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ABSTRACT Many scholars have proposed different single-robot coverage path planning (SCPP) and multi-

robot coverage path planning (MCPP) algorithms to solve the coverage path planning (CPP) problem of

robots in specific areas. However, in outdoor environments, especially in emergency search and rescue

tasks, complex geographic environments reduce the task execution efficiency of robots. Existing CPP

algorithms have hardly considered environmental complexity. This article proposed an MCPP algorithm

considering the complex land cover types in outdoor environments to solve the related problems. The

algorithm first describes the visual fields of the robots in different land cover types by constructing a

hierarchical quadtree and builds the adjacent topological relations among the cells in the same and different

layers in the hierarchical quadtree by defining shared neighbor direction based on Binary System. The

algorithm then performs an approximately balanced task assignment to the robots considering the moving

speeds in different land cover types using the azimuth trend method we proposed to ensure the convergence

of the task assignment process. Finally, the algorithm improves Spanning Tree Covering (STC) algorithm

to complete the CPP in the area where each robot belongs. This study used a classification image of the

real outdoor environment to the verification of the algorithm. Results show that the coverage paths planned

by the algorithm are reasonable and efficient and its performance has obvious advantages compare with the

current mainstream MCPP algorithm.

INDEX TERMS Coverage path planning algorithm, complex geographic environments, emergency search,

multi-robot CPP, multiple land cover types, terrain sub-division.

I. INTRODUCTION

The coverage path planning (CPP) problem is a task wherein

a robot or robots determines a path to pass over all points

of an area or volume of interest while avoiding obstacles [1].

With the continuous development of unmanned aerial vehicle

and robot technology, CPP algorithms have been widely used

as one of the core algorithms to assist robots or unmanned

aerial vehicles in performing specific tasks, including

area cleaning [2], fire monitoring [3], [4], surveillance,
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search and rescue tasks [5]–[7], and mapping and model

reconstruction [8]–[10].

When using robots to perform large-scale emergency

search and rescue tasks in outdoor environments, the use of

a single robot exposes many problems, such as long time

consumption and insufficient battery life. Therefore, with the

development of synchronic control theory, communication

technology, and intelligent hardware, utilizing coordinated

multiple robots to solve the above problems has attracted

increasing attention in the industry; thus, the multi-robot

CPP (MCPP) problem has become a research focus [11].

In the related works on the MCPP problem, most stud-

ies have only considered unmanned aerial vehicle (UAV)
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applications and ignored the effect of complex environments

in the task area during CPP. Other studies have considered

robot applications but had a small study area and a single

cover type, such as a sweeping robot. Therefore, robots are

always assumed to have a constant visual field and moving

speed in the entire area in existing MCPP algorithms (The

concepts of visual field and moving speed will be described

in detail in Section III). Thus, after the area is divided by

the approximate cell decomposition method, the cells in the

entire task area have the same size.

However, the performance efficiency of robots in emer-

gency search and rescue tasks is seriously affected due to the

complexity and variation of the environmental surface, so that

a robot may have different visual fields and moving speeds

in different environments. For example, robots in the forest

area have a considerably smaller visual field than those in

the Gobi area; those in the mountain area have a remarkably

slower moving speed than those in the flat area. The existing

MCPP algorithms cannot provide a satisfactory solution for

the aforementioned cases.

This article proposes an algorithm called MCPP-MLCT

to solve MCPP problems in the environment with Multiple

LandCover Types (MLCT). The algorithm uses a hierarchical

quadtree to describe the visual fields of the robots in different

land cover types, with different layers in the quadtree rep-

resenting different visual fields. Taking the outdoor search

and rescue task as an example, the visual field of the robot

and the size of corresponding cells will be small when the

environment is complex. The algorithm establishes the adja-

cent topology relationship among cells in the same and dif-

ferent layers in the hierarchical quadtree by defining shared

neighbor direction based on Binary System, to improve the

efficiency of task assignment and path planning. We use the

azimuth trend method to extend the assignment process to

the unassigned area to ensure the convergence of the task

assignment process, and balance the amount of task for each

robot considering the variation of moving speed varies with

land cover type in the process of task assignment. Finally,

an improved Spanning Tree Covering (STC) method is used

in the sub-area of each robot to complete the CPP.

Section II reviews the related works of the MCPP problem.

Section III focuses on the MCPP-MLCT algorithm and its

specific implementation. Section IV uses the real land classi-

fication data to verify the proposed algorithm and discusses

the experimental results and related work of the algorithm.

Section V analyzes the time complexity and shortcomings of

the algorithm. Section VI summarizes the research content

and provides an outlook for further work.

II. RELATED WORKS

CPP algorithms can be roughly divided into the following

two types: geometry-based and grid-based, or exact cel-

lular decomposition and approximate cellular decomposi-

tion. The general idea of the geometry-based algorithms is

first dividing the area into simple sub-areas, such as non-

convex, and then using a simple method (e.g., zigzag path) to

complete the CPP in each sub-area. Meanwhile, grid-based

algorithms divide the area into regular cells (usually squares)

according to the coverage capabilities of robots or unmanned

aerial vehicles, approximate these cells to points, and then

connect them into continuous and non-repeated (or low-

repeated) paths. The representative geometry-based algo-

rithms include Trapezoidal decomposition algorithm [12],

Boustrophedon decomposition algorithm [13], and Morse-

based cellular decomposition algorithm [14]. The wavefront

algorithm and the STC algorithm proposed in references [15]

and [16] belong to the typical grid-based algorithms.

Cluster control is one of the key technologies in MCPP.

Generally speaking, the cluster control technology can be

divided into three types: centralized, decentralized, and the

combination of centralized and decentralized. In recent years,

many cluster control algorithms and applications based on

the combination of centralized and decentralized methods

have been proposed. Reference [17] proposed a framework

includes a new clustering behavior that causes agents in the

swarm to agree on attending a group and allocating a leader

for each group, in a decentralized and local manner. The

leader of each group employs a vision-based goal detection

algorithm to find and acquire the goal in a cluttered environ-

ment. As soon as the leader starts moving, each member is

enabled to move in the same direction by staying coordinated

with the leader andmaintaining the desired formation pattern.

Considering the noticeable increase in the number of low-cost

mobile robots readily available, Reference [18] reported one

possible embodiment of such a technology—an integrated

combination of hardware and software—designed to enable

the assembly and the study of swarming in a range of general-

purpose robotic systems. This is achieved by combining a

modular and transferable software toolbox with a hardware

suite composed of a collection of low-cost and off-the-shelf

components. The developed technology can be ported to a

relatively vast range of robotic platforms. Because cluster

control is not our focus topics, we adopted the centralized

method in order to reduce complexity in our works.

Compared with single-robot CPP (SCPP), MCPP can

direct multiple robots to complete tasks in parallel, thus

reducing time consumption and improving execution effi-

ciency in tasks. Overall, the MCPP problem can be optimized

from four different perspectives in terms of different applica-

tion scenarios: (1) the minimum total cost to complete the

area coverage, such as the total path length or total coverage

time; (2) the minimum turn times along the path; (3) the

minimum repeated coverage in the area; (4) the balanced

task cost of each robot, which is generally measured by the

path length or coverage time. One or more of the aforemen-

tioned optimizations must be achieved to maximize coverage

efficiency.

