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Article
Urban Analytics and
City Science

A multi-scale analysis of
27,000 urban street
networks: Every US city,
town, urbanized area, and
Zillow neighborhood

Geoff Boeing
University of California, USA

Abstract

OpenStreetMap offers a valuable source of worldwide geospatial data useful to urban researchers. This

study uses the OSMnx software to automatically download and analyze 27,000 US street networks

from OpenStreetMap at metropolitan, municipal, and neighborhood scales—namely, every US city and

town, census urbanized area, and Zillow-defined neighborhood. It presents empirical findings on US

urban form and street network characteristics, emphasizing measures relevant to graph theory,

transportation, urban design, and morphology such as structure, connectedness, density, centrality,

and resilience. In the past, street network data acquisition and processing have been challenging and ad

hoc. This study illustrates the use of OSMnx and OpenStreetMap to consistently conduct street

network analysis with extremely large sample sizes, with clearly defined network definitions and

extents for reproducibility, and using nonplanar, directed graphs. These street networks and

measures data have been shared in a public repository for other researchers to use.

Keywords

GIS, network analysis, OpenStreetMap, street networks, urban form, urban morphology

Introduction

On 20 May 1862, Abraham Lincoln signed the Homestead Act into law, making land across
the United States’ Midwest and Great Plains available for free to applicants (Porterfield,
2005). Under its auspices over the next 70 years, the federal government distributed 10% of
the entire US landmass to private owners in the form of 1.6 million homesteads (Lee, 1979;
Sherraden, 2005). New towns with gridiron street networks sprang up rapidly across the
Great Plains and Midwest, due to both the prevailing urban design paradigm of the day and
the standardized rectilinear town plats used repeatedly to lay out instant new cities
(Southworth and Ben-Joseph, 1997). Through path dependence, the spatial signatures of
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these land use laws, design paradigms, and planning instruments can still be seen today in
these cities’ urban forms and street networks. Cross-sectional analysis of American urban
form can reveal these artifacts and histories through street networks at metropolitan,
municipal, and neighborhood scales.

Network analysis is a natural approach to the study of cities as complex systems (Masucci
et al., 2009). The empirical literature on street networks is growing ever richer, but suffers
from some limitations—discussed in detail in Boeing (2017) and summarized here. First,
sample sizes tend to be fairly small due to data availability, gathering, and processing
constraints: most studies in this literature that conduct topological or metric analyses tend
to have sample sizes ranging around 10 to 50 networks (Barthelemy and Flammini, 2008;
Buhl et al., 2006; Cardillo et al., 2006; Strano et al., 2013), which may limit the
generalizability and interpretability of findings. Second, reproducibility has been difficult
when the dozens of decisions that go into analysis—such as spatial extents, topological
simplification and correction, definitions of nodes and edges, etc.—are ad hoc or only
partly reported (e.g. Porta et al., 2006; Strano et al., 2013). Third, and related to the first
two, studies frequently oversimplify to planar or undirected primal graphs for tractability
(e.g. Barthelemy and Flammini, 2008; Buhl et al., 2006; Cardillo et al., 2006; Masucci et al.,
2009), or use dual graphs despite the loss of geographic, metric information (Batty, 2005;
Crucitti et al., 2006a, 2006b; Jiang and Claramunt, 2002; Ratti, 2004).

This study addresses these limitations by conducting amorphological analysis of urban street
networks at multiple scales, with large sample sizes, with clearly defined network definitions and
extents for reproducibility, and using nonplanar, directed graphs. In particular, it examines
27,000 urban street networks—represented as primal, nonplanar, weighted multidigraphs
with possible self-loops—at multiple overlapping scales across the US, focusing on structure,
connectedness, centrality, and resilience. It examines the street networks of every incorporated
city and town, census urbanized area, and Zillow-defined neighborhood in the US. To do so, it
uses OSMnx1—a new street network research toolkit (Boeing, 2017)—to download, model, and
analyze these street networks at metropolitan, municipal, and neighborhood scales. These street
networks and measures data sets have been compiled and shared in a public repository at the
Harvard Dataverse2 for other researchers to use.

The purpose of this paper is threefold. First, it describes and demonstrates a new
methodology for easily and consistently acquiring, constructing, and analyzing large samples
of street networks as nonplanar directed graphs. Second, it presents empirical findings of
descriptive urban morphology for the street networks of every US city, urbanized area, and
Zillow neighborhood. Third, it investigates with large sample sizes some previous smaller-
sample findings in the research literature. This paper is organized as follows. In the next
section, it discusses the data sources, tools, and methods used to collect, model, and analyze
these street networks. Then, it presents findings of the analyses at metropolitan, municipal, and
neighborhood scales. Finally, it concludes with a discussion of these findings and their
implications for street network analysis, urban morphology, and city planning.

Methodology

A network (also called a graph in mathematics) comprises a set of nodes connected to one
another by a set of edges. Street networks can be conceptualized as primal, directed,
nonplanar graphs. A primal street network represents intersections as nodes and street
segments as edges. A directed network has directed edges: that is, edge uv points one-way
from node u to node v, but there need not exist a reciprocal edge vu. A planar network can be
represented in two dimensions with its edges intersecting only at nodes (O’Sullivan, 2014;
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Viana et al., 2013). Most street networks are nonplanar—due to grade-separated
expressways, overpasses, bridges, tunnels, etc.—but most quantitative studies of urban
street networks represent them as planar (e.g. Barthelemy and Flammini, 2008; Buhl
et al., 2006; Cardillo et al., 2006; Masucci et al., 2009; Strano et al., 2013) for tractability
because bridges and tunnels are uncommon in some cities. Planar graphs may reasonably
model the street networks of old European town centers, but poorly model the street
networks of modern autocentric cities like Los Angeles or Shanghai with many grade-
separated expressways, bridges, and underpasses (Boeing, 2018b).

