)log(π)

As a component of a full Bayesian model this represents part of the marginal distri-

bution having integrated over c.
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This expression is used to find maximum likelihood estimates (MLEs) of the fixed

effects and covariance parameters. In finding these estimates it is convenient to first

maximize over the fixed effects and then maximize over some of the covariance pa-

rameters. For fixed ρ, P and σ the MLEs for d are also the generalized least squares

(GLS) estimates

d̂ = (ZTM−1
λ Z)−1ZTM−1

λ y. (7)

Note this estimate only depends on λ and not on ρ. To maximize ℓ on the remaining

parameters set r = y − Zd̂ and the profile log likelihood is now

ℓ(ρ, P, σ, d̂) = (−1/2)(rT (ρM)−1
λ r)− (1/2)log|ρMλ|+ (n/2)log(π). (8)

Finally, the expression given above can be maximized over ρ giving ρ̂ = rTM−1
λ r/n.

This estimate can be substituted back into (8) to give a profile log likelihood in λ and

in any covariance parameters that contribute to P .

Although in this paper we will focus on maximum likelihood estimation for infer-

ence, one could also consider a prior distribution on the covariance parameters and

carry out a Bayesian inference for these model components. In doing so and also inte-

grating out the dependence of the posterior on c, one obtains a log marginal posterior

that is the sum of (8) and a log prior density on the covariance parameters and those

of d. Thus except for the influence of the priors, (8) comprises the log posterior for in-

ference on the model parameters. Considering a uniform (and improper) prior on d, d̂

will also be the posterior mode from a Bayesian perspective. A uniform and improper

prior on d may appear to be strange, but in many geostatistical applications it is a

reasonable approximation. Typically the likelihood will be informative for this small

set of regression parameters and will dominate any diffuse prior. Thus considering the

limiting case as the prior becomes diffuse is a reasonable assumption.

The inference for the basis coefficients depends on the standard results for the

conditional normal distribution. Specifically, the conditional distribution of c given y

and all other parameters in the model at their true values is a multivariate normal

[c|y,d, σ, ρ, P ] ∼ MN(ĉ, ρP − ρPΦT (Mλ)
−1ΦP ) (9)
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with

ĉ = PΦTM−1
λ (y − Zd) (10)

This conditional mean, ĉ, is taken to be the point estimate of c and by linearity, the

spatial estimate for g(x) at an arbitrary location is ĝ(x) =
∑m

j=1 φj(x)ĉ. Typically a

vector of the spatial covariates, z(x), is also provided at this location. To reproduce

the familiar universal Kriging estimator d is set at the GLS estimate given above and

so the full spatial prediction is: ŷ(x) = z(x)T d̂+ ĝ(x).

This estimate is also well-known as the best linear unbiased (BLUE) estimator.

The conditional variance of g(x) can be interpreted as the mean squared error from

a geostatistical perspective or from a Bayesian perspective as quantifying the uncer-

tainty in g(x) when the other parameters are known. Although there are closed form

expressions for the conditional covariance it is usually more efficient computationally

to draw samples from the posterior and quantify the uncertainty in the estimate by

Monte Carlo sample statistics. In geostatistics this technique is referred to as condi-

tional sampling and an efficient algorithm for the sampling is given in the next section.

Typically this conditional sampling is done using the estimated covariance parameters

but under a Bayesian analysis one can sample from the marginal posterior for these

parameters. By varying the covariance parameters in this manner one also includes

the uncertainty in the predictions with respect to estimating the covariance model.

2.3 Radial Basis functions (RBF)

Our full model proposes a multi-resolution basis where each level of resolution takes

the same form and so we start with describing a single level of basis functions on a

common scale. The basis functions are essentially translations and scalings of a single

radial function. Let φ be a unimodal, symmetric function in 1-dimension and let {uj},
1 ≤ j ≤ m be a rectangular grid of points. Here we “unroll” the indices over the two

dimensional grid into a single index to make the notation simpler.

Consistent with radial basis function terminology, we will refer to the grid points

as node points and let θ be a scale parameter. The basis functions are then

φ∗
j = φ(||x− uj||/θ) (11)
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Geometrically, the basis will consist of bumps centered at the node points with overlap

controlled by the choice of θ. In this work we will take φ to be a two-dimensional

Wendland covariance (Wendland 1995) that has support on [0, 1]. The Wendland

functions are polynomials in their argument and can be constructed with different

degrees of differentiability at the origin. They are also positive definite, which is an

attractive property when the basis is used for interpolation. In this work we use a

Wendland function valid up to 3 dimensions and belonging to C4:

φ(d) =





(1− d)6(35d2 + 18d+ 3)/3 for 0 ≤ d ≤ 1

0 otherwise.

2.4 Markov Random fields

In parallel with the preceding section we describe the stochastic model for the coeffi-

cients of a basis constructed at a single level of resolution. The multi-resolution aspect

replicates this model at each level. The coefficient vector c at a single level follows

a Gaussian Markov random field (GMRF) and is organized by the node points. We

will assume the special case that the coefficients follow a spatial autoregression (SAR).