Minimizing the total cost, such as the total path length or

the total coverage time, can reduce energy consumption in

the MCPP problem. An algorithm proposed in reference [2]

converted the MCPP problem into the flow network through

the exact cellular decomposition method. The time cost of
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each edge in the flow network was the sum of the cover-

age time of the current cell and the shift time in adjacent

cells. The minimum cost path from the start node to the end

node through the flow network was determined by a network

search algorithm in accordance with the time cost, which

could visit each node in this flow network without repetition.

Similarly, additional turns produce additional time and

energy consumption. Reference [19] proposed a meta-

heuristic algorithm called Harmony Search to reduce the turn

times in the robot path, ensuring low energy consumption and

minimum coverage time.

Repeated coverage also increases time and energy con-

sumption. The ideal situation is to cover the entire area

without repetition. Reference [20] proposed a multi-robot

coverage algorithm that minimized repeated coverage. This

algorithm used the Boustrophedon cellular decomposition

algorithm to decompose the area into multiple simple cells

and a method of task assignment to robots. Moreover,

the algorithms based on STC could minimize coverage

repetition [16].

The MCPP problem is a coordinated process of multiple

robots. Thus, the balancing task cost of each robot could also

improve the execution efficiency. Reference [21] proposed a

multi-robot coordinated CPP algorithm called MSTC based

on the STC algorithm, which completed the coverage by

spiraling the same spanning tree using multiple robots. This

algorithm completed the area coverage by multiple robots to

some extent. However, a certain robot must complete almost

all the coverage tasks in extreme cases due to the effects by the

initial positions of robots. Approximately one year later, the

author proposed an improved algorithm [22], which changed

the connection method of the spanning tree according to

the initial positions of multiple robots, to ensure that the

task cost of each robot is as balanced as possible. However,

the algorithm cannot fully balance the task cost of each robot.

A pattern-based genetic algorithm proposed in refer-

ence [23] gridded the task area according to the coverage

capability of robots and considered the walking and turning

times of robots. This algorithm minimized the maximum

coverage time of all robots to complete the task but has high

computation costs.

Reference [24] proposed a dividing areas algorithm for

optimal MCPP problem (DARP) in 2017 and introduced a

new optimization method for the task assignment problem.

The proposed technique transformed the MCPP problem into

several CPP problems, and their solutions constitute the opti-

mal MCPP solution. This technique alleviates the original

MCPP explosive combinatorial complexity and could achieve

the aforementioned (1), (3), and (4) optimizations simul-

taneously. The DARP algorithm effectively completes the

optimization of the task assignment through the aforemen-

tioned technique and provides a balanced task assignment

considering the initial position of robots.

Based on this algorithm, an auction-based spanning tree

coverage algorithm for motion planning of cooperative robots

(A-STC) was proposed [25], in which the auction algorithm

was used to complete the task assignment and CPP. More-

over, the A-STC algorithm considered the effect of the path

length from the different kinds of cells linked to the spanning

tree. Therefore, selecting the optimal connection method of

spanning trees is necessary to generate the optimal coverage

path.

However, none of the existing studies has considered the

complexity of the surface of the geographical environment

in the task area. Especially in tasks, such as emergency

search and rescue, the efficiency of robots or unmanned aerial

vehicles is seriously affected by various surface features.

Therefore, considering the impact of different land cover

types in outdoor environmental conditions is of considerable

importance.

III. METHODS

A. DEFINATION OF MOVING SPEED AND VISUAL FIELD

As shown in Figure 1, we define the concept moving speed

to describe the speed of the robot along it’s moving direction,

and define the concept of visual field to describe the visual

range perpendicular to the moving direction.

FIGURE 1. The schematic diagram of visual field and moving speed of a
robot.

The value of the visual field and the moving speed are

determined not only by robots’ performance, but also by its

environment. When a robot is in a complex environment,

generally its moving speed slows down and its visual field

decreases.

B. CONSTRUCTION OF HIERARCHICAL QUADTREE

In order to describe the visual fields of robots in different

land cover types, we establish a hierarchical data structure

called hierarchical quadtree. As shown in the Figure 2, the top

layer of the hierarchical quadtree is the division of the whole

task area by a set of square grids with the same size, which

are called cells. Starting from this layer, by uses recursion

manner, the cells of next level are obtained by dividing the

current level cells into four parts.

C. OVERVIEW OF MCPP-MLCT ALGORITHM

This article proposes the algorithm called MCPP-MLCT

to solve the MCPP problem in multiple land cover

types (MLCT).

In our algorithm, the classification image data of the task

area and the empirical parameters, including the visual fields

and moving speeds of robots in different land cover types, are

known. The algorithm can obtain balanced task assignments
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FIGURE 2. The schematic diagram of the construction of hierarchical
quadtree.

and continuous coverage paths of robots, which are given

the initial positions in the task area. The algorithm mainly

includes the following three parts shown in Figure 3.

FIGURE 3. The main steps of MCPP-MLCT algorithm.

First, a hierarchical quadtree is built to describe the differ-

ent visual fields of the robots in different land cover types,

in which the different cell sizes in different layers represent

the different visual fields of robots. The adjacent topological

relationship among the cells in the same and different layers

is established in the hierarchical quadtree to improve the

efficiency of task assignment and path planning.

Then, task assignment is completed on the basis of the

hierarchical quadtree. In this process, we propose the azimuth

trend method to extend the assignment process to the unas-

signed area and consider the connectivity of each sub-area in

the meantime to ensure the convergence of the assignment

process. Moreover, the algorithm takes the ratio of the cell

size to the moving speed in the corresponding cover type as

the task cost of the cell to balance the task cost of each robot.

Finally, we revise the existing STC algorithm in the area of

each robot and complete the CPP of each robot to adapt to the

complex situation of variable cell size. The following content

elaborates on the MCPP-MLCT algorithm.

D. BUILDING THE HIERARCHICAL QUADTREE

First of all, we build a hierarchical quadtree Tr based on the

classification image of the task area to describe the different

visual fields of the robots in different cover types. The param-

eter l is the number of layers in the quadtree, Ci,r,c is the cell

at the r th row and cth column in the ith layer in Tr, Csi is the

cell size in the ith layer, Cvi,r,c is the land cover type of Ci,r,c,

FdCvi,r,c is the visual field of the robot inCvi,r,c, and Sd i,r,c is

the moving speed of the robot in Ci,r,c, which is affected by

Cvi,r,c. Each cell has neighbor cells in the same and different

layers. We useNci,r,c to represent the set of the neighbor cells

of Ci,r,c.

1) CONSTRUCTING A HIERARCHICAL QUADTREE WITH

ROBOT VISUAL FIELDS AS PARAMETERS

As previously mentioned, we consider the situation of out-

door emergency search and rescue. The visual fields and

moving speeds of robots are affected by different land cover

types. Thus, we use a hierarchical quadtree to express differ-

ent visual fields in different land covers. Normally, a highly

complex land cover corresponds to a small visual field of

robots and cell size in the quadtree. By contrast, a simple land

cover corresponds to a large visual field of robots and a large

cell size in the quadtree.

TABLE 1. Example of the visual field approximation.

The cell size of adjacent layers in a quadtree structure

should be twice according to Figure 2. Thus, the robot visual

fields in different land covers must satisfy the relationship of

2k (k = 0, 1, 2, . . .). However, the truly visual fields of robots

in different land covers cannot satisfy this relationship due

to the abstract factors of the complexity and diversity of the

environment surface.