Study sites and data acquisition

This study uses OSMnx to download, construct, correct, analyze, and visualize street
network graphs at metropolitan, municipal, and neighborhood scales. OSMnx is a
Python-based research tool that easily downloads OpenStreetMap data for any place
name, address, or polygon in the world, then constructs it into a spatially-embedded
graph-theoretic object for analysis and visualization (Boeing, 2017). OpenStreetMap is a
collaborative worldwide mapping project that makes its spatial data available via various
APIs (Corcoran et al., 2013; Jokar Arsanjani et al., 2015). These data are of high quality and
compare favorably to CIA World Factbook estimates and US Census TIGER/Line data
(Frizzelle et al., 2009; Haklay, 2010; Maron, 2015; Over et al., 2010; Wu et al., 2005; Zielstra
and Hochmair, 2011). In 2007, OpenStreetMap imported the TIGER/Line roads (2005
vintage) and since then, many community-led corrections and improvements have been
made (Willis, 2008). Many of these additions go beyond TIGER/Line’s scope, including
passageways between buildings, footpaths through parks, bike routes, and detailed feature
attributes such as finer-grained street classifiers, speed limits, etc.

To define the study sites and their spatial boundaries, we use three sets of geometries. The
first defines the metropolitan-scale study sites using the 2016 TIGER/Line shapefile of US
Census Bureau urban areas. Each census-defined urban area comprises a set of tracts that
meet a minimum density threshold (US Census Bureau, 2010). We retain only the urbanized
areas subset of these data (i.e. areas with greater than 50,000 population), discarding the
small urban clusters subset. The second set of geometries defines our municipal-scale study
sites using 51 separate TIGER/Line shapefiles (again, 2016) of US Census Bureau places
within all 50 states plus DC. We discard the subset of census-designated places (i.e. small
unincorporated communities) in these data, while retaining every US city and town. The
third set of geometries defines the neighborhood-scale study sites using 42 separate shapefiles
from Zillow, a real estate database company. These shapefiles contain neighborhood
boundaries for major cities in 41 states plus DC. This fairly new data set comprises nearly
7000 neighborhoods, but as Schernthanner et al. (2016) point out, Zillow does not publish
the methodology used to construct these boundaries. However, despite its newness it already
has a track record in the academic literature: Besbris et al. (2015) use Zillow boundaries to
examine neighborhood stigma and Albrecht and Abramovitz (2014) use them to study
neighborhood-level poverty in New York.

For each of these geometries, we use OSMnx to download the (drivable, public) street
network within it, a process described in detail in Boeing (2017) and summarized here. First
OSMnx buffers each geometry by 0.5 km, then downloads the OpenStreetMap ‘‘nodes’’ and
‘‘ways’’ within this buffer. Next, it constructs a street network from these data, corrects the
topology, calculates street counts per node, then truncates the network to the original,
desired polygon. OSMnx saves each of these networks to disk as GraphML and
shapefiles. Finally, it calculates metric and topological measures for each network,
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summarized below. Such measures extend the toolkit commonly used in urban form studies
(Ewing and Cervero, 2010; Talen, 2003).

Street network measures

Brief descriptions of these OSMnx-calculated measures are discussed here, but extended
technical definitions and algorithms can be found in e.g. (Albert and Barabási, 2002;
Barthelemy, 2011; Brandes and Erlebach, 2005; Costa et al., 2007; Cranmer et al., 2017;
Dorogovtsev and Mendes, 2002; Newman, 2003, 2010; Trudeau, 1994). The average street
segment length is a linear proxy for block size and specifies the network’s grain. Node density
divides the node count by the network’s area, while intersection density excludes dead-ends to
represent the density of street junctions. Edge density divides the total directed network
length by area, while street density does the same for an undirected representation of the
graph (to not double-count bidirectional streets). Average circuity measures the ratio of edge
lengths to the great-circle distances between the nodes these edges connect, indicating the
street pattern’s curvilinearity (cf. Boeing, 2018a).

The network’s average node degree quantifies connectedness in terms of the average number
of edges incident to its nodes. The average streets per node adapts this for physical form rather
than directed circulation. It measures the average number of physical streets that emanate from
each node (i.e. intersection or dead-end). The distribution and proportion of streets per node
characterize the type, pervasiveness, and spatial dispersal of network connectedness and dead-
ends. Connectivity represents the fewest number of nodes or edges that will disconnect the
network if they are removed and is thus an indicator of resilience. A network’s average node
connectivity (ANC)—the mean number of internally node-disjoint paths between each pair of
nodes—more usefully represents how many nodes must be removed on average to disconnect a
randomly selected pair of nodes (Beineke et al., 2002; Dankelmann and Oellermann, 2003).
Brittle points of vulnerability characterize networks with low average connectivity.

A node’s clustering coefficient represents the ratio between its neighbors’ links and the
maximum number of links that could exist between them (Jiang and Claramunt, 2004;
Opsahl and Panzarasa, 2009). The weighted clustering coefficient weights this by edge
length and the average clustering coefficient is the mean of the clustering coefficients of all
the nodes. Betweenness centrality evaluates how many of the network’s shortest paths pass
through some node (or edge) to indicate its importance (Barthelemy, 2004; Huang et al.,
2016; Zhong et al., 2017). A network’s maximum betweenness centrality (MBC) measures the
share of shortest paths that pass through the network’s most important node: higher
maximum betweenness centralities suggest networks more prone to inefficiency if this
important choke point should fail. Finally, PageRank ranks nodes based on the structure
of incoming links and the rank of the source node (Agryzkov et al., 2012; Brin and Page,
1998; Chin and Wen, 2015; Gleich, 2015; Jiang, 2009).