The difference with this model for c and that in LR2011 is that we define the SAR

independently from the choice of basis. An alternative is to find the elements of Q

directly as inner products of the basis functions. Specifically if L is the differential

operator motivated from a partial differential equation then

[Q]jk =

∫
L(Φj)L(Φj)dx

will provide a finite approximation to the continuous process. We take a more direct

approach to specifying Q and this avoids the integrations to determine the inner prod-

ucts. These integrals may become difficult in more than two dimensions or if the lattice

is not on a rectangular grid. However, this strategy does have the advantage that there

is an unambiguous limiting spatial model as the basis becomes dense. Finally, we note

that the discretization of the SPDE based on a particular choice of basis functions

especially for a limited basis size, may not remove all of the non-stationary artifacts

and so adjustments such as those described in Section 2.6 may still be needed.
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Given an autoregression matrix B and e, a random vector distributed N(0, ρI), we

construct the distribution of c according to c = B−1e. The autoregressive interpreta-

tion is that Bc = e. That is, B transforms the correlated field to discrete white noise

with variance ρ. For our use we will constrain B to be sparse. Each row has a small

number of non-zero elements which we will define based on the nodes of the correspond-

ing basis functions. Although one may generalize the elements to other regular node

patterns, here the node points will form a rectangular grid. Let Nj denote the indices

of the nearest neighbors of uj. For an interior point this will be four neighbors, but

less for the nodes at edges and corners. Following LR2011 for interior lattice points we

take Bj,j = 4+κ2 with κ ≥ 0 and the off diagonal elements to be -1. Although one can

modify the weights at the edges of the lattice to approximate free boundary conditions

we have found that adding a buffer and keeping zero boundary conditions provides an

easier solution. The boundary effects are also dimished by the normalization discussed

in Section 2.6. By linearity c has covariance matrix ρB−1B−T and precision matrix

given by Q = (1/ρ)BTB. Because B is formulated as unconditional weights on the

field, any choice of B will lead to a valid covariance and so Q will be positive definite.

It is well known that the SAR weights do not specify the Markov structure directly.

For nonzero weights on the four neighbors Q will be a sparse matrix with each row

having 12 nonzero elements: the first, second and third order neighbors. Thus, c will

be a GMRF conditional on this larger clique of points. The results in LR2011 pro-

vide the connection between this GMRF and approximations to the Matérn family of

spatial covariances. In this particular case one expects that the SAR from Table 1

will approximate a Matérn process with scale parameter κ in LR2011 and smoothness

ν = 1.

2.5 Multi-resolution

From the previous sections we have developed a basis and covariance for a specific grid.

The multi-resolution model extends this idea by successively halving the spacing of the

grid points and specifying a GMRF for the coefficients at each level. Between levels

we assume coefficients are independent. To make this idea explicit assume that the
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spatial domain is the rectangle [a1, a2]× [b1, b2] and the initial grid {u1
j} is laid out with

mx×my grid points with the spacing δ ≡ (a2−a1)/(mx−1) = (b2−b1)/(my−1). Note

here the constraint that the spatial domain and numbers of grid points are matched

so that the grid spacing is the same in the x and y dimensions. Subsequent grids are

defined with spacings δl = δ2−(l−1) and yield a sequence of grids, {ul
j} that increase

roughly by a factor of four in size from level l to level l+1. To define the basis functions

for the lth level we take θl = θ/2(l−1) and define the radial basis functions as in (11).

Let L denote the total number of levels, then the (unnormalized) multi-resolution basis

is

φ∗
j,l = φ(||x− ul

j||/θl)

where 1 ≤ l ≤ L and 1 ≤ j ≤ m(l) and m(l) = (mx − 1)(my − 1)4l−1 +mx +my + 1

The vectors of coefficients associated with each level will be denoted by cl and so

the multi-resolution representation for g is

g(x) =

m(1)∑

j=1

c1jφ
∗
j,1(x) +

m(2)∑

j=1

c2jφ
∗
j,2(x) + . . .+

m(L)∑

j=1

cLj φ
∗
j,L(x) (12)

In general we can stack these coefficients as C = (c1, c2, ..., cL) and the natural exten-

sion of the SAR model is a sparse matrix B such that BC is N(0, ρI). Although B can

be a general matrix we have found it useful to restrict attention to a block diagonal

form. Equation (12) is written in this way and is suggestive of the process being a

sum of L processes. We assume that they are also independent. Let α1, α2, . . . , αL be

a vector of positive weights and for the lth level we assume cl follow a GMRF with a

SAR matrix, (1/
√
αl)Bl. Here Bl has the same form as in the single level but with the

κ parameter possibly depending on the level. One can interpret ραl as parameterizing

the marginal variance of the lth level process and κl is an approximate scale parameter.

Thus we are lead to a block diagonal form for B and also for the precision matrix:

Q = (1/ρ)




(1/α1)(B1)
TB1 0 . . . 0

0 (1/α2)(B2)
TB2 . . . 0

0 0 . . . 0

0 0 0 (1/αL)(BL)
TBL




(13)
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2.6 Normalization to approximate stationarity

Based on the specific form forQ we have found it useful to normalize the basis functions

to give a better approximation to stationary covariance functions. It is well known that

a GMRF on a finite lattice can exhibit edge effects and other artifacts in the covariance

model that are not physical. Moreover the radial basis functions having nodes on a

discrete set can also contribute to patterns in the implied covariance matrix.

For both free and zero boundary edge adjustments there is substantial difference

in the variance over the domain. One obvious correction for this effect is to weight

the basis functions so that when (4) is evaluated one will obtain a constant marginal

variance. Accordingly, let ω(x) =
√

COV (g(x), g(x)) from (4) and normalize the basis

functions as φj(x) = φ∗
j(x)/ω(x). Because this normalization is tied to the choice of

covariance model it means that the basis is no longer independent of the GMRF and

this linkage adds more computational overhead. However, the normalization can take

advantage of the overall strategy of using sparse matrix decompositions and we believe

reducing edge effects and other artifacts is worth the extra computation.

