
A Multi-Sample, Multi-Tree Approach to Bag-of-Words Image Representation
for Image Retrieval

Zhong Wu∗

Tsinghua University
Qifa Ke†1, Jian Sun†2

Microsoft Research
1Silicon Valley Lab, 2Asia Lab

Heung-Yeung Shum†

Microsoft Corporation

Abstract

The state-of-the-art content based image retrieval sys-
tems has been significantly advanced by the introduction of
SIFT features and the bag-of-words image representation.
Converting an image into a bag-of-words, however, involves
three non-trivial steps: feature detection, feature descrip-
tion, and feature quantization. At each of these steps, there
is a significant amount of information lost, and the resulted
visual words are often not discriminative enough for large
scale image retrieval applications. In this paper, we pro-
pose a novel multi-sample multi-tree approach to comput-
ing the visual word codebook. By encoding more informa-
tion of the original image feature, our approach generates a
much more discriminative visual word codebook that is also
efficient in terms of both computation and space consump-
tion, without losing the original repeatability of the visual
features. We evaluate our approach using both a ground-
truth data set and a real-world large scale image database.
Our results show that a significant improvement in both pre-
cision and recall can be achieved by using the codebook
derived from our approach.

1. Introduction

SIFT features [7] and the bag-of-words image represen-
tation [19] are at the core of state-of-the-art large scale im-
age retrieval systems. Converting an image into a bag of
words involves three non-trivial steps: 1) feature detection,
2) feature description, and 3) feature quantization. Step 1
detects distinctive and repeatable image features such as
DoG points and/or MSER regions [7, 8, 10]. In Step 2, an
image patch for each feature is extracted, from which a fea-
ture descriptor is then computed [7, 9]. A quantizer in Step
3 is used to quantized a descriptor into a visual word in a
pre-defined codebook [19]. Data structures like k-d trees,

∗This work was done while Zhong Wu was an intern at Microsoft Re-
search. Email: v-zhowu@microsoft.com.

†Email: {qke, jiansun, hshum}@microsoft.com

vocabulary trees, or randomized forrest are often used in
this step to speed up searching the best visual words in a
codebook given a descriptor (c.f. [7, 12, 13, 15]).

Impressive results have been achieved for each of these
steps in recent years. At each processing step, however,
there is a significant amount of information lost, and the
resulted visual words are often not discriminative enough
for large scale image retrieval applications. Various ap-
proaches have been proposed to improve the discriminative
power at different steps. At the feature detection step, mul-
tiple local features are grouped to form a more global and
thus more discriminative feature (c.f. [1, 6, 16, 23, 24]. At
the feature description step, higher-dimensional descriptors
or descriptors augmented with other information [3, 9, 22]
have been proposed to encode more image information. At
the quantization step, approaches have focused on design-
ing quantizers or codebooks that reduce quantization errors
and/or preserve more information of the feature descrip-
tor [4, 12, 15, 13, 18, 21].

We take a more global view of all the three steps, and
propose a novel multi-sample multi-tree approach to com-
puting the visual word codebook. Our goal is to increase
the discriminative power of visual words by encoding more
information of the original image feature. First, in Step
1, we sample multiple image patches at each image fea-
ture point/region, in contrast to just one image patch in
previous approaches. Although these patches overlap with
each other, when transformed to feature descriptors in Step
2, they encodes complementary information about the un-
derlying image feature. In Step 3, we use multiple trees
to quantize the descriptors; each tree representing a spe-
cific codebook is applied to one type of image patch sam-
pling. The result is a packet of visual words for each feature
point/region detected in Step 1. Each packet of visual words
are then hashed into one final visual word in the codebook.