In total, this study cross-sectionally analyzes 27,009 networks: 497 urbanized areas’ street
networks, 19,655 cities’ and towns’ street networks, and 6857 neighborhoods’ street networks.
These sample sizes are larger than those of any previous similar study. The following section
presents the findings of these analyses at metropolitan, municipal, and neighborhood scales.

Results

Metropolitan-scale street networks

Table 1 presents summary statistics for the entire data set of 497 urbanized areas. These
urbanized areas span a wide range of sizes, from the Delano, CA Urbanized Area’s 26 km2
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to the New York–Newark, NY–NJ–CT Urbanized Area’s 8937 km2. Thus, density and
count-based measures demonstrate substantial variance. Further, these urbanized areas
span a wide spectrum of terrains, development eras and paradigms, and cultures.

Nevertheless, looking across the data set provides a sense of the breadth of American
metropolitan street networks. New York’s urbanized area—America’s largest—has 373,309
intersections and 79 million meters of linear street (or 417,570 and 83.4 million if including
service roads). Delano, CA’s urbanized area—America’s smallest—has 874 intersections and
222,328 meters of linear street (or 964 and 231,000 meters if including service roads). The
typical American urbanized area is approximately 185 km2 in land area, has 5830
intersections, and 1.3 million linear meters of street. Its street network is about 7.4%
more circuitous than straight-line as-the-crow-flies edges between nodes would be. The
most circuitous network is 14% more circuitous than straight-line would be, and the least
is only 2%. Looking at density, grain, and connectivity in the typical urbanized area, the
average street segment length (a proxy for block size) is 160 meters. The longest average

Table 1. Central tendency and statistical dispersion for selected measures of all US urbanized areas’ street

networks: � is the mean, � is the standard deviation, and D is the dispersion index �2

� .

Measure � � Min Median Max D

Area (km2) 460.657 858.125 25.685 184.898 8937.429 1598.539

Avg of the avg neighborhood

degree

2.886 0.109 2.626 2.875 3.228 0.004

Avg of the avg weighted

neighborhood degree

0.032 0.018 0.021 0.030 0.321 0.011

Avg circuity 1.076 0.019 1.023 1.074 1.140 <0.001

Avg clustering coefficient 0.042 0.009 0.015 0.042 0.071 0.002

Avg weighted clustering coefficient 0.002 0.001 <0.001 0.001 0.006 <0.001

Intersection count 12,582 26,054 751 4593 307,848 53949.814

Avg degree centrality 0.001 0.001 <0.001 0.001 0.007 0.001

Edge density (km/km2) 13.455 2.137 7.961 13.352 21.233 0.340

Avg edge length (m) 158.588 17.653 117.341 157.332 223.080 1.965

Total edge length (km) 6353 12,625 427 2393 1.42e8 25089.459

Proportion of dead-ends 0.213 0.055 0.077 0.207 0.416 0.014

Proportion of three-way

intersections

0.593 0.046 0.444 0.591 0.778 0.004

Proportion of four-way

intersections

0.187 0.063 0.054 0.178 0.422 0.021

Intersection density (per km2) 26.469 6.256 12.469 26.029 49.423 1.478

Average node degree 5.153 0.302 4.307 5.143 6.056 0.018

m 40,890 83,678 2516 14,955 981,646 171238.406

n 16,032 32,585 874 5830 373,309 66229.939

Node density (per km2) 33.628 7.641 17.675 33.071 61.655 1.736

Max PageRank value 0.001 0.001 <0.001 0.001 0.003 <0.001

Min PageRank value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Self-loop proportion 0.008 0.008 <0.001 0.006 0.071 0.008

Street density (km/km2) 7.262 1.221 4.217 7.171 11.797 0.205

Average street segment length (m) 161.331 17.765 119.573 160.288 225.920 1.956

Total street length (km) 3480 7026 222 1269 79,046 14185.880

Street segment count 22,011 45,725 1281 7868 533,757 94987.570

Average streets per node 2.764 0.162 2.223 2.770 3.217 0.010
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street segment is the 226-meter average of urbanized Danbury, CT. Puerto Rican cities hold
the top four positions for shortest average street segment length, but among the 50 states
plus DC, the shortest average street segment is the 125.3-meter average of urbanized Tracy,
CA, indicating a fine-grained network. The urbanized area of Portland, Oregon, with its
famously compact walkable blocks, ranks second at 125.5 meters.

The typical urbanized area has 26 intersections per km2. Both the densest and the sparsest
are in the Deep South: the sparsest has 12.5 (Gainesville, GA urbanized area) and the densest
has 49.4 (New Orleans urbanized area). However, New Orleans is an anomaly in the Deep
South. Figure 1 depicts the intersection density of each American urbanized area: the highest
intersection densities concentrate west of the Mississippi River, while the lowest concentrate
in a belt running from Louisiana, through the Carolinas and Appalachians, and into New
England. In general, only the largest cities on the east coast (e.g. Boston, New York,
Philadelphia, Washington) and Florida escape this trend.

The distribution of node types (i.e. intersections and dead ends) provides an indicator of
network connectedness. The typical urbanized area averages 2.8 streets per intersection:
many three-way intersections, fewer dead-ends, and even fewer four-way intersections.
The gridlike San Angelo, TX urbanized area has the most streets per node (3.2) on
average, and (outside of Puerto Rico, which contains the seven lowest urbanized areas)
the sprawling, disconnected Lexington Park, MD urbanized area has the fewest (2.2).
These fit the trend seen in the spatial distribution across the US in Figure 1: urbanized
areas in the Great Plains and Midwest have particularly high numbers of streets per node
on average, indicating more gridlike, connected networks. Cities in the southern and western
US tend to have fewer streets per node, reflecting more dead-ends and a disconnected
network. This finding is discussed in more detail in the upcoming section.