3 Computation

The estimators defined in the previous section can be found efficiently by a judicious

use of sparse matrix decompositions and matrix identities. Most of these computations

depend on the constructions of Φ, W and Q to be sparse matrices. As an introduction

we use throughout the fact that the sparse Cholesky decomposition has two steps: a

symbolic factorization to determine the sparsity pattern of the decomposition and then

a numerical factorization to compute the triangular matrix. In several instances the

sparsity pattern is fixed and only the values of the entries change. Anticipating this

case one stores the symbolic factorization and only recomputes the numerical portion.

In our R implementation using the spam sparse matrix package (Furrer and Sain 2010),

we have found that approximately half of the computational time in the decomposition

is taken up by the symbolic factorization.
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3.1 Normalization to constant marginal variance

Computing the normalization ω(x) breaks into the following steps:

1. Form the sparse precision matrix Q.

2. Compute the sparse Cholesky decomposition Q = AAT .

3. Solve the triangular linear system Av = z with zj = φj(x).

4. ω(x) = (
∑m

j=1 z
2
j)

−1/2.

For finding the normalization at more than one value of x the Cholesky decomposition

will not change and so steps 1 and 2 need only be done once. Also for changing values

of the GMRF the sparsity pattern does not change and so the symbolic factorization of

Q can be reused for different sets of covariance parameters. For some GMRF weights

it is possible to identify this problem with a discretization of the classical Poisson

problem in two dimensions from numerical analysis. There exist very efficient fast

Poisson solvers that could eliminate the computational overhead in this step.

3.2 Estimating the basis coefficients

A common calculation to find the concentrated likelihood in (5) and d̂ in (7) is to

evaluate M−1
λ w for an arbitrary vector w. Recall that Mλ = ΦPΦT + λW−1 and

taken at face value Mλ is a dense, potentially large matrix and so difficult to work

with directly. The strategy is to transform Mλ using matrix identities to involve the

sparse precision matrix. The matrix identities themselves are well known and central to

reducing the dimensions of the calculations in fixed rank Kriging. They work by shifting

the linear system size from matrices with dimensions of the number of observations (n)

to dimensions of the number of basis functions (m). Usual fixed rank Kriging has m

much smaller than n. In our application, however, exploiting these identities has the

potential effect of greatly increasing the nominal dimensions of the problem. When

the number of basis functions exceeds that of the observations the matrix sizes will

be larger but due to sparsity of the matrices the computations are feasible. In fact as

reported in Section 3.5 the computations can be much faster than a direct calculation.
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The Sherman-Morrison-Woodbury formula (Henderson and Searle (1981)) can be

applied to give

M−1
λ =

(
Φ(P )ΦT + (λW−1

)−1
= (W − (WΦ)G−1(ΦTW ))

where G = ΦTWΦ+ λQ. Using this identity one can now use the Cholesky decompo-

sition for G to solve the linear system Gv = (ΦTW )w for v and it follows that

M−1
λ w = Ww −WΦv

Because Φ, W and Q are all sparse, G will also be sparse. Moreover it also follows that

G is positive definite. Thus the linear system can be solved using a sparse Cholesky

decomposition. Note that an important limitation of this computational strategy is

that λ can not be identically zero. In practice this is not an issue as λ can be set to a

small enough value to give a result that is close to interpolation and is still numerically

stable.

To find ĉ as in (10) one can use the Sherman-Morrison-Woodbury formula or the

representation of the conditional multivariate normal in terms of precision matrices to

derive the identity

PΦTM−1
λ = PΦT (W − (WΦ)G−1(ΦTW )) = G−1ΦTW

Thus ĉ = G−1ΦTW (y − Zd̂) is found by taking advantage of sparsity of Φ and W for

multiplication and the sparse Cholesky factorization of G. The evaluation of ĝ(x) can

also be computed in an efficient manner if the sum is restricted to basis functions that

are nonzero at x.

3.3 Evaluating the determinant of the observation covariance

matrix

The other intensive computation occurs in the likelihood as the determinant of Mλ.

Using elementary properties of determinants

|Mλ| = |ΦPΦt + λW−1| = |λW−1||UUT + In| =
λn|UUT + In|

|W | (14)
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with U = (λ)−1/2W 1/2ΦP 1/2, adopting symmetric square roots of W and P , and In

being an n× n identity matrix.

Now one can use a special case of Sylvester’s Theorem. For an n×m matrix U and

identity matrices In and Im. |UUT + In| = |UTU + Im|.
Applying this identity with the choice of U given above

|UTU + In| = |UTU + Im| = |(1/λ)P 1/2(ΦTWΦ)P 1/2 + Im|
= λ−m|P−1/2||ΦTWΦ + λP−1||P−1/2|
= λ−m|ΦTWΦ + λP−1||P−1|

(15)

substituting for G and Q we have |UTU + In| = λ−m|G|/|Q| and so combining with

(14)

|Mλ| =
λn−m|G|
|Q||W |

The matrices, W , G and Q are all positive definite and sparse so the determinants

can be found efficiently from the product of the diagonal elements of the Cholesky

decompositions.

3.4 Conditional Simulation

In this section we describe a Monte Carlo algorithm to sample from the conditional

distribution of d and c (or g) given the observations and the covariance model. From

Section 2 the joint distribution of c and d conditioned on y and the covariance pa-

rameters is multivariate normal with mean given by d̂ and ĉ. We use the following

algorithm to generate a sample from the conditional multivariate distribution.