We approximate the original visual fields to simplify

this problem. Fdmax and Fdmin are used to represent the

maximum and minimum values of the approximate visual

fields, respectively. Based on theminimumvisual fieldFdmin,

we approximate the visual fieldsFd t in other land cover types

asFd t = Fdmin2
k , where k is themaximumvalue satisfied by

Fdmin2
k ≤ Fd t . Table 1 shows that visual field 5 in Type 1 is

the minimum value; thus, the original visual field 7 in Type 2

is approximately 5× 20 = 5, and the visual field 21 in Type 3

is approximately 5 × 22 = 20.

We divide the task area into a hierarchical quadtree based

on the approximated visual fields. Different layers corre-

spond to different visual fields and land covers, thereby con-

structing a hierarchical quadtree for the entire area.

A supplementary note is presented as follows. The final

path planning of the algorithm is based on the improved STC

algorithm with cell sizes twice the robot visual fields. There-

fore, the cell size in each layer in the hierarchical quadtree is
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twice the corresponding approximate visual field, as shown

in Table 1.

Based on these cell sizes, we build the hierarchical

quadtree. First, calculate the number of layers by the follow-

ing formula:

l = 1 + log2
Fdmax

Fdmin
(1)

Then, the top layer of the hierarchical quadtree is con-

structed. The task area is then divided with twice of the

maximum approximate visual field Fdmax . The number of

cells is m× n, where m and n are the minimum numbers that

all cells in the top layer can completely cover the study area.

If the cells exceed the task area, then we simply set their cover

type to null, which will be detailed in the next paragraphs.

From the top layer down, each inferior layer is obtained

by the quadtree partition of the upper layer until the cell

size is equal to twice of Fdmin. Each layer in the quadtree

corresponds to one visual field, and the visual fields in all

land cover types in the task area can be found in the quadtree.

However, no one-to-one correspondence exists between lay-

ers in the quadtree and the land cover types of the task area.

For example, a three-layer quadtree can be constructed on

the basis of the data in Table 1, with cell sizes of 40, 20, and

10. The first layer corresponds to Type 3, the second layer

has no corresponding land cover type, and the third layer

corresponds to Type 1 and Type 2.

Each layer in the quadtree can fully cover the task area, but

the task area must be covered only once during the search

process. Therefore, only parts of the cells in the quadtree

must be associated with the actual land cover types to avoid

the duplication and redundancy cover by different layer cells.

Thus, we divide the cells in the hierarchical quadtree into

two kinds: the active cells and the auxiliary cells. The active

cells have a real land cover type and all of active cells can

completely cover the task area without repetition (as shown

in the case example in Figure 4). The auxiliary cells are the

remaining cells whose land cover types are set null. Thus,

we can distinguish the two kinds of cells by the setting of the

land cover types.

FIGURE 4. Example of all pre-cells covering the area without repetition.

The areas occupied by different land cover pixels in Cl,r,c
are separately cumulated for each cell Cl,r,c in the bottom

layer Ll in the quadtree. The largest area type is regarded as

the land cover type of Cl,r,c, which is expressed with Cvl,r,c.

If two or more cover types with the largest area are available,

then the most complex one is selected.

Starting from the penultimate layer, the cells are

integrated from the low layer to the upper layer fol-

lowing these rules. The current cell Ci,r,c has four

child cells, Ci+1,r∗2,c∗2, Ci+1,r∗2+1,c∗2, Ci+1,r∗2,c∗2+1, and

Ci+1,r∗2+1,c∗2+1. If the land cover types, Cvi+1,r∗2,c∗2,

Cvi+1,r∗2+1,c∗2, Cvi+1,r∗2,c∗2+1, and Cvi+1,r∗2+1,c∗2+1,

of the four child cells are the same but not null, moreover,

the four child cell sizes are smaller than twice of the approx-

imate visual field of robots in the corresponding land cover

type, then we integrate the four child cells upward by setting

the land cover type Cvi,r,c to its parent cell and the land

cover types of the four child cells to null. If the four child

cells have different cover types or the size of the four child

cells is equal to twice the approximate visual field of robots

in the corresponding land cover type, then the situation is

maintained and processing is stopped.

The above operations are repeated until the top layer of the

hierarchical quadtree is processed. Figure 4 shows that all the

active cells can completely cover the task area without repe-

tition. The details of the algorithm are shown in Algorithm 1.

Algorithm 1 Build the Hierarchical Quadtree Tr

1 calculate layer number l = 1 + log2Fdmax
/

Fdmin;

2 add the top layer L1 into P, Sc1 = Fdmax × 2;

3 i = 2;

4 for i ≤ l do

5 add Li into Tr, Sci = Sci−1/2;

6 end

7 for each Cl,r,c in Ll
8 Cvl,r,c = the land cover type with maximum area

in Cl,r,c;

9 end

10 i = l − 1;

11 for i ≥ 1 do

12 for Ci,r,c in Li do

13 if the land cover types of 4 child cells of Ci,r,c
are the same but not null and

Sci+1,r∗2,c∗2 < RgCt i+1,r∗2,c∗2
then

14 Cvi,r,c = Cvi+1,r∗2,c∗2;

15 Cvi+1,r∗2,c∗2 = null;

16 Cvi+1,r∗2+1,c∗2 = null;

17 Cvi+1,r∗2,c∗2+1 = null;

18 Cvi+1,r∗2+1,c∗2+1 = null;

19 end if

20 end

21 i = i− 1

22 end

2) BUILDING THE ADJACENT TOPOLOGICAL RELATIONSHIP

FOR THE ACTIVE CELLS

We build the adjacent topological relationship for the active

cells in the hierarchical quadtree, which are described by a set
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of neighbor cells for the corresponding cell. This relationship

is built to reduce the complexity of the task assignment and

ensure the continuity of the results by the task assignment

process.

We introduce the shared neighbor direction concept to

improve the efficiency of searching neighbor cells in different

layers in the hierarchical quadtree. This concept could accel-

erate the search process by using simple binary operations,

such as ‘‘AND’’ or ‘‘OR.’’ Related definitions of shared

neighbor direction are as follows.

In the hierarchical quadtree, each cell, except the cells in

the bottom layer, has four child cells in the lower adjacent

layer. Correspondingly, each cell, except the cells in the top

layer, has a parent cell in the upper layer. The shared neighbor

directionDni,r,c of the cell Ci,r,c is defined to show the direc-

tions where the cell and its parent cell shared the neighbor

cells.

FIGURE 5. The schematic diagram of the binary representation of the
neighbor directions.

As shown in Figure 5, we initially use four binary numbers

to represent four neighbor directions of a cell: the left direc-

tion is 1, which is 0001 in binary; the bottom direction is 2,

which is 0010 in binary; and the right and top directions are

0100 and 1000, respectively.

We assume that one child cell is Ci,r,c and the parent cell is

Ci−1,r/2,c/2 in Figure 5.WhenCi,r,c is located at the top left of

Ci−1,r/2,c/2, the parent and child cells share neighbor cells on

the top and left directions, which are respectively represented

by 0001 and 1000 in binary. The logical operation ‘‘OR’’

result is 1001, which means the value of the shared neighbor

direction Dni,r,c is 9. When the child cell is located at other

directions, the values of the shared neighbor direction are as

follows: the top-right isDni,r,c = 4|8 = 12, the bottom-left is

Dni,r,c = 1|2 = 3, and the bottom-right isDni,r,c = 2|4 = 6.