In the typical urbanized area, 18% of nodes are four-way intersections, 59% are three-
way intersections, and 21% are dead-ends. However, this distribution varies somewhat:
examining a small sample of nine urbanized areas, chosen to maximize variance, reveals
this in clearer detail. In Figure 2, urban Atlanta and Chattanooga have very high
proportions of dead-ends—each over 30% of all nodes—and very few four-way
intersections, indicating a disconnected street pattern. The urbanized areas of Phoenix,
Boston, Detroit, and Chattanooga have particularly high proportions of three-way
intersections, each over 60%, indicating a prevalence of T-intersections. Conversely,

Figure 1. Intersection density and average streets per node per urbanized area in the contiguous US.
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Chicago, New Orleans, Duluth, and Lubbock have high proportions of four-way
intersections, indicating more gridlike connected networks. But what is perhaps most
notable about Figure 2 is that these nine urbanized areas, despite being chosen to
maximize variance, are overwhelmingly similar to each other. Every large American urban
agglomeration is characterized by a preponderance of three-way intersections.

The relationship between fine-grained networks and connectedness/gridness is not,
however, clear-cut: intersection density has only a weak, positive linear relationship with
the proportion of four-way intersections in the urbanized area (r2 ¼ 0:17). But the
relationship between network circuity and gridness is somewhat clearer: average circuity
has a negative linear relationship with the proportion of four-way intersections (r2 ¼ 0:43).

The dispersion index D in Table 1 demonstrates the heterogeneity of each indicator across
the data set. Several ‘‘families’’ of indicators can be discerned by their heterogeneity. For
instance, counts and totals such as m, n, and the total street length are extremely

Figure 2. Distribution of node types in 9 urbanized areas, with number of streets emanating from the node

on the x-axis and proportion of nodes of this type on the y-axis.
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heterogeneous. Densities and average distances such as intersection density and the average
street segment length exhibit only moderate heterogeneity. Finally, several topological
measures such as the average clustering coefficient and PageRank are extremely
homogeneous. Due to the substantial variation in urbanized area size, from 25 to
9000 km2, the preceding analysis covers a wide swath of metropolitan types. To better
compare apples-to-apples, Table 2 focuses on the 30 largest urbanized areas cross-
sectionally to examine their metric and topological measures. This provides more
consistent spatial scales and extents, while offering a window into the similarities and
differences in the built forms of America’s largest agglomerations.

Among these urbanized areas, Milwaukee has the least circuitous network (6% more
circuitous than straight-line edges would be), and Orlando has the most (12%). San Juan
and Atlanta have the fewest streets per node on average (2.36 and 2.45, respectively), while
Milwaukee has the most (3.03). Cincinnati has both the lowest intersection density (18/km2)
and street density (6.1 km/km2) while Denver has the highest intersection density (40.6/km2)
and Miami and Los Angeles have the highest street density (10.6 km/km2, apiece). In other
words, Cincinnati has a particularly coarse-grained network with few connections and paths.
The average street segment length, a proxy for block size, also reflects this: Cincinnati has the

Table 2. Selected measures of the 30 largest (by land area) urbanized areas’ street networks.

Urban area

core city

Land

area

(km2)

Avg

circuity

Avg

clustering

coefficient

Dead-

end

ratio

Three-

way

ratio

Four-

way

ratio

Intersect

density

(km2)

Street

density

(km/km2)

Avg street

length (m)