Our approach is novel in that it combines multi-sample
features and quantizes them as a “visual packet” using mul-
tiple trees, which improves discriminative power. This
is fundamentally different from previous approaches using
multi-scale features [7, 5] and multiple trees [14, 11]. Our

Match

Match

Match

Non-match

(a) Match Pairs (b) Non-match Pairs

Match

Non-match

Match

Match

Figure 1. Examples of matched and non-matched visual packets.
In each visual packet, two image patches are sampled at differ-
ent scales. (a) two matched visual packets. In each compared
visual packet pair, both large scale image patches and small scale
image patches are quantized to the same visual word. (b) two non-
matched visual packets. False matches can be effectively rejected
since a visual packet is more discriminative than a single visual
word.

approach has several advantages. First, by encoding more
information about the underlying image feature using mul-
tiple samples and multiple trees, our approach generates a
much more discriminative codebook. Second, since the im-
age patch sampling process is deterministic, the repeatabil-
ity of the original feature points/regions is also preserved.
Third, by using multiple small trees, we derive a codebook
that is not only more efficient (in terms of computation and
space consumption), but also more discriminative than the
codebook from a single tree that is an order of magnitude
larger. The final result is a discriminative, repeatable, and
efficient visual word codebook. We evaluate our approach
using both a ground-truth data set and a real-world large
scale image database, and show a significant improvement
in both precision and recall in image retrieval.

2. Multi-Sample, Multi-Tree Representation

In this section, we first present the multi-sample, multi-
tree approach to computing the bag-of-words image repre-
sentation. We then show how to effectively use it in a large
scale object retrieval system.

2.1. Representation - visual packet

Multi-sample. Let all detected feature points in an im-
age I be X = {xi}. For each feature point, K image
patches {p1

i , p
2
i , ..., p

K
i } are sampled. For example, we can

sample image patches with different scales and locations
around the feature point. Each sampled image patch pk

i is
then normalized to pre-defined image size (64 × 64), from
which an 128-dimensional SIFT descriptor is then com-
puted by assembling a 4 × 4 array of 8 orientated gradient
histograms [7]. While different image patches may over-
lap in the image space, when normalized and transformed
to SIFT descriptors, they effectively encode complemen-
tary information about the image feature. For example, a
smaller patch sampled from a large patch, when normalized
to 64 × 64, contains more fine grained and therefore higher
frequency information.

Since we sample at pre-defined locations and scales, the
repeatability of the underlying image feature is preserved.
This is in contrast to approaches relying on grouping nearby
features to improve discriminative power, where repeatabil-
ity is decreased as it is non-trivial to group the same set of
features at different imaging conditions.

Multi-tree. Each feature descriptor is quantized into a
visual word dk

i in a codebook which represented by a k-
d tree. Instead of using a single codebook in the quanti-
zation, we use multiple trees and therefore multiple code-
books {B1,B2, ...,BK} for the image patches obtained
by different sampling methods. More specifically, the im-
age patch pk

i is quantized by the codebook Bk. As a
result, for each feature point, we obtain K visual words
di = {d1

i , d
2
i , ..., d

K
i }. For simplicity, we call di a “visual

packet”, which is a multiple-sample, multiple-tree represen-
tation of the original image feature xi.

An alternative to multi-tree approach is to concatenate all
descriptors from multiple patches into one large descriptor.
Such a higher-dimensional descriptor is also discriminative.
One can then simply use one tree/codebook for quantiza-
tion. This approach is not practical as it significantly in-
creases the dimension of the feature space, making the k-
nearest neighbor search of the visual words in the codebook
exponentially more difficult and expensive.

One can also use one single tree to quantize all descrip-
tors computed from all sample patches. To achieve similar
discriminative power, the tree has to be significantly large
to achieve a fine partition of the descriptor space, and is
therefore more expensive in terms of both space and com-
putation. We also found by experiments that a single giant
tree achieves much worse precision and recall than multiple
small trees. The reason is because different patch sampling
methods lead to different descriptors that encode the image
patch at different level of details. As a result, it is better to
design one codebook for each patch sampling method.

1di

2d i

3di

Figure 2. Partitions in the joint feature space. Each codebook rep-
resents a partition in a projected plane. Multiple codebooks con-
struct a fine level partition of the joint space.

Different from the standard multi-scale sampling ap-
proach that detects features at different scales and then
quantizes them separately, our approach combines multi-
scale features sampled from the same feature point and then
quantizes them into a “visual packet” using multiple trees.
Note that multiple trees have been used to guarantee fast re-
sponse in retrieval systems [14, 11]. Here we use multiple
trees to construct a joint feature space by combining multi-
scale features, thus to improve the discriminative power of
visual words without losing repeatability.