1. Generate c as N(0, ρP ) by solving the triangular system Ac = w where AAT =

1/ρQ and w ∼ N(0, I)

2. Generate synthetic observations y∗ = Φc+ e∗ with e∗ ∼ N(0, σ2W−1) and com-

pute estimates d̂∗ and ĉ∗ based on y∗

3. d∗ = d̂+ d̂∗ and c∗ = ĉ+(ĉ∗−c) will be a draw from the conditional distribution

for (d, c) and a draw from the predictive distribution for y is given by

y(x) = Z(x)Td∗ +
m∑

j=1

φj(x)c
∗
j
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3.5 Timing

Here we present some timings for the computations with the main comparison being the

dense matrix computations associated with Kriging. The number of spatial locations

was varied between 500 and 20000 and spatial predictions were found for an exponen-

tial covariance model and several choices of the lattice multi-resolution model. Note

that the computation time is essentially independent of the spatial data, the distribu-

tion of spatial locations, and the values of the covariance parameters. The timing is

done for the function mKrig in the R package fields (Furrer et al. 2012) implementing

standard Kriging and for the function LKrig in the R package LatticeKrig (Nychka

et al. 2012) implementing the multi-resolution basis function model. Times reported

are for a Macbook Pro laptop ( 2.3 Ghz Intel Core i7) and R 2.14 (R Development

Core Team 2011). Both of these functions compute the predictions at the observations

for a fixed covariance model, evaluate the likelihood, compute the coefficients for pre-

dicting the surface at arbitrary points, and an approximate estimate of the generalized

cross-validation function. Despite this varied output from the functions, the Cholesky

decomposition in both mKrig and LKrig dominate the time for large n.

Figure 1 reports the total time for these functions using the R utility system.time.

The dashed line is the time for the standard “Kriging” estimate using mKrig up to

10,000 observations and with times extrapolated to 20,000. Thus the time for 20,000

observations and standard Kriging is estimated to be about 1,300 seconds (about 21

minutes). The solid black line is the time for the function LKrig with a single level,

the number of basis functions chosen to be approximately equal to the sample size,

and with the basis functions normalized to have unit marginal variance. The dotted

black line is the same scheme but without normalizing the basis functions. For 20000

spatial locations the times for these models are 31 seconds (normalized) and 5.5 seconds

(unnormalized).

The grey lines report timing with the number of basis functions kept fixed. The line

labeled 10 has four levels of multi resolution and where the coarsest basis has centers

on a 10 × 10 grid and totaling 7159 basis functions. The line labeled 20 is the same

specification but with the coarsest grid being a 20×20 grid with a total of 31,259 basis
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functions. The solid lines are timings with normalized basis functions and dotted are

without normalization.

These results indicate substantial time savings over the dense matrix computations

and evaluations of the likelihood are feasible even for 20000 spatial locations. The

unnormalized computation times are particularly striking and are largely dominated

by the sparse Cholesky decomposition of the matrix G discussed in Section 3.2. For

this work we have not exploited more efficient algorithms in the normalization step and

there is some difference between the normalized and unnormalized cases. As might be

expected the two covariance models with fixed degrees of freedom ( 7,159 and 31,259)

are closer to being linear as a function of sample size.



20

1000 2000 5000 10000

1
e

−
0

1
1

e
+

0
0

1
e

+
0

1
1

e
+

0
2

1
e

+
0

3

Number of spatial locations

S
e

c
o

n
d

s

10x10

20x20

10x10

20x20

10x10

20x20

10x10

20x20

10x10

20x20

10x10

20x20

Figure 1: Timing results for the lattice/basis model and standard Kriging. Plotted are times in

seconds as the number of spatial locations is varied between 500 and 20000. Spatial locations are

generated from the uniform distribution on the domain [−1, 1]× [−1, 1]. (However, the particular

values spatial locations do not effect these timing results.) The dashed line is the time for the

mKrig function from the fields R package that computes the likelihood and related statistics for

an exponential covariance model with a fixed set of covariance parameters using a standard dense

matrix Cholesky decomposition. Solid and dotted lines are times for the LKrig function from the

LatticeKrig R package that compute the likelihood and related statistics for a multi-resolution

lattice covariance with fixed parameters. Solid lines are times with normalization to a constant

marginal variance and dotted lines are times without normalization. Among these cases the black

lines are for a single level model where the basis functions are chosen to be roughly equal to the

number of spatial locations. The orange lines use a fixed number of basis functions comprising

four levels and with the coarsest level being either 10×10 or 20×20. Text labels identify these

cases.
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4 Properties of the covariance model

In this section we present some theoretical expansions and some exact computations

that outline the properties of the covariance family introduced in Section 2. As a

foundation, we first consider a convolution approximation to the sum over radial basis

functions.

4.1 Process convolution

It is simplest to define a single convolution process and then extend this to an infinite

mixture. Let z be a unit variance, isotropic, two dimensional Matérn process with

spatial scale parameter κ, smoothness ν, and Cν(||x − x′||/κ) = E(z(x), z(x′)), the

corresponding covariance function. Also let φ be a compactly supported RBF with

φ(0) = 1. For θ > 0 a scale parameter, define the convolution process

g(x) =

∫

R
2

1

θ2
φ(||x− u||/θ)z(u)du.

This type of process for statistical modeling is well-established (see Higdon 1998) and

as written will be Gaussian, mean zero, and have an isotropic covariance function given

by ∫

R
2

∫

R
2

1

θ4
φ(||x− u||/θ)Cν(||u− v||/κ)φ(||x′ − v||/θ)dudv. (16)

Now consider a sequence of independent Matérn processes, zl(x) with {θl} a se-

quence of scale parameters for the convolution kernel and “hard wire” κl = 1/θl.