Avg

streets/

node

New York 8937 1.06 0.04 0.18 0.62 0.20 34.44 8.84 148 2.86

Atlanta 6850 1.10 0.04 0.32 0.58 0.09 18.39 6.16 186 2.45

Chicago 6325 1.07 0.04 0.17 0.57 0.25 27.05 7.77 163 2.92

Philadelphia 5132 1.08 0.05 0.17 0.63 0.20 26.65 7.30 159 2.87

Boston 4852 1.09 0.05 0.20 0.68 0.11 24.23 6.44 154 2.71

Dallas 4612 1.07 0.05 0.15 0.61 0.23 34.16 9.16 156 2.95

Los Angeles 4497 1.06 0.03 0.21 0.56 0.22 39.45 10.59 151 2.82

Houston 4303 1.08 0.04 0.20 0.57 0.22 33.49 8.62 145 2.83

Detroit 3461 1.07 0.04 0.15 0.63 0.22 31.10 8.56 159 2.93

Washington 3424 1.09 0.04 0.26 0.56 0.17 31.22 8.26 146 2.66

Miami 3204 1.10 0.05 0.17 0.59 0.23 40.54 10.61 149 2.89

Phoenix 2968 1.09 0.05 0.20 0.62 0.17 35.31 9.10 150 2.77

Minneapolis 2647 1.08 0.05 0.19 0.57 0.23 29.54 8.68 167 2.84

Seattle 2617 1.07 0.03 0.30 0.54 0.16 31.57 8.20 143 2.57

Tampa 2479 1.10 0.05 0.20 0.58 0.21 31.35 8.46 153 2.83

St. Louis 2392 1.10 0.04 0.22 0.62 0.15 29.68 8.16 154 2.73

Pittsburgh 2345 1.09 0.04 0.23 0.60 0.16 23.57 6.71 165 2.72

San Juan 2245 1.11 0.02 0.36 0.56 0.08 26.57 6.43 131 2.36

Cincinnati 2040 1.07 0.03 0.31 0.54 0.14 17.96 6.10 186 2.51

Cleveland 2004 1.07 0.04 0.19 0.66 0.14 19.13 6.51 198 2.76

Charlotte 1920 1.08 0.04 0.30 0.57 0.11 21.00 6.43 170 2.51

San Diego 1897 1.08 0.03 0.28 0.54 0.17 28.89 8.32 159 2.62

Baltimore 1857 1.09 0.04 0.23 0.59 0.17 27.72 7.56 152 2.72

Indianapolis 1828 1.08 0.05 0.23 0.59 0.17 27.62 7.63 157 2.70

Kansas City 1756 1.06 0.04 0.21 0.58 0.20 32.09 8.57 152 2.79

Denver 1729 1.07 0.05 0.20 0.57 0.22 40.60 9.84 138 2.84

Orlando 1548 1.11 0.06 0.20 0.61 0.18 26.30 7.44 163 2.79

San Antonio 1547 1.07 0.05 0.17 0.60 0.21 28.33 7.91 162 2.87

Nashville 1460 1.08 0.03 0.27 0.59 0.14 19.08 6.10 181 2.60

Milwaukee 1413 1.06 0.06 0.14 0.55 0.30 28.27 7.81 157 3.03
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second highest (186m), bested only by Cleveland (198m). In contrast, the two lowest are
Denver’s 138-meter average and San Juan’s 131-meter average.

These metropolitan analyses consider trends in the built form at the scale of broad human
systems and urbanized regions. However, they aggregate multiple heterogeneous
municipalities and neighborhoods—the scales of human life, urban design projects, and
planning jurisdictions—into single units of analysis. To disaggregate and analyze finer
characteristics, the following sections examine municipal- and neighborhood-scale street
networks.

Municipal-scale street networks

Table 3 presents summary statistics of street network characteristics across the entire data set
of 19,655 cities and towns—every incorporated city and town in the US. Following recent
work by Barthelemy and Flammini (2008) and Strano et al. (2013), we examine the

Table 3. Central tendency and statistical dispersion for selected measures of all incorporated cities and

towns in the US: � is the mean, � is the standard deviation, and D is the dispersion index �2

� .

Measure � � Min Median Max D

Area (km2) 16.703 107.499 0.039 3.918 7434.258 691.860

Avg of the avg neighborhood

degree

2.940 0.297 0.400 2.953 3.735 0.030

Avg of the avg weighted

neighborhood degree

0.033 0.141 <0.001 0.029 9.357 0.607

Avg circuity 1.067 0.159 1.000 1.055 20.452 0.024

Avg clustering coefficient 0.048 0.041 <0.001 0.04 1.000 0.035

Avg weighted clustering coefficient 0.010 0.018 <0.001 0.005 0.524 0.033

Intersection count 324 1266 0 83 62,996 4951.293

Avg degree centrality 0.093 0.136 <0.001 0.052 2.667 0.199

Edge density (km/km2) 12.654 6.705 0.006 11.814 58.603 3.553

Avg edge length (m) 161.184 80.769 25.822 144.447 3036.957 40.473

Total edge length (km) 159.067 578.521 0.052 40.986 24728.326 2104.061

Proportion of dead-ends 0.192 0.093 <0.001 0.184 1.000 0.045

Proportion of three-way

intersections

0.572 0.11 <0.001 0.579 1.000 0.021

Proportion of four-way

intersections

0.237 0.129 <0.001 0.217 1.000 0.070

Intersection density (per km2) 29.363 21.607 <0.001 24.719 259.647 15.900

Average node degree 5.251 0.668 0.800 5.268 7.166 0.085

m 1046 3924 2 275 176,161 14714.556

n 401 1516 2 103 71,993 5734.363

Node density (per km2) 35.449 24.409 0.047 30.718 296.740 16.807

Max PageRank value 0.034 0.046 <0.001 0.021 0.870 0.062

Min PageRank value 0.005 0.018 <0.001 0.002 0.500 0.060

Self-loop proportion 0.005 0.015 <0.001 <0.001 1.000 0.042

Street density (km/km2) 6.528 3.435 0.003 6.109 29.302 1.807

Average street segment length (m) 162.408 81.035 25.822 145.479 3036.957 40.433

Total street length (km) 86.096 331.048 0.026 21.005 15348.008 1272.917

Street segment count 558 2208 1.000 140 107,393 8745.983

Average streets per node 2.851 0.282 1.000 2.852 4.000 0.028
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relationship between the total street length L and the number of nodes n across
different cities. The former proposed a model of city network evolution in which L and n
scale nonlinearly as n1=2, and the latter suggested that this relationship applies cross-
sectionally, using an empirical sample of ten European cities. However, the latter’s small
sample size may limit the generalizability of this finding. We examine the relationship
between L and n across every US city and town and instead find a strong linear
relationship (r2 ¼ 0:98), as depicted in Figure 3. We also find a similar linear relationship
at the metropolitan (r2 ¼ 0:99) and neighborhood (r2 ¼ 0:98) scales.

Previous findings (e.g.Masucci et al., 2009;Gudmundsson andMohajeri, 2013) suggest street
segment lengths in an urban network follow a power-law distribution. We find that these
networks instead generally follow lognormal-style right-skewed distributions. This makes
theoretical sense as most street networks are not truly scale-free: for example, a typical street
network might comprise very few very long street segments (e.g. 1 km), more medium-length
segments (e.g. 250m), many short segments (e.g. 80m), but very few very short segments (e.g.
10m). To test this, we fit a set of candidate distributions to the street segment lengths of each
city/town. These distributions comprise the lognormal, Gumbel, gamma, exponentiated
Weibull, Fréchet, power-law, uniform, and exponential distributions. We then assess these
fits via the Akaike information criterion to compare their relative performance in modeling
the observed data. Power-law distributions provide the best fit for only 3% of these cities. In
contrast, the exponentiatedWeibull distribution provides the best fit 52% of the time, followed
by the Gumbel (21%), gamma (10%), and lognormal (7%) distributions.