Why more discriminative? A visual packet is more
discriminative than a visual word because two visual pack-
ets are considered as identical only if their corresponding
visual words are identical. Formally, it takes the intersec-
tion of the quantization results with multiple samples:

(di = dj) ≡ (d1
i = d1

j)∧(d2
i = d2

j)∧...∧(dK
i = dK

j). (1)

Figure 1 shows several real examples of matched and non-
matched visual packets. The false matches are effectively
rejected because different samples can provide complemen-
tary information of a feature.

Geometrically, using the visual packet representation is
equivalent to constructing a fine partition in the space of the
joint feature [p1

i , p
2
i , ..., p

K
i]. As illustrated by Figure 2, each

codebook corresponds to a partition in a projected plane (a
low-dimensional subspace) and multiple partitioned planes
form a global and fine partition of the space of the joint
feature. The number of partitions is up to NK , where N is
the number of visual words in each codebook.

2.2. Indexing

At a first glance, constructing the above large number
of partitions in the joint-feature space is impractical in a
large scale retrieval system. Fortunately, most of the par-
titions are empty given a limit number of images in the
database. We can use the hash technique to efficiently
convert a visual packet of a non-empty partition to a hash
code. In our implementation, we use Rabin Hashing [17]
ci = h([d1

i d
2
i ...d

K
i]), where h() is the Rabin hash function

Quantize

Hash

Quantize

Image ID ……

Visual

word

…

Image ID ……

Hash

code

…

(a)

(b)

……

……

ID1 ID2

Visual Word Packet

Figure 3. Inverted index structure. (a) using the standard visual
word representation. (b) using the visual packet representation.

and ci is the 32bits hash code. The Rabin hash function
treats the concatenated visual words [d1

i d
2
i ...d

K
i] as a string

and outputs an integer hashcode. The hash code plays the
same role of the visual word in the inverted index file for im-
age retrieval systems, as shown in Figure 3. In the standard
visual words model, each feature is quantized to a visual
word; in the visual packet model, each feature is quantized
to a visual packet and then mapped to a hash code. For a
given image database, we only need to store a set of small
codebooks, a hash table, and a standard inverted index file.
In our experiments, the size of hash table is often a frac-
tion of the size of the inverted file. For small databases, it
is about 50%–80% of the size of the index. With smaller
codebooks and large databases, it is about 10%–30% of the
size of the index.

2.3. Retrieval

Usually, increasing the discriminative power will in-
evitably decrease the recall of the retrieval system. To ad-
dress this issue, we use soft quantization [15] in the retrieval
stage to improve the recall. In soft quantization, each sam-
pled image patch in the query image is associated with R
nearest visual words in the codebook Bk instead of its sin-
gle nearest visual word. Denote these R nearest neighbors
as Sk

i = {dk
i (1), dk

i (2), ..., dk
i (R)}. Note that the soft quan-

tization is only applied to the query image, not to the im-
ages being indexed. After the soft quantization, each de-
tected feature will be associated with a set of candidate vi-
sual packets by enumerating all possible combinations:

dsoft
i = S1

i × S2
i × ... × SK

i , (2)

where × is the Cartesian product. Although dsoft
i contains

RK visual packets, most of them have no matched entry
in the hash table and are ignored. For example, the average
number of matched visual packets is about 10−30 when the
soft quantization factor R is 40 in our experiments. Thus,
the computation costs of the soft quantization for the stan-
dard visual words and the visual packets are comparable.

3. Experimental Results

In this section, we present our empirical studies of dif-
ferent sampling methods, and compare various methods for
combine multiple samples for computing visual words.

We evaluate the performance of our multiple sample,
multiple tree representation using two databases. One is the
recent large image patch database [22] with known match-
ing and non-matching image patch pairs. The matching
pairs in this database are obtained by projecting 3D points
from Photo Tourism [20] reconstructions back into the orig-
inal images. With the matching information, we can ac-
curately measure the performance at the patch level. The
other data set is the object retrieval database [13] from Uni-
versity of Kentucky, which contains 10,200 images in sets
of four images of one object/scene. Querying the database
with each of the four images should ideally return the other
three images in the set. Using this database, we evaluate the
performance of our approach in an image retrieval system.
We achieved similar performance gains using various fea-
tures [22]. In this section, we report results on the widely
used feature detector and descriptor– “DoG + SIFT” [7].