These define a sequence of convolution processes gl(x) according to (16) with the same

marginal variance. Finally, let kl denote the covariance function for the lth process.

Given, non-negative weights {αk} that are summable we are lead to the multi-

resolution process that is Gaussian, mean zero and covariance given by

k(x,x′) =
∞∑

l=1

αlkl(x,x
′).

Given this representation, a theoretical question is how the choice of {θl} and {αl}
influence the properties of k. In particular, is it possible to construct covariances that

represent different degrees of smoothness than those implied by the basis functions
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and Matérn process used in the convolution? Typically the smoothness of an isotropic,

stationary Gaussian process is tied to the differentiability of the covariance function at

the origin. An alternative measure is to characterize the tail behavior of the spectral

density of the process. Under isotropy the spectral density will be radially symmetric

and we focus on the decay rate as r increases. In particular, for spectral densities whose

tails are bounded by a fixed polynomial decay we will take the polynomial order as a

convenient measure of the process smoothness. For the Matérn family a smoothness of

ν and dimension 2 the spectral density will have a tail behavior following r−(2ν+2) as

r → ∞. For example the exponential covariance (ν= 1/2) will have a spectral density

that decreases at the polynomial rate r−3. A covariance spectrum with tail behavior of

the same order might be expected to provide a process model with similar smoothness

to the exponential at small spatial scales. The following theorem reports the tail

behavior for the multi-resolution process for different choices of the scale and weight

sequences. An interesting result is that the multi-resolution process can reproduce a

scale of different decay rates for the tail of the spectral density and can recover the -3

rate of decay for the exponential covariance.

Theorem 4.1. Assume:

1. φ is a two-dimensional Wendland covariance function of order K

2. The smoothness of the Matérn processes is fixed at ν = 1.

3. αl = e−2β1l and θl = e−β2l with β1, β2 > 0 and (β1/β2 + 1) < (5 + 2K)

If S(r) denotes the spectral density of g (or k) with respect to the radial coordinate

then there are constants independent of r, 0 < A1, A2 < ∞ such that

A1 < S(r)r2µ+2 < A2

with µ = β1/β2.

Corollary 4.2. Under assumptions 1 and 2 and θl = 2−l, αl = θ2νl and (ν+1) < (5+

2K), S(r) will have tail behavior with the same polynomial order as a two-dimensional,

Matérn process spectrum with smoothness ν.

The proof of this theorem is given in the Appendix.
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4.2 Numerical approximation

Given the theoretical foundation for the multi-resolution covariance it is interesting to

explore the approximation for a finite number of levels and for the lattice process. As

an example of this property, the setup from Theorem 1 was evaluated to approximate

members of the Matérn family. Figure 2 gives the resulting approximations for 2, 4,

and 6 multi-resolution levels (kl, for l being 2, 4, and 6) and for smoothness µ = 0.5

(exponential) and 1.0 (Whittle). The multi-resolution and the Matérn correlation

functions are isotropic and so they are plotted against the distance of separation. The

weight formulae are taken from the Corollary to Theorem 1. The Matérn covariance

used for the convolution has smoothness 1.0 with a scale of 1.0 and the Wendland

function, φ, has smoothness degree 2.0 with a scale of 2.5 (i.e. identically zero outside

a radius of 2.5). The Matérn covariance function for comparison was determined by

finding the scale parameter that minimizes the sum of squares (i.e. a discrete L2

norm) between the weighted mixture given by the multi-resolution model and the

Matérn family. Although one might derive this value from the asymptotic formula in

practice this would be estimated and so it seems reasonable to choose a scale as the

result of an optimization of the norm. This gave 0.159 for µ = .5 and .131 for µ = 1.0.

The approximation improves with increasing level and the benefit from more levels

is most apparent near the origin. Moreover the approximation can be understood by

the support of the basis functions from the first row of plots. Here we see that finest

level of the multi-resolution correlation function has a half height on the order of .05

and this distance is about the order where the six level approximation breaks down for

the exponential. In general we have found the approximation to be accurate provided

enough levels of resolution are included. As a rule of thumb 6 levels seems to be a

practical upper limit to represent members of the Matérn family.
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Figure 2: Theoretical approximation of Matérn correlation functions using the multi resolution

process based on process convolutions. The first row plots the approximations to an exponential

function (black solid). The grey lines are the approximations for 2 (dotted), 4 (dashed) and 6 (

solid) levels of the multi-resolution. On the left side is the full range of this case and the right is a

magnification near the origin and with a log scale on the y axis. The second row is organized the

same way as the second row but in this case the approximation is to a Whittle covariance function

(a Matérn covariance with a smoothness of 1.0).

The theoretical approximation is based on a continuous convolution of the basis

functions with the Matérn covariance and does not match the discrete stochastic model

used for data analysis. A more practical comparison is how well a multi-resolution
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basis can match members of the Matérn family. Here we indicate the quality of the

approximation given θl = 2−l but optimizing over {κl} and and {αl}. Note that

this scheme is slightly different than the theoretical setup because κl is allowed to

vary independently from θl and αl is not constrained to be a power of θl. The first

row in Figure 3 shows the approximation for an exponential covariance with range

parameters .1, .5 and 1.0. using 3 and 4 levels of multi-resolution basis functions. The

multi-resolution parameters κl and αl have been found by minimizing the mean squared

error between the approximation and the target covariance function on a grid of 200

distances in the interval [0, 1]. The coarsest basis function centers are organized on a

10× 10 grid on the square [−1, 1]× [−1, 1] and so with four levels the approximation

has 102+192+372+732 = 7159 two-dimensional basis functions. The plots in the left

hand column are the target and approximate covariances as a function of distance from

the point (0, 0) along the x-axis. The approximation is close to being stationary and

isotropic and so this comparison is representative for distances along other orientations.