We particularly use 0 when a cell has no shared neighbor

direction with its parent cell.

During the process of searching neighbor cells, search

judgment between two adjacent layers can be quickly made

in accordance with the shared neighbor direction value. For

example, if the value is 9, then we can immediately determine

that the neighbor cells in the upper layer are the neighbor

cells of the parent cell on the top and left directions. Simi-

larly, the neighbor cells of the parent cell in the lower layer

contain the neighbor cells of the child cell on the top and left

directions.

For the cells of non-adjacent layers, the shared neigh-

bor direction value can be calculated by logical operation

‘‘AND’’ the shared neighbor direction of the cells in the layers

between the two cells. An example is given in Figure 6 to

understand this relationship intuitively.

FIGURE 6. The schematic diagram of the shared neighbor cells in the
different layers.

In Figure 6, the cells in three different layers are given in

6(a), 6(b), and 6(c), with the neighbor cells in the same layer

respectively represented by red, yellow, and green.

When 6(b) is located at the top left of 6(a), the shared

neighbor cells of 6(a) and 6(b) are represented by

orange in 6(d), and the shared neighbor direction value

is 0001|1000 = 1001.

The graphs in 6(e), 6(f), 6(g), and 6(h) represent the four

different conditions of shared neighbors. 6(c) is located at

different positions in 6(b), and the shared neighbor direction

values are 1001, 0011, 1100, and 0110.

6(i), 6(j), 6(k), and 6(h) describe the shared neighbor

cells of 6(a) and 6(c) in the non-adjacent layers obtained

by the overlay of 6(a), 6(b), and 6(c). The shared neighbor

cells are shown in brown, and the shared neighbor direction

values are 1001&1001 = 1001, 1001 &0011 = 0001, and

1001&1100 = 1000. 6(h) shows no shared neighbor
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cells because the shared neighbor direction value is

1001&0110 = 0000.

Based on the above definition and calculation of the

shared neighbor direction, we can quickly finish building the

adjacent topological relationship among the active cells in

the entire hierarchical quadtree. For each active cell Ci,r,c,

the search process to obtain Nci,r,c (the set of neighbor cells)

is divided into three parts. The specific implementation is

given in Algorithm 2.

For the cells in the same layer, we must consider the land

cover type of Ci,r−1,c, Ci,r+1,c, Ci,r,c−1, or Ci,r,c+1, which

are the four neighbor cells of the current cell Ci,r,c, and add

the neighbor cell into Nci,r,c if its land cover type is not null.

Recursive search is used for searching the neighbor cells in

the layers above or below the current layer.

For the cells above the current layer, we initialize

the current recursive layer cell Ct and make it equal to

Ci,r,c(t = i). The shared neighbor direction Dntotal between

the current recursive layer cell Ct and the cell Ci,r,c is

equal to Dni,r,c. The shared neighbor direction of Ct and

the corresponding upper parent cell Ct−1 are Dnt . Thus,

the shared neighbor direction of Ct−1 and Ci,r,c can be

determined by the binary operation ‘‘AND’’ (i.e., Dntotal =

Dntotal&Dnt ). Consequently, the neighbor cells of Ci,r,c
in the t − 1-th layer is the shared neighbor cells whose

land cover types are not null, with Ct−1. Finally, the func-

tion findUpperNeighborCells(Nci,r,c,Ct ) is used to recurse

upward through Ct = Ct−1 until Dntotal = 0 or reach the top

layer.

For the cell below the current grid layer, we initialize

the current recursive layer cell Ct and make it equal to

Ci,r,c(t = i). The shared neighbor direction Dntotal between

the current recursive layer cell Ct and the cell Ci,r,c is equal

to Dni,r,c. The shared neighbor direction between Ct and

the corresponding lower child cell Ct+1 is Dnt+1. Thus,

the shared neighbor direction of Ct+1 and Ci,r,c can be

determined by the binary operation ‘‘AND’’ as Dntotal =

Dntotal&Dnt+1. Consequently, the neighbor cells of Ci,r,c at

the lower layer is the shared neighbor cells of Ct+1 whose

land cover types are not null. Different from the upward

search, four corresponding child cells are found in the lower

layer of Ct in the process of downward search. Thus, this

searching process must be individually executed. The func-

tion findLowerNeighborCells(Nci,r,c,Ct ) is used to recurse

downward by parameter Ct (i.e., let Ct = Ct+1) until

Dntotal = 0 or the penultimate layer is reached.

Through the three abovementioned steps, the process of

searching the neighbor cell set Nci,r,c of the cell Ci,r,c is

completed (as shown Figure 7). All the active cells are tra-

versed, and a complete topological adjacency relationship is

established.

E. TASK ASSIGNMENT BASED ON AZIMUTH

TREND METHOD

A highly effective optimization method is given in the DARP

algorithm to optimize the MCPP problem. This method can

Algorithm 2 Build Adjacent Topological Relationship of

Active Cells
1 i = 1;
2 for i ≤ l do
3 for Ci,r,c in Li do
4 switch location of Ci,r,c in Ci−1,r,c do
5 case top-left then Dni,r,c = 1|8 = 9;
6 case top-right then Dni,r,c = 4|8 = 12;
7 case bottom-left then Dni,r,c = 1|2 = 3;
8 case bottom-right then Dni,r,c = 2|4 = 6;
9 end switch
10 end
11 i = i+ 1;
12 end
13 i = 1;
14 for i ≤ l do
15 for Ci,r,c in Li do
16 if Cvi,r,cis null then continue; end if
17 // neighbor cells in the same layer
18 if Cvi,r−1,c <> null then add Ci,r−1,c into

Nci,r,c; end if
19 if Cvi,r+1,c <> null then add Ci,r+1,c into

Nci,r,c; end if
20 if Cvi,r,c−1 <> null then add Ci,r,c−1 into

Nci,r,c; end if
21 if Cvi,r,c+1 <> null then add Ci,r,c+1 into

Nci,r,c; end if
22 // neighbor cells in the upper layers
23 t = i, Ct = Ci,r,c;
24 Dntotal = Dni,r,c;
25 //findUpperNeighborCells(Nci,r,c,Ct )
26 if t > 1 then
27 Dntotal = Dntotal&Dnt ;
28 if Dntotal > 0 then
29 find Nci,r,c by Dntotal in 4 neighbor cells

of Ct−1;
30 findUpperNeighborCells(Nci,r,c,Ct−1);
31 end if
32 end if
33 // neighbor cells in the lower layers
34 t = i, Ct = Ci,r,c;
35 Dntotal = Dni,r,c;
36 // findLowerNeighborCells(Nci,r,c,Ct )
37 if t < n then
38 Dntotal = Dntotal&Dnt+1;
39 if Dntotal > 0 then
40 find Nci,r,c by Dntotal in 4 neighbor cells of

Ct+1;
41 findLowerNeighborCells(Nci,r,c,Ct+1);
42 end if
43 end if
44 end
45 i = i+ 1;
46 end

decompose the MCPP problem into task assignment opti-

mization problem and multiple SCPP problems under cer-

tain constraints and obtain an approximate optimal solution
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FIGURE 7. The schematic diagram of the neighbor cells in the same layer
and different layers. The neighbor cells in the same layer have the same
size as the center cell.

for the MCPP problem, considerably reducing optimization

complexity [24].