3.1. Results on image patch database

The image patch database consists of three datasets.
Each dataset contains 100 thousand 64 × 64 gray-scale im-
age patches. The Trevi Fountain (Roma) dataset is used as
training data to learn visual word codebooks using standard
k-means clustering algorithm. Another dataset, the Half
Dome (Yosemite) dataset, is used as a test dataset for eval-
uation. We randomly sample 200K matched pairs and an-
other 200K non-matched pairs from the test dataset for our
evaluation.

For each pair of image patches, to simulate the indexing
and retrieval phases, one patch is used in indexing phase
and the other is used as a query patch. Note that soft quanti-
zation is only applied in the indexing phase. In other words,
the indexed patch is quantized to its single nearest visual
word in the visual word codebook. The query patch is soft
quantized to its R nearest neighbors, i.e., quantized to R vi-
sual words. In our implementation of soft quantization, we
use k-d tree [2] to find the R nearest neighbors of a given
feature descriptor. We consider it a match if any of the R
visual word is the same as the visual word of the indexed
patch.

Crop Up-sample

(a)

Up-sample

(b)

64 ×64 Pixels 64 ×64 Pixels

Crop

Figure 4. Patch sampling. (a) a central region is sampled and re-
sized. (b) a non-central region is sampled and resized.

10
-1.9

10
-1.8

10
-1.7

10
-1.6

0.72

0.74

0.76

0.78

0.8

0.82

Error Rate

R
ec

al
l

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

10
-2

10
-1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

R
ec

al
l

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

Figure 5. Recall-Error curves at different sampling scales. The X-
axis is the error rate and Y-axis is the recall. The figure on the right
side is a zoom-in view.

We measure the performance using recall and error met-
rics. The 200K matched pairs are used to measure the re-
call, and the 200K non-matched pairs are used to measure
the error. The recall is defined as the fraction of the num-
ber of correct matches over the 200K true matches, and the
error is the fraction of false positives, i.e., the number of
false matches over the 200K non-matches. By varying the
soft quantization factor R in the range {1, 4, 10, 20, 40,
60, 80, 100, 120, 150, 200, 500}, we can plot a “recall-
error” curves as the overall quality measurement. While we
use large quantization factors to perform a more exhaus-
tive study, in real applications, a soft quantization factor be-
tween 2 and 40 is sufficient.

The feature detection step outputs a feature point/region
together with a feature scale. This scale is usually multi-
plied by a const scale factor in order to extract an image
patch for computing the feature descriptor.

Single scale sampling First, we study the impact of
the sampling scale on the single image patch representation.
Given a 64 × 64 image patch, we crop the central region
and resize it to 64 × 64, as shown in Fig 4 (a). By varying
the ratio of the size of the central region to the size of the
original image patch, we essentially sample the image patch
at different scales. The sampled (and resized) image patch
is then transformed to SIFT descriptor and quantized to a

10
-4

10
-3

10
-2

10
-1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

R
ec

al
l

0.7
1.0+0.5
0.7+0.5
1.0+0.3
0.7+0.3
0.7+0.8
1.0+0.7+0.5

Figure 6. Comparison of the best single-scale sampling, several
two-sample combinations, and the best triple-sample combina-
tions.

10
-4

10
-3

10
-2

10
-1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

R
ec

al
l

0.7
1.0+0.5
shift(left)
shift(right)
shift(topleft)
shift(left+right)
shift(topleft+right)

Figure 7. Recall-Error curves of using patches from different sam-
pling approaches and their combinations. The X-axis is the error
rate, and Y-axis is the recall.

visual word.

Figure 5 plots the recall-error curves using different sam-
pling scales. We can see that the performances of all single
image patch representations are close. The result with sam-
pling scale 0.3 is worst because the sampled image patch at
this scale is too small to carry enough image information.
On the other hand, the result with the largest sampling scale
(1.0) is not the best since we use a fixed dimension descrip-
tor. The best performance is achieved at the sampling scale
0.7, although its superiority is not significant.