In the plots the solid curve is the covariance, the dotted line is the approximation with

3 levels, and the dashed line is the approximation at 4 levels.
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Figure 3: Approximation of Matérn covariances using the lattice/basis model. For the plots on

the left hand side columns the solid grey lines are the true correlation functions. First row is

an exponential correlation with range parameter (.1, .5 and 1.0) and second row is the Whittle

correlation with ranges 0.1, 0.5 and 1.0. Black lines are the approximations to these correlation

functions. Approximations are indicated in black and are based on a three level (dashed) or four

level (solid) multi-resolution model. The domain for the approximation is a [−1, 1] × [−1, 1] a

square and the initial grid is 10 × 10 for the range parameters .1, .5. The initial grid for the

1.0 ranges is 5 × 5. The left columns are the approximations with the true correlations over the

distance limits [0, .3] to highlight errors near the origin even though the approximation is found for

a spatial domain [−1, 1]×[−1, 1]. The right columns are the differences between the approximation

and the true correlation function for the cases when the range is .1 or for the mixture model. The

characters 3 and 4 indicate the support for the basis functions at the third and fourth levels of

resolution.
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Mixture: .4Exp(.1) + .6Exp(3.0) Error for smallest scale near origin
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Figure 4: Approximation of a mixture of exponential covariances. The figure is organized the same

as a row in the previous but with addition grey lines in the left plot indicating the two separate

exponential covariances comprising the mixture.

Not surprisingly the approximation breaks down at small distances that are below

the resolution of the finest basis functions. This feature is highlighted by the plots

in the right column where the approximation is given for points in a range close to

zero. The characters “3” and “4” indicate the smallest scale of the basis functions and

thus indicate the limits of the multi-resolution for the 3 and 4 level choices. A similar

approximation is made for the Whittle covariance ( µ = 1) except for the largest range

parameter the coarsest basis has centers on a 5 × 5 grid (giving a total of 1484 basis

functions). Note that in the error plot there is also a small artifact, a rippling feature

that is from the discrete spacing of the basis functions. Figure 4 is an example of the

ability of the multi-resolution to approximate more general correlation functions. This

is perhaps the most striking example of the flexibility of this model. Here the target is

a mixture of exponentials: .4 exp(−d/.1) + .6 exp(−d/3). For reference the individual

exponential correlation functions are plotted as grey solid lines. The approximation is

also accurate with the error localized near the origin and being large below the smallest

scale of the multi-resolution.
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5 North American summer precipitation

The multi-resolution lattice model was applied to a substantive climate data set in order

to test its practical value and compare it to standard Kriging. The goal is to estimate

the average summer rainfall on a fine grid for North America based on high quality

surface observations. These types of fields are an important reference in studying the

Earth’s climate system. These observational climate data can be used to assess the

validity of global numerical models that attempt to simulate climate. Typically one

requires that irregularly spaced station data be transformed to a regular grid that

is comparable to numerical climate model output. Some standard gridded climate

datasets are those from the Hadley Center (Jones et al. 2012) and the climate group at

the University of Delaware (Willmott and Robeson 1995). However, we suggest that

these data products can be improved using spatial methods to quantify the uncertainty

and also to facilitate the use of orography (e.g. elevation) for spatial prediction.

The monthly data used to construct this example are freely available as the product

Global Historical Climate Network (GHCN) Version 2 Precipitation (NOAA/NCDC

2011). GHCN data is quality controlled, curated and served by the US National Cli-

matic Data Center. The adjusted data from this archive has been modified from its

raw form to make the record more homogenous. Heterogeneities can come from a va-

riety of sources such as moving the station a short distance or changes in instruments

(see http://www.ncdc.noaa.gov/ghcnm). The data used here consists of 1720 sta-

tions. 1595 stations from the adjusted subset and 125 unadjusted stations in Northern

Canada, Alaska and Mexico to fill out the edges of the study domain. For each station,

a least squares, straight line was fit to the summer precipitation totals (June, July,

August) for the period 1950-2010 and the trend line was evaluated at the midpoint

time (1980.5). The trend line for each station at this time is taken to represent the

mean climate for this reference period. Note that with complete observations this is

just the sample mean however, 75% of the adjusted stations are missing at least 10

values in this period.

For reference the version of the climate data used is the R data set NorthAmericanRainfall

in the LatticeKrig package. (Much of the basic analysis is included as source code
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in the help file for this data set.) Elevation is based on a gridded field at 4km reso-

lution derived from GTOPO30, a global digital elevation model created by the U.S.

Geological Survey (see http://eros.usgs.gov). The spatial model was fit using stere-

ographic map coordinates for the station locations (the option stereographic from

the R mapproj package). This projection gave spatial coordinates whose euclidean

distances were similar to great circle distance (see Figure 5). Thus this transformation

of coordinates avoided specializing the basis for the sphere. With larger regions this

will not be effective and one would have to construct a different set of basis functions

and a GMRF better suited to spherical geometry.

The spatial model was fit to the log of mean precipitation with the spatial coor-

dinates and elevation included as linear fixed effects. Three correlation models were

considered:

Matern (2 parameters) A stationary, isotropic Matern with range and smoothness

parameters.

Matern-like (2 parameters) A three-level, multi-resolution covariance with coarsest

level having a lattice of 16× 13 within the rectangular spatial domain amounting

to approximately 4000 basis functions. A common value for κ was used to control

the range at all levels. The first multi-resolution model constrains {α1, ..., α3}
αk ∼ 2−2ν with the additional constraint that

∑
αk = 1.