Given a rectangular coverage areaD, s represents the num-

ber of robots, Rj represents the j-th robot, Spj represents the

start position of Rj, Aj represents the area assigned to robot

Rj, St j represents the spanning tree of Aj, Pj represents the

coverage path obtained by spiral Aj, and Tj represents the

coverage time of Aj. The results of the task assignment must

meet the following conditions:

(1) A1 ∪ A2 ∪ . . . ∪ As = D;

(2) Aj ∩ Ak → ∅,∀j, kǫ [1, s] andj 6= k;

(3) |T1| ≈ |T2| ≈ . . . ≈ |Ts| ;

(4) St jisconnected, ∀jǫ [1, s] ;

(5) Spj ∈ Aj, ∀jǫ [1, s] .

Among these constraints, the following conditions are

ensured: (1) the task area can be completely covered, (2) the

repeated coverage is as small as possible to reduce the energy

and time consumption, (3) the task distribution is balanced,

(4) the area assigned to the same robot is continuous to avoid

the energy and time consumption used to move between the

discontinuous areas, and (5) the robots can perform tasks

immediately when turned on, avoiding the energy and time

consumption from the initial position to the coverage area.

Although the cell sizes are various in our method, we could

still use the five constraints to complete our optimal task

assignment based on the hierarchical quadtree structure.

The task area is covered by the active cells without repeti-

tion in the hierarchical quadtree. We assign all the active cells

to the robots without duplication to meet constraints (1) and

(2). We take the ratio of the cell size to the moving speed of

the robot in the corresponding land cover type as the coverage

cost of the cell to calculate and balance the task cost of each

robot to meet constraint (3). We propose the azimuth trend

method to meet constraints (4) and (5). This method, extends

the assignment to the active cells in the unassigned area,

ensuring the convergence of the task assignment process. The

specific algorithm is given as follows.

Let Caj represent the center of the sub-area Aj assigned to

robot Rj and Naj represent the neighbor cell set of the area as

shown in Figure 8.

We initialize the area Aj of each robot Rj and add the cell

Cj, where the initial position Sj of the robot is located, into

area Aj. The neighbor cell set Ncj of the cell Cj is assigned

the neighbor cell set Naj of area Aj, that is, Naj = Ncj.

FIGURE 8. The schematic diagram of main parameters in the task
assignment process.

The assignment of cells is then performed by the iteration

process. The break condition of the process is that all cells

are assigned to the robots, that is, the active cell set Aun is

null. The following steps are performed in each iteration.

1) DETERMINE THE ROBOT Rt TO SELECT AN ACTIVE CELL

In each task assignment process, we try to assign a cell to the

robot with the least amount of tasks, so as to achieve the goal

of balanced allocation. Therefore, we define the variable Qaj
to measure the task amount of robot Rj, which can be used

to describe the time taken by the robot to complete its tasks

approximately. Qaj is calculated by the following formula:

Qaj =
∑

Ci,r,c∈Aj

2Sci

Sd i,r,c
(2)

We select the robot Rj as the robot Rt if Rj has the minimal

task cost Qaj that covers its belonging area Aj. By comparing

Qa value of different robots, we assign the active cell to

the robot with the minimal task cost (the minimal time to

complete its task).

2) SELECT THE TO-BE-ASSIGNED CELL Ct BASED ON THE

AZIMUTH TREND METHOD

Here, we propose the azimuth trend method to finish the

assignment process. This method can extend the assignment

process to the unassigned area and consider the connectivity

of each sub-area in the meantime to ensure the convergence

of the assignment process. This method will be introduced in

details next.

The cells in Nat , which is the neighbor cell set of the area

At of robot Rt , are divided into the following two categories:

the cell set Nat,as, which has been assigned to other robots,

and the cell setNat,un, which is not assigned to any robot. The

selection rules of the to-be-assigned cell Ct are as follows:

(1) The cells inNat,un take precedence over those inNat,as.

(2) Cell selection rules in Nat,un.

For all cells in Nat,un, the corresponding cost value is first

calculated in accordance with the following formula. The to-

be-assigned cell is then selected in cost ascending order:

costun,i = Dis(Ct,un,i,Cat ) −

∑

j 6=t Dis(Ct,un,i,Cak )

n− 1
(3)
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where Cak denotes the center of the area Ak , Ct,un,i denotes

the cell in Nat,un, and Dis(Ci,Caj) denotes the distance from

the center of cell Ci to Ctk .

(3) Cell selection rules in Nat,as.

Although this assignment process has low complexity,

the boundaries of some assigned areas are easily connected

before the completion of the assignment process because the

initial robot position distribution does not have any regularity.

For example, when the A area is connected to the B area,

one cell at the boundary may be assigned from A to B.

However, the area may be assigned from B to A in the

next step. Therefore, the assignment process will fall into an

endless iteration if no constraints are assigned. We propose

the azimuth trend method to solve this problem. This method

can extend the entire assignment process to the unassigned

area and converge the assignment process normally.

FIGURE 9. The neighbor cell distribution of azimuth trend method.

According to the relationship between the directions that

the cell points to Caun and Cat (Figure 9), the cells in Nat,as
are divided into Nat,as,nu (which represents the cells near to

Caun) andNat,as,fu (which represents the cells far fromCaun).

The cells in Nat,as,nu take precedence over those in Nat,as,fu,

which are to be selected in the assignment process.

However, the following two types of cells cannot be

selected: those where the initial position of the corresponding

robot is located and those that cause discontinuities in the

corresponding area after deletion.

When several cells are in Nat,as,nu or Nat,as,fu simultane-

ously, the corresponding cost value of the cells is calculated

in accordance with the following cost function. The to-be-

assigned cell is then selected in ascending order of this cost.

costas,i = Dis(Ct,as,i,Cat ) (4)

where Ct,as,i denotes a cell in Nat,as,nu or Nat,as,fu.

The specific implementation of the three aforementioned

rules refers to Algorithm 3.

3) ADD THE TO-BE-ASSIGNED CELL Ct INTO AREA At

Whether the cell has been assigned to other robots, this step

must be considered in the following two cases:

If Ct is an unassigned cell, then Ct is added directly into

area At , and the area center Cat , assignment Qat , and neigh-

bor cell set Nat of the area At are updated.

If Ct is an assigned cell, then Ct is first deleted from the

original area Ao. The area center Cao, assignment Qao, and

the neighbor cell set Nao of the original area Ao are then

updated. Finally, Ct is added into area At , and the area center

Cat , assignment Qat , and neighbor cell set Nat of the area At
are updated.

The specific implementation of this part is shown in

Algorithm 3.

Algorithm 3 Task Assignment for Robots

1 while Aun <> null then

2 choose robot Rj with minimum Qaj as Rt ;

3 divide Nat into 2 parts of Nat,un and Nat,as;

4 Ct = null;

5 if Ct == null then

6 choose Ct in Nat,un with the minimum costun;

7 end if

8 if Ct == null then

9 divide Nat,as into 2 parts of Nat,as,nu,Nat,as,fu;

10 choose Ct in Nat,as,nu with the minimum costas;

11 if Ct == null then

12 choose Ct in Nat,as,fu with the minimum costas;

13 end if

14 end if

15 if CtǫNat,un then

16 add Ct into At ;

17 update Cat , Qat , Nat ;

18 else if CtǫNat,as then

19 delete Ct from Ao;

20 update Cao, Qao, Nao;

21 add Ct into At ;

22 update Cat , Qat , Nat ;

23 end if

24 end

F. SEARCHING COVERAGE PATHS

After processing the area using the above algorithm, wemake

a relatively balanced assignment of the area D to all robots

and obtain several continuous areas. In this section, we focus

on the path planning of each robot in its area.