����������Method
Recall

0.4 0.6 0.8

1.0 3.10 7.70 22.1
0.9 2.60 6.40 18.7
0.8 2.50 6.30 17.8
0.7 2.40 5.70 16.7
0.6 2.30 6.00 17.9
0.5 2.30 6.00 19.8
0.4 2.80 7.30 24.1
0.3 4.20 12.8 46.6

1.0 + 0.8 0.60 1.60 6.20
1.0 + 0.5 0.30 0.90 4.60
1.0 + 0.3 0.30 1.50 9.70
0.8 + 0.5 0.40 1.20 5.20
0.7 + 0.5 0.39 1.30 6.40
0.7 + 0.3 0.53 1.60 10.3
0.7 + 0.8 0.46 1.70 6.80
0.5 + 0.3 0.60 2.50 14.4

1.0 + 0.7 + 0.5 0.19 0.50 2.90
1.0 + 0.8 + 0.5 0.20 0.40 2.70
1.0 + 0.5 + 0.3 0.20 0.70 4.90
1.0 + 0.8 + 0.3 0.20 0.60 4.70
0.8 + 0.5 + 0.3 0.20 0.80 5.40

shift(left) 4.30 14.3 62.5
shift(right) 4.30 15.4 67.2

shift(topleft) 6.30 22.4 103.2
shift(left + right) 0.28 2.00 27.6

shift(topleft + right) 0.44 3.40 50.7

Table 1. Error rates (10−3) of different methods with respect to the
recall.

Multiple scale sampling Next, we exam the perfor-
mance of the multiple-sample, multiple-tree representation.
We perform an exhaustive search to find the best two-
sample combination and triple-sample combination. Due to
the space limit, we only show several representative combi-
nations in Figure 6 and Table 1.

In Figure 6, we can see a substantial improvement from
the best single sample “0.7” to the two-sample “1.0 +
0.5”. At the recall 0.6, the error rate is reduced from
5.7×10−3 to 0.9×10−3, which means that near 84% incor-
rect matches are rejected without sacrificing the number of
correct matches! Using a triple-sample “1.0 + 0.8 + 0.5”, we
can further boost the performance at the cost of introducing
an additional tree - the error rate is reduced to 0.4 × 10−3.

More results shown in Table 1 lead to several observa-
tions:

• The combination of more complementary samples is
better than the combination of less complementary
samples. For example, the combination of “1.0 + 0.5”

10
-4

10
-3

10
-2

10
-1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

R
ec

al
l

0.7, 1K
1.0+0.5, 1K
0.7, 10K
1.0+0.5,10K

Figure 8. Recall-Error curves from using different size of visual
word codebooks. The X-axis is the error rate, and Y-axis is the
recall. “1K” and “10K” indicate the size of visual word codebook.

is better than other two-sample combinations, and the
combination of “0.8 + 0.5” is better than that of “0.7 +
0.5”.

• Combining a bad sample, for example scale “0.3”,
harms the performance.

• The combinations with more samples consistently
achieve better performance. However, while 2-sample
significantly outperforms 1-sample, the improvement
of 3-sample over 2-sample is limit, indicating a satura-
tion of performance improvement by combining more
samples. Note that using more samples requires more
k-d trees and more computations on the nearest neigh-
bor search. Thus the 2-sample combination is a good
trade-off between performance improvement and cost.

Multiple location sampling An alternative way to
generating different samples is to sample regions at differ-
ent locations instead of at the center, as shown in Fig 4 (b).
However, due to the rotation and 3-D distortions, the non-
central samples are less repeatable and lead to poor perfor-
mances. In our experiments, we sample the patches to the
left, right and top-left of the image patch center, and evalu-
ate their performances. From Figure 5 and Table 1 we can
see that they all achieve poor performances when compared
to multi-scale sampling approach.

Small codebook V.S. large codebook To verify the
consistency of the improvement given different codebook
sizes, we compare the performances of four approaches:
single sample 0.7 and two-sample 1.0 + 0.5, using 1K and
10K visual word codebook respectively. From the results
shown in Figure 8, we can see that the multiple-sample

Time Cost Recall Error Rate
0.7, 10K 4.65 63.5 3.60

1.0 + 0.5, 1K 1.46 63.9 0.80

(a) Results using soft quantization factor 10.

Time Cost Recall Error Rate
0.7, 10K 5.11 73.7 5.50

1.0 + 0.5, 1K 1.63 76.6 2.70

(b) Results using soft quantization factor 20.