Multi-resolution (3 parameters) The same three-level structure as the Matern-like

model with κ a common paramter. However, αk are only constrained as αk > 0

and
∑

αk = 1.

All three covariance functions include the variance parameter, ρ being the marginal

variance of the spatial process and the parameter, σ2 that is the measurement (or

nugget) variance.

The covariance parameters were estimated by maximum likelihood and confidence

regions for the parameters were derived using the large sample chi squared approxima-

tion to -2 times the log likelihood. Based on a 95 % confidence set the range parameter

for the Matern model was not constrained from above and so a thin-plate spline model,

i.e. a limiting process as the range becomes large, is not ruled out. The smoothness
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parameter however has an MLE of .64. Figure 6 compares the correlation functions for

these three different models based on the confidence sets for the parameters. Here the

95% confidence set for the models parameters was translated into a confidence band of

the corresponding correlation functions. The multi-resolution models have the flexibil-

ity to have long range correlations and it is interesting for these data that their shape

is different than the Matern family. The spatial predictions given by all three models

are similar, within the prediction uncertainty measures. The estimated measurement

error (σ2) and effective degrees of freedom for the spatial models are reported in Table

1. The measurement error variance is smaller for the Matern compared to the lattice

models and this is consistent with the Matern representing a slightly rougher process

than the multi-resolution models and so more of the fine scale variance is captured by

the process.

Figure 7 is an example of the expected precipitation surface for a subregion over

the Rocky Mountains centered on Colorado. The multi-resolution covariance with the

MLE parameters reported in Table 1 is used for these estimates, which are evaluated

on a 200×200 grid. 200 conditional fields were simulated and to increase the accuracy

of this sample the realizations were centered so that their mean matched their condi-

tional expected mean,which can be computed exactly. Although the spatial model was

estimated on a log scale of precipitation, the conditional samples were transformed to

the raw scale to represent the distribution for unlogged values. Specifically the surface

in (a) is the mean of the exponentiated conditional fields. Here the elevation covariate

explains a large amount of the spatial structure but this component is modified by

the smooth nonparametric component based on the location. Plot b) is the estimated

prediction standard error as a percentage of the mean predicted field.
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MLE σ Model degrees of freedom

Matern .1084 943

Matern-like .1402 489.4

Multi-resolution .1353 550.6

Table 1: Maximum likelihood estimates of σ and the effective degrees of freedom for the three

covariance models described in Section 5.
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Figure 5: Stereographic projection of precipitation observation locations. Solid points show obser-

vation stations where the records have been adjusted and open dots those stations with unadjusted

records.
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Figure 6: Correlation models fit to the precipitation data. Dashed line is the Matérn correlation

function found by maximum likelihood and the light grey shading is an approximate 95% un-

certainty region based on a confidence set for the range and smoothness parameters. Note that

the range is not constrained in its upper limit. Dotted red line is the estimated correlation and

uncertainty (red shading) for the Matern-like covariance model. Solid green line with darker grey

shading is a similar summary of the correlation for the three level multi-resolution model. Note

that distances are in stereographic map coordinates and their scale can be inferred from Figure 5.
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Figure 7: Plot (a) reports the spatial predictions for mean summer (JJA) precipitation in cm and

includes elevation as a fixed linear covariate. This subregion is outlined in Figure 5 and units are

centimeters of total rainfall. The spatial covariance function is the three level multi-resolution

model described in Figure 6. (b) reports approximate prediction standard errors for this surface

as a percentage of the predicted mean field. Solid points show observation stations.

6 Discussions and Conclusions

This work has developed a new model for a spatial process: a lattice/basis model that

builds on ideas from fixed rank Kriging and the computational efficiencies that are

inherited from Markov random fields. The key contribution is that an independent

sum of the processes at different scales can approximate a larger family of processes
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not limited to the properties of the covariance at each resolution level. One advantage

of our model is numerical evidence that it can accurately reproduce the Matérn family

of covariances. Also we give some asymptotic results based on a theoretical convolution

model that indicate that a range of smoothness properties can be achieved. This result

is unexpected given that the lattice/basis process has a fixed smoothness controlled

by the choice of basis functions. It is still an open task to determine the precise

connection between the convolution model and the discrete sum suggested in Section

4. To this extent, the theoretical results are at best suggestive of the lattice/basis model

properties. We have found it advantageous to normalize the basis functions to give

constant marginal variances for a given GMRF, which comes at some computational

costs. The obvious advantage here is that, albeit achieved in a fairly heavy-handed

way, the discrete model and the continuous convolution model agree exactly in terms

of the process marginal variance.

Besides the value of the lattice/basis formulation as a new covariance model there

is an equally important contribution in computational efficiency for large data sets. In

fact it is our perspective that more complex covariance models can only be exploited

when a large number of observation locations allow for accurate estimation of covari-

ance parameters. Thus the computational aspects are intrinsic to applying new spatial

models. We have been successful in identifying algorithms that allow for computing

the restricted likelihood to estimate covariance parameters and the prediction of the

spatial field using very large data sets. In addition, conditional simulation of the spa-

tial fields is a simple and computationally feasible method to incorporate uncertainty

from both the covariance parameters and also the spatial interpolation or smoothing.

Although we have not developed a fully Bayesian algorithm for inference we emphasize

that the main computational ingredients are present to apply integrated nested Laplace

approximations (Rue et al. 2009) or to generate complete Monte Carlo samples from

the full posterior distribution.