Considering that our algorithm is based on the idea of

approximate cell decomposition, we use the STC algorithm

to complete the path planning for the area of each robot.

However, different from the application of the original STC

algorithm to the situation wherein all cells have the same

size, different cell sizes are found in our algorithm. Therefore,

we must revise the original STC algorithm slightly to meet

our algorithm.

1) STC

The STC algorithm is a method for single-robot CPP based

on approximate cell segmentation. This algorithm has been

proven to have an algorithm complexity of O(n), where n

represents the number of cells. This algorithm can obtain the

optimal solution of the shortest path in most cases.
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FIGURE 10. The schematic diagram of STC algorithm. (a) The area divided
by cells with a certain size and the initial position; (b) The centers of big
cells combined with 4 small cells; (c) The MST of these centers; (d) The
coverage path got by spiraling the MST from the initial position.

As shown in Figure 10(a), the area is divided into cells with

a certain size. White cells indicate accessible areas, black

cells indicate inaccessible areas, such as obstacles and no-fly

zones, and the green star symbol indicates the initial position

of the robot. The STC algorithm is mainly divided into the

following steps.

(1) Division of the area by twice the size of the original

cell.

Each parent cell contains four small child cells, as shown

in Figure 10(b). The center of the parent cell is regarded as the

node of the spanning tree. The green dots indicate accessible

nodes, and the black dots indicate inaccessible nodes that do

not require connection to the spanning tree.

(2) Connection of the Minimum Spanning Tree

The Minimum Spanning Tree (MST) algorithm, such as

Prim and Kruskal algorithms, are used to connect accessible

nodes into an MST as shown in Figure 10(c).

(3) Search of the coverage path

Finally, starting from the initial position of the robot, the

spanning tree is spiraled in certain directions, such as clock-

wise or counterclockwise, to obtain the coverage path as

shown in Figure 10(d).

2) IMPROVED STC

Wemake some revisions to the original STC algorithm. These

revisions are conducted to help the STC algorithm adapt a

quadtree structure in our research case and complete the CPP

for each robot in our algorithm.

We introduce how to obtain the optimal coverage path

of the area after the hierarchical quadtree segmentation and

assignment. If we have the area as shown in Figure 11(a),

and the green star symbol indicates the initial position of the

robot, then the algorithm is divided into the following three

steps.

FIGURE 11. The schematic diagram of Improved STC algorithm. (a) The
active cells in the area and the initial position; (b) The centers of these
cells; (c) The MST of these centers; (d) The coverage path got by spiraling
the MST from the initial position.

(1) Determine the spanning-tree nodes

In the original STC algorithm, four child cells can form a

parent cell because of the same cell size. However, the four

cells cannot be formed into a uniform parent cell in our

algorithm due to the different cell sizes. When building a

hierarchical quadtree, we divide the task area with twice the

visual field of robots, that is, the cell in our algorithm is

equipvalent to the parent cell in the original spiral STC algo-

rithm. This division is performed to meet the requirements

for the cells in the spiral STC algorithm, Therefore, the cen-

ter of the cells is the node of the spanning tree, as shown

in Figure 11(b).

(2) Construct the spanning tree

The connected cells must be adjacent in the STC algo-

rithm. We can construct a spanning tree quickly because

we have built the adjacency topological relationship in the

previous steps and only the neighboring cells must be con-

sidered when connecting the spanning tree. When generating

the spanning tree, we first consider the length of the edge,

which connects the corresponding node into the spanning

tree. We then select the node with the shortest edge, which
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is the requirement of the Prim algorithm for generating a

spanning tree. When the lengths of the edges are the same,

we select the access nodes clockwise to avoid the path turns

frequently. A spanning tree is constructed starting from the

cell where the initial position of the robot is located, as shown

in Figure 11(c).

(3) Generate coverage path

In the original STC algorithm based on the same cell size,

the distances from the points on the coverage path gener-

ated by spiraling the spanning tree to the spanning tree are

equal (Figure 10(d)). However, the distance in our algorithm

must be changed due to the different cell sizes. Therefore,

path planning is slightly different. The specific process is as

follows.

FIGURE 12. The schematic diagram of spiral path generation process.
(a) The local spanning tree; (b) The coverage path between cells; (c) The
coverage path inside cells; (d) The complete coverage path of the local
spanning tree.

A part of the spanning tree is depicted in Figure 12(a). The

Figure shows three cells, and the solid red lines represent the

edges of the spanning tree.

Generation of paths between cells. We determine the

azimuth relationship between the two connected cells and

connect the centers of their corresponding child cells to gen-

erate paths between the cells, as shown by the green line

in Figure 12(b).

Generation of paths inside cells. We determine the

azimuth of the edges connected to the current cell center and

connect the centers of adjacent child cells on the azimuth

where no edge is connected, as shown by the green line

in Figure 12(c).

Finally, the paths between and inside cells are connected

to form a complete coverage path, as respectively shown

in Figure 11(d) and Figure 12(d).

The proposed MCFT-MCPP algorithm completed the

implementation from task assignment to path planning for

the area D with multiple land cover types and several robots.

We will verify our proposed algorithm based on a real classi-

fication image in the next section.

IV. EXPERIMENT AND ANALYSIS

A. VALIDATION EFFECTIVENESS

In order to verify the effectiveness of the algorithm,

we choose the UAV remote sensing image of real envi-

ronment, shown as Figure 13. The image range is

1200m × 1200m, and its ground resolution is about 0.83m.

FIGURE 13. UAV remote sensing image data of experiment area.

We use machine learning algorithm to classify this image

into six land cover types, including farm, road, grass, wood,

bare land, and Gobi.

FIGURE 14. The structure of DCNN in machine learning algorithm.

The algorithm uses Deep Convolution Neural Net-

work (DCNN) structure that was trained on sample data taken

from UAV image. The structure is shown in Figure 14. We set

value of iteration m and n to 2 respectively for the best

performance in our case. Value 2 for m and n means that

the structure has two big cycles and each of which has two

convolution layers and one pooling layer.

Table 2 shows the amount of sample data we used to train,

verify and test DCNN structure respectively.

TABLE 2. The details of sample data.
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In the training process, we set the learning rate as 0.001,

batch size as 30, and epoch number as 30. The same experi-

ment repeated 4 times, and the final network loss and accu-

racy are shown in the Table 3, from which we can see that

the mean average loss and accuracy can reach to 0.1407 and

94.56% respectively.

TABLE 3. The loss and accuracy of the trained DCNN.

Finally, we use the trained DCNN network to complete the

classification of the experimental area, and the classification

result is shown in Figure 15.

FIGURE 15. Classification image data of experiment area.

We assumed there are 10 robots which have the same per-

formance and the random initial positions. We set the visual

fields and moving speeds of these robots in these different

cover types to some empirical values given in Table 4 to

apply our algorithm to this area. The visual fields and moving

speed values in Table 4 are not real values measured outdoors

but empirical values for the simulation of the experiment.