An exception to this general pattern, of course, lies in consistently-sized orthogonal grids
filling a city’s incorporated spatial extents. Such distributions are extremely peaked around a
single value: the linear length of a grid block. We find that such cities are not uncommon in
the US, particularly between the Mississippi River and the Rocky Mountains: the Great
Plains states are characterized by a unique street network form that is both orthogonal and
reasonably dense. The former is partly the result of topography (flat terrain that allows
idealized grids) and design history (rapid platting and development during the late 19th-
century) that favor orthogonal grids, as discussed earlier. The latter results from the fact that
most towns across the Great Plains exhibit minimal suburban sprawl. Thus, municipal
boundaries snugly embrace the gridlike street network, without extending to
accommodate a vast peripheral belt of 20th-century sprawl, circuity, and ‘‘loops and
lollipops’’ (Southworth and Ben-Joseph, 1997) that characterizes cities in e.g. California
that were settled in the same era but later subjected to substantial suburbanization.

Figure 3. The linear relationship between total street length and number of nodes in the street networks

of every US urbanized area, city/town, and Zillow neighborhood.
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For example, if we measure connectedness in terms of the average number of streets per node
at the city-scale and then aggregate these cities by state (Table 4), we find Nebraska, Kansas,
South Dakota, Montana, North Dakota, Oklahoma, and Iowa have, in order, the highest
medians (Figure 4). This indicates the most gridlike networks. If we measure intersection
density at the city-scale and then aggregate these cities by state, we find Rhode Island,
Nebraska, New Jersey, Kansas, and Montana have, in order, the highest medians. We again
see three Great Plains states near the top alongside small, densely populated East Coast states.
Nebraska also has the smallest block sizes (measured via the proxy of average street segment
length)while the largest concentrate in theDeep South, upperNewEngland, andUtah (Figure 4).

However, municipal boundaries vary greatly in their extents around the built-up area.
While Rhode Island averages 56 intersections/km2 in its cities and towns, Alaska averages
only 1.3, because the latter’s municipal boundaries often extend thousands of km2 beyond
the actual built-up area. In fact, Alaska has four cities (Anchorage, Juneau, Sitka, and
Wrangell) with such large municipal extents that their land areas exceed that of the state
of Rhode Island. These state-level aggregations of municipal street network characteristics
show clear variation across the country that reflect topography, economies, culture, planning
paradigms, and settlement eras. But they also aggregate and thus obfuscate the variation
within each state and within each city. To explore these smaller-scale differences, the
following section examines street networks at the neighborhood scale.

Neighborhood-scale street networks

We have thus far examined every urban street network in the US at the metropolitan and
municipal scales. While the metropolitan scale captures the emergent character of the wider
region’s complex system, and the municipal scale captures planning decisions made by a
single city government, the neighborhood best represents the scale of individual urban design
interventions into the urban form. Further, this scale more commonly reflects individual
designs, eras, and paradigms in street network development than the ‘‘many hands, many
eras’’ evolution of form at larger scales.

Table 5 presents summary statistics for these 6857 neighborhoods. Compared to the
metropolitan and municipal scales, we see much greater variance here, as expected, given
the smaller network sizes at the neighborhood scale. A few neighborhoods have no
intersections within their Zillow-defined boundaries, resulting in a minimum intersection
density of 0 across the data set. Meanwhile, the small neighborhood of Cottages North in
Davis, California has the highest intersection density in the country, 444/km2, largely an
artifact of its small area as the denominator. Nationwide, the typical neighborhood averages
2.9 streets per intersection, reflecting the prevalence of three-way intersections in the US,
discussed earlier. The median proportions of each node type are 14.5% for dead-ends, 57.4%
for three-way intersections, and 23.4% for four-way intersections. The typical neighborhood
averages 135-meter street segment lengths and 46.4 intersections per km2.

Due to the extreme values seen—resulting from the large variance in neighborhood
size—we can filter the data set to examine only large neighborhoods (i.e. with area greater
than the median value across the data set). In this filtered set, the five neighborhoods with
the highest intersection densities are all in central Philadelphia. Central neighborhoods are
common at the top of this list, including Point Breeze, Philadelphia; Central Boston; Central
City, New Orleans; Downtown Tampa; and Downtown Portland. The three neighborhoods
with the lowest intersection densities are on the outskirts of Anchorage, Alaska. In the
filtered set, the greatest average numbers of streets per node tend to be in older
neighborhoods with orthogonal grids, such as Virginia Park, Tampa; Outer Sunset, San
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Table 4. Median values, aggregated by state plus DC, of selected measures of the municipal-scale street

networks for every city and town in the US.

State

Intersection density

(per km2)

Avg streets

per node Avg circuity

Avg street

segment length

AK 1.28 2.43 1.10 223.50

AL 9.70 2.64 1.07 190.81

AR 15.75 2.78 1.06 166.32

AZ 12.45 2.77 1.08 171.80

CA 32.58 2.74 1.07 143.79

CO 29.26 2.88 1.06 136.68

CT 28.05 2.70 1.07 165.87

DC 58.91 3.26 1.04 122.23

DE 25.30 2.80 1.06 127.80

FL 26.26 2.87 1.07 150.75

GA 15.25 2.78 1.07 177.50

HI 8.00 2.42 1.07 177.93

IA 24.08 3.02 1.04 129.36

ID 33.85 2.91 1.06 132.08

IL 29.02 2.93 1.05 137.77

IN 35.25 2.93 1.05 125.72

KS 43.94 3.14 1.04 124.39

KY 25.12 2.68 1.07 151.28

LA 17.14 2.79 1.06 162.62

MA 32.33 2.76 1.07 135.98

MD 28.67 2.79 1.07 133.69

ME 7.69 2.67 1.07 198.93

MI 20.93 2.90 1.05 153.50

MN 18.96 2.87 1.06 152.92

MO 29.87 2.89 1.06 138.29

MS 14.76 2.75 1.06 174.86

MT 38.94 3.11 1.04 126.89

NC 19.28 2.65 1.06 166.69

ND 34.28 3.07 1.04 123.93

NE 45.89 3.16 1.04 119.79

NH 12.22 2.69 1.10 175.88

NJ 44.98 2.88 1.04 130.79

NM 18.50 2.93 1.05 152.02

NV 13.86 2.77 1.07 147.35

NY 21.89 2.75 1.06 156.88

OH 25.23 2.80 1.05 142.08

OK 28.22 3.03 1.05 139.50

OR 35.08 2.69 1.06 121.18

PA 35.69 2.87 1.05 128.34

RI 56.23 2.86 1.05 110.35

SC 18.76 2.81 1.06 169.21

SD 32.01 3.12 1.04 130.75

TN 13.62 2.71 1.07 192.83

TX 23.85 2.92 1.05 160.44

UT 12.58 2.71 1.06 191.04

VA 25.18 2.63 1.08 145.65

(continued)