Because of the description of the stochastic spatial elements in terms of a SAR, it is

straightforward to propose a non stationary extension to the lattice basis model. One

would allow both the κl and αl to vary over the lattice at each level. An additional
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refinement would allow the SAR weights between the neighboring lattice points to be

directionally dependent. The spatial variation in these parameters could be modeled

by a set of covariates and fixed effects or one could include a spatial process prior

on these parameter fields. The advantage of our approach and also of the related

SPDE and process convolution models is that one will always obtain a valid covariance

function because the model focuses on a process level description. It is still an open

question how much non-stationary structure can be estimated from data sets currently

encountered in geophysical applications. However, we believe that the lattice/basis

formulation will provide competitive computational efficiency and model parsimony

compared to other approaches.

Finally, we note that the lattice/basis model can be implemented using a collection

of simple numerical algorithms and readily available software. We avoid the triangu-

larization of the spatial locations or computation of basis function inner products and

the sequence of regular lattices for the basis function centers simplifies coding the al-

gorithms. An R implementation is available with amply documented and commented

source code and uses the generic sparse matrix R package spam. The LatticeKrig

source code is largely written in the R language with limited use of lower level C or

FORTRAN functions and is hence easy to modify. The maximization of the likelihood

(or more generally a posterior) can be done using packages and tools in R which makes

this model easy to apply for spatial data analysis and inference.
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Appendix

Outline of proof

Let φ̃k be the spectral density for φ and C̃ν the spectral density of a Matérn field with

ν = 1, unit variance and unit spatial scale parameter. Including the scale parameter

for the radial basis function kernel and using elementary properties of convolution.

S̃(r) =
∞∑

l=1

αl

[
θ2l C̃ν(θlr)

] [
φ̃k(θlr)

]2

The Matérn spectral density is

C̃ν(r) =
1

(2π)

1

(1 + r2)2

For the Wendland spectral density there are constants C1 and C2 depending only on

K such that for all ω

C1 ≤ φ̃k(ω)(1 + ‖ω‖2)3/2+K ≤ C2
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(Wendland (1998)). Using the upper bound on φ̃, substituting the expressions for θl

and αl and finally combining terms gives the upper bound

S̃(r) < C ′

∞∑

l=1

αl
θ2l

(1 + (rθl)2)η
= C ′

∞∑

l=1

e−2β1le−2β2l

(1 + (re−β2l)2)η
= C ′

∞∑

l=1

e−(2β1+2β2)l

(1 + r2e−2β2l)η

with η = 2 + 2(3/2 +K) = 5 + 2K.

Now apply the useful lemma given below with the identifications a = 2β1 + 2β2,

b = 2β2, c = η, and s = r2. We have the rate given by r−2(a/b) and with 2a/b =

2(2β1 + 2β2)/2β2 = 2β2/β1 + 2. The result for the upper bound now follows and the

rate for the lower bound is proved in a similar manner.

Two Useful Lemmas

Lemma 6.1. Let H be a continuous and integrable function on [1,∞]. Also assume

that H is positive and unimodal with maximum at u∗.

∣∣∣∣∣

∞∑

l=1

H(l)−
∫ ∞

1

H(u)du

∣∣∣∣∣ < H(u∗)

Proof Let L be the integer so that H(L) = maxlH(l) also let Il =
∫ l+1

l
H(u)du then

by elementary properties of the integral and the unimodality of H

Il > H(l), 1 ≤ l ≤ (L− 1)

Il−1 > H(l), (L+ 1) ≤ l ≤ ∞
(17)

summing over l gives
∞∑

l=1

Il >
∑

l 6=L

H(l)

Simplifying and rearranging terms

∫ ∞

1

H(u)du−
∞∑

l=1

H(l) > −H(L)

Again by properties of the integral and H

Il−1 < H(l), 2 ≤ l ≤ L

Il < H(l), (L+ 1) ≤ l ≤ ∞
(18)
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summing over l gives ∫ ∞

1

H(u)du <
∑

l 6=L

H(l)

or ∫ ∞

1

H(u)du−
∞∑

l=1

H(l) < H(L)

Noting that H(L) < H(u∗) the result now follows.

Lemma 6.2. For a, b, c, s > 0 and for (a/b)−c < 0 there are constants 0 < C1, C2 < ∞

C1s
−a/b <

∞∑

l=1

e−al

(1 + se−bl)c
< C2s

−a/b

Proof Based on Lemma 6.1 let H(u) = e−au/(1+ se−bu)c. H is unimodal. From basic

calculus the maximum of H is H(u∗) = Cs−a/b for 0 < C < ∞ and C depending only

on a, b, c. We now evaluate the approximating integral from Lemma 6.1 as a function

of s.

∫ ∞

1

H(u)du =

∫ ∞

1

e−audu

(1 + se−bu)c
=

∫ ∞

1

(e−bu)a/bdu

(1 + se−bu)c

Now make the substitution q = e−bu giving dq = −b(ebu)du or du = −dq
bq

and with

limits of integration, e−b and 0. One obtains

b

∫ e−b

0

q(a/b)−1dq

(1 + sq)c
(19)

Since (a/b) > 0 the pole at zero is integrable and the integral is finite. Now make

the substitution p = sq giving dp = sdq and

b

∫ se−b

0

(p/s)(a/b)−1dp

s(1 + p)c
= bs−a/b

∫ se−b

0

p(a/b)−1dp

(1 + p)c
(20)

Under the assumption that a/b − c < 0 the integral will be finite in the limit as

s → ∞. Thus
∫∞

1
H(u)du and H(u∗) converge to zero at the polynomial rate s−a/b

and the result follows from application of Lemma 6.1.
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