However, in actual application cases, all parameters should

be collected with certain equipment.

TABLE 4. Robot configuration parameters in different land cover types.

In the experiment, we first use our algorithm to build a hier-

archical quadtree the experimental area into 8091 different

size cells that cover the whole entire area without repetition

according to the search capabilities of robots in different land

cover types, as shown in Figure 16. The adjacent topological

relationship of the active cells is established to facilitate

subsequent task assignments.

FIGURE 16. The to-be-assigned cells in the hierarchical quadtree.

After building the hierarchical quadtree and the adjacent

topological relations in the task area, we create the initial

positions for 10 robots in random way. Then we used our

algorithm to finish the task assignment.

FIGURE 17. The process and results of task assignment.

As shown in Figure 17, the initial positions of

each robots are indicated by red dot in initial cells.

Figure 17(a), 17(b), 17(c) and 17(d) show the middle process

of the task assignment with the iteration increased. A total

of 8289 loops were used to complete the assignment of all
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8091 active cells. It shows that the Azimuth Trend Method

can guide the task assignment process to converge quickly.

We count the task cost of each robot after the task assign-

ment. The result in Table 5 indicates that the task costs

of 10 robots are close.

TABLE 5. Coverage path cost statistic for each robot.

Based on the task assignment result shown in Figure 16,

we use the advanced spiral STC algorithm to plan the cover-

age path of each area, as shown in Figure 18. Different colors

are used to distinguish different task areas of each robot. The

solid red line indicates the spanning tree of each area.

FIGURE 18. The spanning tree and coverage path of each robot in each
sub-area.

We provide the visualization results in Figure 19 to show

the coverage path of every robot clearly and demonstrate the

land cover types in real environment. The Figure 19(a) shows

that the coverage paths in different sub-areas are continuous

and disjoint, and the denseness of the paths varies with the

land cover type. Different from otherMCPP algorithms based

on approximate cell decomposition, the assignment of each

robot is approximately equal. However, the size of each area

may not be equal in our algorithm due to the different land

cover types. This finding is consistent with the real applica-

tion scenarios. At last, we overlay the coverage path onto the

real environment with different land cover types.

FIGURE 19. The coverage paths of every robots. (a) the coverage paths of
each robot; (b) overlaying the coverage path onto the real environment
with different land cover types.

Experimental results show that the proposed algorithm

is effective for CPP of multiple robots in the environment

with multiple cover types. First, different sizes of the active

cells can describe the different visual fields of the robots

in different land cover types. Second, the area assigned to

each robot by the azimuth trend method is continuous and

contains the initial position of the robot. The active cells could

cover the entire task area without repetition and are assigned

to robots with approximately balanced task cost. Third, the

coverage path of each area is continuous and disjoint, and its

denseness changes with the cover type.

B. ANALYSIS OF COMPLEXITY

The algorithm proposed in this article can be divided into

three parts: the hierarchical quadtree establishment, the task

assignment, and the path planning. We use the mean of the

number of cells in all layers of the pyramid to approximate

the number of active cells w and describe the complexity of

the algorithm; that is,

w ≈

∑l
i=1 wi

l
(5)

where wi represents the number of cells in the ith layer.
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Therefore, the complexities of establishing the hierarchical

quadtree is approximately O (l), setting the coverage type is

less thanO(wl), and building the adjacency topology relations

of the cells is approximately O(wl2). The task assignment

part is highly complex to explain. However, the complexity of

each iteration is generally less than O(s+w2). The algorithm

complexity of the path-planning part is also approximately

O(wlgw). Consequently, the time complexity of the entire

algorithm can be approximated as follows:

O(wl2 + maxIter
(

s+ w2
)

) (6)

where maxIter is less than nm and represents the maximum

iteration in the task assignment process. Moreover, with the

increase of the number of cells, the computing time of our

algorithm does not increase at an exponential rate. Thus,

the practical application of the algorithm is guaranteed.

C. COMPARISON WITH A-STC ALGORITHM

As so far, genetic algorithm [23], DARP algorithm [24] and

A-STC [25] algorithm based on auction algorithm can be

considered as the representativeMCPP algorithms. In the ref-

erence [25], the author has fully compared A-STC algorithm

with genetic algorithm and DARP algorithm.

The results from reference [25] show that compared with

A-STC algorithm, genetic algorithm cannot guarantee 100%

coverage rate and spend more time. When the environment

has more obstacles, the coverage area is wider, and the num-

ber of robots increases, the performance of A-STC algorithm

is obviously better than that of genetic algorithm.

Compared with DARP algorithm, A-STC algorithm can

obtain a more outstanding solution with shorter time in large-

scale cases without obstacle. DARP algorithm has strong

global optimization ability, and can obtain better completion

time performance of coverage task but cost more running

time. However, in some cases, DARP algorithm cannot seg-

ment the target area, and the initial position of robots would

have a strong impact on the algorithm running time.

For most instances of MCPP algorithms based on equal

size grids method, A-STC algorithm can find out the almost

optimal solution in a short time.

In general, Genetic algorithm, DARP algorithm, A-STC

algorithm and our MCPP-MLCT are all grid-based methods.

But except our MCPP-MLCT algorithm that uses various

grid sizes to considering multiple land types, the remaining

three algorithms are all use one fixed grid size in the whole

calculation process. So the efficiency of these algorithms

cannot be directly compared. However, we can follow the

above compared results from reference [25], so in this article,

we only need to compare our MCPP-MLCT algorithm with

A-STC algorithm.

In order to compare the practical application efficiency of

the two algorithms, we used the following methods:

Given the classification image of an area and the visual

field and moving speed parameters of robots corresponding

to different land cover types. The initial positions of robots

are the same in these 2 algorithms. As A-STC algorithm only

use the fixed cell size, in order to avoid missing coverage

in searching in complex ground surface, we assigned the

minimal visual field value as the cell size to segment the task

area and used the corresponding algorithm to complete the

MCPP problem. For the MCPP-MLCT algorithm, we just

used the method proposed in the previous sections to segment

the task area and solve the MCPP problem.

From the experiment results of reference [25] and the

results of our previous experiment (as shown in table V),

we can get a conclusion that A-STC algorithm and MCPP-

MLCT algorithm can both achieve approximate balanced task

allocation, and each robot has almost same task amount,

which means both algorithms can obtain ideal results.

So, for the further comparison, we need to compare the

running time of the two algorithms and the repeated coverage

rates of the robots.

Here we introduce the calculation of repeated coverage rate

for the detailed comparison. According to the coverage ability

(including visual field andmoving speed) of the robot, we can

calculate the real coverage area Sreal that is really searched

by the robot along the planned path. Assume that the original

planned coverage area is Sarea, then the repeated coverage rate

Rrc is given as follows:

Rrc =
Sreal

Sarea
(7)

Obviously, MCPP-MLCT can achieve no repeat coverage

under ideal conditions if the visual fields of the robot in

different land cover types completely satisfy the relationship

of 2k (k = 1, 2, 3, . . .) and there is no over segmentation at

the boundary of various types. However, A-STC algorithm

cannot realize Rrc = 1 in any complex cases, as robots cannot

keep same searching capabilities, which we expressed by

the parameters of moving speed and visual field, in complex

environment surface.