Boeing 601



Francisco; and New Orleans’ French Quarter. The neighborhoods with the lowest tend to be
sprawling and often hilly suburbs far from the urban core, such as Scholl Canyon in
Glendale, CA or Sonoma Ranch in San Antonio, TX.

To illustrate these morphologies, Figure 5 compares one square mile of the centers of
Philadelphia, Portland, and San Francisco to one square mile of each of their suburbs. The
connectedness and fine grain of the central cities are clear, as are the disconnectivity and
coarse grain of their suburbs. In fact, the suburbs have more in common with one
another—despite being hundreds or thousands of miles apart—than they do with their
central city neighbors, suggesting that land use and an era’s prevailing design paradigm is
paramount to geographical localism and regional context. The top row of Figure 5
represents an era of planning and development that preceded the automobile, while the
bottom row reflects the exclusionary zoning and mid-to-late 20th-century era of
automobility in residential suburb design—namely the ‘‘loops and lollipops’’ and
‘‘lollipops on a stick’’ design patterns (Southworth and Ben-Joseph, 1997).

Finally, we briefly take a closer look at San Francisco, CA’s neighborhoods alone for a
clear cross-sectional analysis with consistent geography to examine resilience through the
MBC and ANC measures. Due to its highly connected orthogonal grid, the Outer Sunset
neighborhood has the lowest MBC—only 9.6% of all shortest paths pass through its most
important node. By contrast, 36% of Chinatown’s shortest paths pass through its most
important node, and in Twin Peaks it is 37%. In Chinatown, this is the result of a small
neighborhood comprising only a few streets and that these streets are one-way, forcing paths

Figure 4. Contiguous US states by median of mean streets per node and by median of mean street

segment length in municipal street networks.

Table 4. Continued.

State

Intersection density

(per km2)

Avg streets

per node Avg circuity

Avg street

segment length

VT 18.91 2.55 1.08 145.18

WA 28.71 2.75 1.06 134.02

WI 17.87 2.81 1.06 156.19

WV 28.45 2.67 1.08 136.57

WY 23.48 2.92 1.06 143.63
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through few routing options. In Twin Peaks, this is the result of hilly terrain and a
disconnected network forcing paths through a small set of chokepoints that link separate
subsections of the network. If a large number of shortest paths rely on a single node, the
network is more prone to failure or inefficiency given a single point of failure.

In San Francisco, Twin Peaks’ network has the lowest ANC: on average only 1.05 nodes
must be removed to disconnect a randomly selected pair of nodes. Outer Sunset has the
highest ANC, 3.2. These findings conform to the above descriptions of these networks.
However, some central San Francisco orthogonal grid networks with many four-way
intersections—such as Downtown, Chinatown, and the Financial District—have
surprisingly low ANCs: 1.5, 1.3, and 1.6, respectively. These neighborhoods comprise
primarily one-way streets. Although they have dense, highly connected networks, they can
be easily disconnected given that (automobile) traffic cannot flow bidirectionally. These three
neighborhoods also exhibit the greatest increase in ANC if all their edges are made
undirected: Chinatown’s increases 87%, Downtown’s 80%, and the Financial District’s
75%. By contrast, Outer Sunset’s street network sees only a 6% increase due to it already
comprising primarily bidirectional streets. Targeted conversion of one-way streets in

Table 5. Central tendency and statistical dispersion for selected measures of all the neighborhood-scale

street networks: � is the mean, � is the standard deviation, and D is the dispersion index �2

� .

Measure � � Min Median Max D

Area (km2) 5.322 15.463 0.008 1.738 323.306 44.928

Avg of the avg neighborhood

degree

2.598 0.436 <0.001 2.670 3.632 0.073

Avg of the avg weighted

neighborhood degree

0.031 0.041 <0.001 0.029 2.991 0.054

Avg circuity 1.080 0.411 1.000 1.044 24.290 0.157

Avg clustering coefficient 0.044 0.055 <0.001 0.034 1.000 0.069

Avg weighted clustering coefficient 0.010 0.027 <0.001 0.005 0.799 0.076

Intersection count 173 379 0 76 8371 829.528

Avg degree centrality 0.130 0.270 0.001 0.054 4.000 0.561

Edge density (km/km2) 17.569 7.095 0.025 18.152 59.939 2.866

Avg edge length (m) 142.279 59.182 8.447 133.848 2231.331 24.617

Total edge length (km) 71.369 166.566 0.017 29.880 3563.409 388.743

Proportion of dead-ends 0.170 0.131 <0.001 0.145 1.000 0.101

Proportion of three-way intersections 0.559 0.146 <0.001 0.574 1.000 0.038

Proportion of four-way intersections 0.275 0.176 <0.001 0.234 1.000 0.112

Intersection density (per km2) 49.497 28.330 <0.001 46.430 444.355 16.216

Average node degree 4.675 0.836 0.545 4.736 7.283 0.150

m 5201 1185 1 217 27,289 2694.171

n 208 459 2 90 9327 1014.643

Node density (per km2) 58.677 31.802 0.063 55.626 499.900 17.237

Max PageRank value 0.055 0.086 <0.001 0.026 0.889 0.133

Min PageRank value 0.010 0.041 <0.001 0.002 0.500 0.161

Self-loop proportion 0.007 0.034 <0.001 <0.001 1.000 0.177

Street density (km/km2) 9.744 4.085 0.013 9.882 33.737 1.712

Average street segment length (m) 143.664 60.023 7.376 134.877 2231.331 25.078

Total street length (km) 40.049 93.987 0.009 16.248 1960.643 220.569

Street segment count 288 656 1 119 14,754 1491.595

Average streets per node 2.925 0.408 1.000 2.944 4.026 0.057
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networks like Downtown, the Financial District, and Chinatown may yield substantial
resilience gains for certain modes.