Table 2. Comparisons of the quantization time cost (in millisec-
onds) per feature, recall (%), and error rate (10−3). “1.0 + 0.5,
1K” is our multiple sample approach using two 1K visual word
codebooks, and “0.7, 10K” is the single sample approach with a
10K codebook.

representation achieves the same amount of significant im-
provements in both 1K case and 10K case. More surpris-
ingly, the curve “1.0 + 0.5, 1K” is even better than the curve
“1.0, 10K”, while the former approach only uses two much
smaller visual word codebooks. This is a nice property since
using small codebooks is more efficient in terms of both
storage and computation. Table 2 shows the time costs of
four approaches. Compared to the single sample approach
with 10K visual words, the multiple sample approach with
two 1K visual-word codebooks not only achieves better per-
formance in terms of recall and accuracy, but is also three
times faster.

3.2. Results on object retrieval database

The University of Kentucky object retrieval
database [13] originally contains about 10K images.
We further add 100K images crawled from the Internet to
form a large, real-world object retrieval database. Follow-
ing [14, 4], we use mean Average Precision (mAP) as our
evaluation metric. For each query image we compute its
precision-recall curve, from which we obtain its average
precision and then take the mean value over all queries.

We experimented with different sizes of visual word vo-
cabulary, then chose the 100K visual word codebook and
the soft quantization [14] with a factor of four as the base-
line system. The features are detected by the DoG opera-
tor [7] and transformed to 128-dim SIFT descriptors. For
each feature, we use its default scale estimated by the de-
tector.

Since searching the best combination of samples on this
large database is impractical, we simply choose a two-
sample two-tree combination for evaluation and leave more
comprehensive studies as the future work. The two-sample
combination is: one is the original image patch and the other
is the image patch at the same location but twice larger.

(c) Correct: 24 Wrong: 19

(d) Correct: 38 Wrong: 5

(a)

(b)

Correct: 48 Wrong: 20

Correct: 69 Wrong: 0

Figure 9. Image matching examples. Blue lines indicate the correct
matches and red lines indicate the wrong matches. (a) and (c) are
baseline results using single sample, single tree. (b) and (d) are
our results using multiple-sample, multiple-tree representation.

We also experimented with the “multi-sample, single-
tree” combination, which uses one vocabulary tree to quan-
tize multi-scale features. The performance turns out to be
similar to the baseline and is significantly inferior to two-
sample two-tree combination.

Qualitative results. To visualize the improvement of
our approach in object retrieval, we show two image match-
ing results in Figure 9. The image on the left is the query im-
age and the right one is the indexed image. We can clearly
see that the multiple-sample, multiple-tree approach gives
more inliers and less outliers, compared to the baseline ap-

10000 20000 50000 100000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of images

m
A

P

2-sample, 2-tree, 40
2-sample, 2-tree, 20
2-sample, 2-tree, 10
Baseline, 1
Baseline, 4
Baseline, 10

Figure 10. Comparisons of the baseline approach and our approach
(2-sample 2-tree) using mAP, using different soft quantization fac-
tors. The numbers (following the name of the approach) in the
legend are soft quantization factors.

proach.

Quantitative results. Figure 10 shows the quantitative
comparisons using mAP by varying the number of images
in the database. The smaller databases are obtained by sam-
pling images from the largest database. Consistent with the
results on the image patch database, the improvement by the
multiple-sample, multiple-tree approach is also significant –
about 40-50% improvements over the baseline approach.

Our approach also significantly outperforms the results
reported in [13] using the metric of “top-4-score” 1. On
the 10K images database, our approach achieves a “top-4-
score” of 3.60, while the best result in [13] is about 3.10.

To study the impact of soft quantization factor, we also
vary the factor for both baseline approach and our approach.
We can see from Figure 10 that a soft quantization factor of
4 works best for the baseline approach–increasing the factor
to 10 results in a reduction in mAP. In our approach, we
have found that increasing the soft quantization factor will
improve the mAP. However, larger soft quantization factor
incurs larger time cost. We choose the factor to be between
10 and 40 as the time cost is acceptable. In the following
we present the runtime cost of our system.