In the following sections, we took 3 experiments to com-

pare our algorithm with A-STC algorithm. We used the same

data and parameters as above experiment, the land cover types

and the related parameters of robots are the same as Table 4.

1) COMPARISON EXPERIMENT I

In order to compare the search efficiency of the two algo-

rithms, we cut four different areas with size

of 600m × 600m from the original classification image, and

set the robot initial positions randomly for four areas. We use

the repeated coverage rate to describe the search efficiency.

As we mentioned above, we had to set cell size in 5 m

for A-STC algorithm to avoid missing coverage, which is the

minimal visual field of robot, which is corresponding land

type 1 in table 6.

The experimental results are shown in Table 6. TheMCPP-

MLCT algorithm has significantly lowered the repeated cov-

erage rate and running time compared with A-STC, the main

reason is that the number of searched cells is dramatically
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decreased by segmentation of task area with different cell

sizes.

TABLE 6. Results of the comparison experiment I.

A-STC get quite different running times in this four areas

with the same segmented cells, because the initial position of

the robot would greatly impact the algorithm running time.

Compared with A-STC algorithm, MCPP-MLCT uses the

azimuth trend method we proposed to accelerate convergence

of task assignment process, so the algorithm can solve the

situation more quickly than A-STC and DARP algorithms,

that the majority of robots are closer to each other while only

few robots are separate far away.

2) COMPARISON EXPERIMENT II

In order to explore the relationship between the algorithm

efficiency and the number of robots, we just used one area

(i.e. area 1 in above experiment), and increased the number

of robots in different running processes, the results are shown

in Table 7 and Figure 20. It shows that the running time

of A-STC and MCPP-MLCT both increase, but the running

times of MCPP-MLCT are obviously shorter and the changes

are more stable.

TABLE 7. Results of the comparison experiment II.

FIGURE 20. Results of the comparison experiment II. Two pictures on the
right show the detail running time varieties of 2 algorithms.

3) COMPARISON EXPERIMENT III

In order to explore the relationship between the algorithm

efficiency and the size of task area, we selected a series of

areas whose sizes given in the Table 8, and respectively ran

two algorithms for each area, then we got the results showed

in Table 8 and Figure 21.

TABLE 8. Results of the comparison experiment III.

FIGURE 21. Results of the comparison experiment III. Two pictures on the
right show the detail running time varieties of 2 algorithms.

The experiment shows that with the increase of task area

size, the running time of the two algorithms also increase, but

MCPP-MLCT shows much better merit, its running time and

the increase rate are significantly lower than that of A-STC.

Above experiments show that MCPP-MLCT algorithm is

quite stable with varies of task area sizes, robot numbers and

initial positions, and also has a lower repeated coverage rate

in the search process. The main reason is that MCPP-MLCT

use multiple cell sizes for task area segmentation. Generally,

outdoor environment has a complex surface with various

land cover types, so MCPP-MLCT has much better merit

than A-STC in practical application in outdoor environments,

such as providing the basic algorithm for real-time large-area

emergency search and rescue.

D. PROBLEMS

1) TASK COST REDUNDANCY INTRODUCED BY

APPROXIMATE VISUAL FIELDS

In the proposed algorithm, the real visual fields of robots

must be approximated to meet the cell size in the quadtree

to meet the requirement that the cell size of adjacent lay-

ers in a quadtree structure should be twice. For example,

Table 4 shows that robots have a wide real visual field

50 when they execute a search task in bare land. However,

the visual field valuemust be approximated to 40 to satisfy the

twice sequence cell size in the quadtree. The result decreased

the search efficiency in bare land; that is, the task cost is

increased or resulted in redundant task cost.

The task cost is determined by visual field and speed. Thus,

if the robot speed can be adjusted in different situations,

then cost redundancy can be compensated to some degree.
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For example, we can increase robot movement speed in bare

land if the visual field is decreased with the cell size.

2) OVER-SEGMENTATION INTRODUCED IN QUADTREE

CONSTRUCTION

We use the quadtree structure in the proposed algorithm to

represent the task area. Cells with different sizes are used to

decompose the places with different land cover types. These

places generally have irregular shapes. One land cover type

place may be decomposed with several cell sizes to obtain

a complete and fully covered decomposition. This approach

indicates that we cannot represent one land cover type place

with only one cell size (i.e., its corresponding visual field

value).

The quadtree is simplified from the lowest layer to the top

layer and four child cells with different land cover types are

reserved to avoid the duplication and redundancy cover by

different layer cells. During this process, over-segmentation

is introduced in places near boundaries of different land cover

types to maintain cell continuity.

The task cost in a complex place is generally larger than

that in a simple place. However, the quadtree construction

process must over-segment some complex places. This con-

dition, would introduce extra task costs or decrease task

efficiency to some degree.

3) OVER-SEGMENTATION INTRODUCED IN

QUADTREE CONSTRUCTION

We use the quadtree structure in the proposed algorithm to

represent the task area. Cells with different sizes are used to

decompose the places with different land cover types. These

places generally have irregular shapes. One land cover type

place may be de

4) IMPACT OF ENVIRONMENTAL TOpOLOGY

Similar as DARP algorithm and A-STC algorithm, MCPP-

MLCT algorithm is also suitable for topologically continuous

environment, if there are some obstacles divided the task area

into several separate parts, the algorithmmay fail to search the

whole area.

5) CAN NOT BE COMPUTED BY PARALLELl PROCESS IN

MULTI-CORE SYSTEMS

The algorithm is divided into 3 parts: the establishment of

hierarchical quadtree, task assignment and path planning.

Only the third part can be computed by parallel processing,

as in the task assignment process, each cell in the whole

area had to be assigned to the robots one by one, so that the

assignment cannot be completed in the parallel way.

V. CONCLUSION AND FURTHER WORK

In the outdoor complex environment, which is affected by

ground cover types or terrain structures, robots or unmanned

aerial vehicles cannot perform tasks with uniform effi-

ciency. Existing MCPP algorithms cannot handle the prob-

lems in such conditions. We propose the method called

MCPP-MLCT to meet the requirement for robot task assign-

ment in the outdoor complex surface environment.

The main features of the algorithm include the building

of various size cell systems without repetition based on

a hierarchical quadtree structure and facilitating effective

task assignment and path planning by constructing adja-

cent topological relationships among the cells. Several cost

functions based on visual field and moving speed of the

robots in different land cover types are also established. The

azimuth trend method is proposed to guide the task assign-

ment to converge efficiently. Finally, we use the improved

Spiral STC algorithm to complete the path planning for each

robot.

Our algorithm can effectively reduce the repeated coverage

of the robots in complex environment. With the increase of

search area size and the number of robots participating in

the search, the performance of our algorithm has obvious

advantages compared with the current mainstream MCPP

algorithms. It can be used in applications of large-scale emer-

gency rescue.

Currently, for the sake of simplicity, in the complex envi-

ronment, we do not consider the existence of geographic

features such as mountains and canyons, however, in actual

rescue application, we may face to an environment in which

many mountains and canyons exist. Therefore, in our further

work, we will consider add 3D terrain model and urban build-

ings to the algorithm to simulate geographic features impact

to robot’s task assignment. In addition, we will consider

using random tree replace quadtree to divide the complex

environment, so as to further improve the classification of

terrain features and terrain types.
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