Discussion

These findings suggest the influence of planning eras, design paradigms, transportation
technologies, topography, and economics on US street network density, resilience, and
connectedness. Overall, every large US metropolis is characterized by its preponderance
of three-way intersections. Sprawling suburban neighborhoods rank low on density and
connectedness. The orthogonal grids we see in the downtowns of Portland and San
Francisco have high density (i.e. intersection and street densities), connectedness (i.e.
average number of streets per node), and order (based on circuity and statistical
dispersion of node types), but low resilience in the presence of one-way streets, measured
by MBC- and ANC-increases when switching from one-way to bidirectional streets.

A critical takeaway is that scale matters. The median average circuity is lower across the
neighborhoods data set than across the municipal set, which in turn is lower than across the
urbanized areas set. Conversely, the median average number of streets per node is higher
across the neighborhoods data set than across the municipal set, which in turn is higher than
across the urbanized areas set. The median intersection density per km2 is about 83% higher
in the neighborhoods data set than in the municipal or urbanized areas sets. These findings
make sense: the Zillow neighborhood boundaries focus on large, core cities with older and
denser street networks. The municipal boundaries only include incorporated cities and

Figure 5. Square-mile comparisons of central cities and their suburbs. Left: top, downtown Philadelphia,

PA; bottom, its suburb, King of Prussia. Middle: top, downtown Portland, OR; bottom, its suburb, Beaverton.

Right: top, downtown San Francisco, CA; bottom, its suburb, Concord.
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towns—discarding small census-designated places and unincorporated communities. The
urbanized area boundaries include far-flung sprawling suburbs.

The characteristics of city street networks fundamentally depend on what city means:
municipal boundaries, urbanized areas, or certain central neighborhoods? The first is a legal/
political definition, but captures the scope of city planning authority and decision-making
for top-down interventions into human circulation. The second captures a wider self-
organized human system and its emergent built form, but tends to aggregate multiple
heterogeneous forms together into a single unit of analysis. The third captures the nature
of the local built environment and lived experience, but at the expense of a broader view of
the urban system and metropolitan-scale trip-taking. In short, multiple scales in concert
provide planners and scholars a clearer view of the urban form and the topological and
metric complexity of the street network than any single scale can.

This analysis finds a strong linear relationship, invariant across scales, between total street
length and the number of nodes in a network. This differs from previous findings in the literature
that relied on smaller sample sizes and examined European instead of US cities. We also find that
most networks typically follow right-skewed distributions (particularly the exponentiatedWeibull
distribution) of street segment lengths.As discussed, this finding seems tomake sense theoretically
and is supported by these large-sample data at multiple scales, but obvious exceptions exist in
those networks that exhibit substantial uniformity. At the neighborhood scale, examples include
downtowns with consistent orthogonal grids, such as that of Portland, Oregon. At the municipal
scale, examples include towns in theGreat Plains that have orthogonal grids with consistent block
sizes, platted at one time, and never subjected to expansion or sprawl.

These findings reveal urban form legacies of the practice and history of US planning. The
spatial signatures of the Homestead Act, successive land use regulations, urban design
paradigms, and planning instruments remain clearly etched in these cities’ urban forms
and street networks today. Accordingly when comparing median municipal street
networks in each state, Nebraska has the lowest circuity, the highest average number of
streets per node, the second shortest average street segment length, and the second highest
intersection density. These findings illustrate how street networks across the Great Plains
developed all at once, but grew very little afterwards—unlike, for instance, cities in
California that were settled in the same era but later subjected to sprawl.

Future research could incorporate temporal analyses that go beyond the present study’s
cross-sectional data. This empirical analysis emphasized network structure, but further
linking structural complexity to the temporal complexity of city dynamics and processes
lies ahead as critical work. As OSMnx can automatically calculate several dozen street
network measures, future work can use dimensionality reduction to identify significant
baskets of indicators and cluster places into morphological types. These variables can also
be used as advanced urban form measures in hedonic regressions and accessibility studies.
Finally, future research can further explore urban spatial geometries such as block shapes
and configurations, the statistical distributions of various indicators, and the comparative
character of worldwide cities: this analysis of US urbanism and its specific empirical findings
do not necessarily apply universally to cities elsewhere in the world.

Conclusion

This paper had three primary purposes. First, it presented empirical urban morphological
findings from metric and topological analyses of the street networks of every US city/town,
urbanized area, and Zillow neighborhood—particularly focusing on density, connectedness,
and resilience. Second, its methods demonstrate the use of OSMnx as a new street network
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research toolkit, suggesting to urban planners and scholars new methods for acquiring and
analyzing data consistently and at scale. Third, it built on past findings about the distribution
of street segment lengths and the relationship between the total street length and the number of
nodes in a network. This study hasmade all of these network datasets—for 497 urbanized areas,
19,655 cities and towns, and 6857 neighborhoods—along with all of their attribute data and
morphological measures available in an online public repository for other researchers to study
and repurpose.
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