Runtime. We perform our experiments with a single
CPU on a 3.0GHz Core Duo desktop with 16G memory.
Table 3 shows the runtime to query one image (excluding
feature extraction time) on the 100K database, with differ-
ent soft quantization factors used in Figure 10. We can see
that with a soft factor of 10, our approach has a runtime cost
slightly better than the baseline approach with a best soft

1The average number of true positives in the top-4 returned images.

factor of 4, while in this case our approach achieves a 39%
percentages improvement in terms of mAP over the base-
line approach with a best soft quantization factor. If higher
time cost is allowed (i.e., 1.4 seconds query time, which is
acceptable for many applications), we can achieve a 45%
mAP improvement.

Soft factor 1 4 10
Time cost (s) 0.32 0.79 1.84

(a): Baseline approach.

Soft factor 10 20 40
Time cost (s) 0.71 1.39 4.50

(b): Our approach.

Table 3. Comparison of runtime per query image (without feature
extraction) on the 100K image database using different soft quan-
tization factors.

4. Conclusion

We have demonstrated that a simple and deterministic
multi-sample multi-tree approach can effectively increase
the discriminative power of visual word codebook, with-
out losing repeatability of the original image features, yet
efficient in terms of both computation and space consump-
tion. We can consider the three steps for visual word com-
putation as a pipeline consisting of three stages: 1) sam-
pling image patches, 2) transforming image patches into
feature descriptors, and 3) quantizing the descriptors into
visual words. At each stage, different approaches can be
applied to improve the discriminative power of the visual
word codebook, by preserving more information about the
original image patches. Taking one step further, an inter-
esting problem is whether there exists an optimal codebook
for bag-of-words image representation for the purpose of
image retreival, and if so, how one can optimize the con-
figuration of the pipeline in order to achieve the optimum.
This is a complex but interesting problem that is useful for
large scale image retrieval systems.

References

[1] A. Agarwal and B. Triggs. Hyperfeatures - multilevel local
coding for visual recognition. In ECCV, 2006.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. J. ACM, 45(6):891–
923, 1998.

[3] P.-E. Forssén and D. Lowe. Shape descriptors for maximally
stable extremal regions. In ICCV, 2007.

[4] H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In European Conference on Computer Vision, 2008.

[5] S. C. R. B. Laptev I., Marszalek M. Learning realistic human
actions from movies. In CVPR, 2008.

[6] D. Liu, G. Hua, P. Viola, and T. Chen. Integrated feature se-
lection and higher-order spatial feature extraction for object
categorization. In CVPR, 2008.

[7] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 20:91–110, 2003.

[8] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In
BMVC, 2002.

[9] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. PAMI, 27(10):1615–1630, 2005.

[10] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A com-
parison of affine region detectors. IJCV, 65:43–72, 2005.

[11] U. H. Mikolajczyk K. Action recognition with motion-
appearance vocabulary forest. In CVPR, 2008.

[12] F. Moosmann, B. Triggs, and F. Jurie. Randomized cluster-
ing forests for building fast and discriminative visual vocab-
ularies. In NIPS, 2006.

[13] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In CVPR’2006.

[14] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Lost in quantization: Improving particular object retrieval in
large scale image databases. In CVPR, 2008.

[16] T. Quack, V. Ferrari, B. Leibe, and L. J. V. Gool. Efficient
mining of frequent and distinctive feature configurations. In
ICCV, 2007.

[17] K. R.M. and R. M.O. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev., 31(2):249–260, 1987.

[18] G. Schindler, M. Brown, and R. Szeliski. City-scale location
recognition. In CVPR, 2007.

[19] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In ICCV, Oct. 2003.

[20] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-
ploring photo collections in 3d. In SIGGRAPH ’06, pages
835–846, 2006.

[21] T. Tuytelaars and C. Schmid. Vector quantizing feature space
with a regular lattice. In ICCV, 2007.

[22] S. Winder and M. Brown. Learning local image descriptors.
In CVPR, 2007.

[23] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation pat-
terns: from visual words to visual phrases. 2007.

[24] L. Zitnick, J. Sun, R. Szeliski, and S. Winder. Object instance
recognition using triplets of feature symbols. TechReport
MSR-TR-2007-53, Microsoft Research, 2007.

