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Abstra
t

This work deals with the problem of the optimum design of a sandwi
h panel made

of 
arbon-epoxy skins and a metalli
 
ellular 
ore. The proposed design strategy is

a multi-s
ale numeri
al optimisation pro
edure that does not make use of any sim-

plifying hypothesis to obtain a true global optimum 
on�guration of the system. To

fa
e the design of the sandwi
h stru
ture at both meso and ma
ro s
ales, a two-level

optimisation strategy is employed: at the �rst level the goal is the determination of the

optimum shape of the unit 
ell of the 
ore (meso-s
ale) together with the material and

geometri
 parameters of the laminated skins (ma
ro-s
ale), while at the se
ond level

the obje
tive is the design of the skins sta
king sequen
e (skin meso-s
ale) meeting

the geometri
al and material parameters provided by the �rst-level problem. The two-

level strategy is founded on the polar formalism for the des
ription of the anisotropi


behaviour of the laminates, on the NURBS basis fun
tions for representing the shape

of the unit 
ell and on the use of a geneti
 algorithm as optimisation tool to perform

the solution sear
h. To prove its e�e
tiveness, the multi-s
ale strategy is applied to

the least-weight design of a sandwi
h plate subje
t to 
onstraints of di�erent nature:

on the positive-de�niteness of the sti�ness tensor of the 
ore, on the admissible ma-

terial properties of the laminated fa
es, on the lo
al bu
kling load of the unit 
ell,

on the global bu
kling load of the panel and geometri
al as well as manufa
turability


onstraints related to the fabri
ation pro
ess of the 
ellular 
ore.

Keywords:

Honey
omb; Laminates; Bu
kling; Computational modelling; Shape optimisation.

1 Introdu
tion

Sandwi
h panels are in
reasingly used in aerospa
e, automotive and naval industries thanks

to their high sti�ness-to-weight and strength-to-weight ratios. In order to further redu
e

the weight of these stru
tures, sandwi
h panels are made by laminated skins separated

by aluminium or resin honey
ombs, or by polymer foams whose material and geometri
al

properties 
an be designed to provide sandwi
h plates with enhan
ed me
hani
al properties

(sti�ness, strength, et
.). However, the design pro
ess and the subsequent optimisation of

sandwi
h stru
tures presents several di�
ulties mainly when the panel is made of lami-

nated skins and a honey
omb 
ore. In this 
ase the designer has to fa
e, into the same

design pro
ess, both the di�
ulty of designing a laminated plate (
on
erning the skins) and

that of designing a 
omplex 3D 
ellular 
ontinuum su
h as the honey
omb 
ore. Therefore,

engineers always make use of some simplifying assumptions or rules to obtain, in an easy

and fast way, a solution. For example, in [1, 2, 3℄ the optimal design of a sandwi
h plate is

addressed by determining ex
lusively the optimum thi
kness of both the 
ore and the skins,

keeping 
onstant the rest of geometri
 and material parameters of the system. In [4℄ the

authors deal with the problem of the least-weight design of a sandwi
h plate 
onsidering as

design variables the thi
kness of the 
ell walls as well as that of the skins together with the

total height of the panel. They employed an analyti
al model to evaluate both the bu
kling

load of the 
ore and the fa
es yielding whi
h were 
onsidered as optimisation 
onstraints.
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The optimisation problem was solved using a Geneti
 Algorithm (GA). A step further in

the formulation of the problem of the optimum design of sandwi
h stru
tures has been done

by introdu
ing the 
on
ept of topology optimisation of periodi
 stru
tures. For example, in

[5℄ Neves et al. present two 
omputational models for predi
ting the topology of periodi


mi
rostru
tures whi
h optimise the equivalent material properties determined through a

numeri
al homogenisation te
hnique. Barbarosie and Toader [6℄ derive analyti
ally the

shape and topologi
al derivatives for ellipti
 problems in unbounded domains subje
t to

periodi
ity 
onditions. In [7℄ Wadley et al. 
ompare di�erent topologies of sandwi
h 
ores

in order to evaluate their stru
tural performan
e along with the most suited fabri
ation

pro
ess. In this work the 
lassi
al 
on�gurations of sandwi
h 
ores su
h as foams or hon-

ey
ombs are questioned and the authors show how new shapes of the repetitive unit 
ell,

obtained through an optimisation pro
ess, 
an lead to more e�
ient solutions (i.e. lighter

and sti�er). In [8℄ Huang and Xie present a method for the topology optimisation of peri-

odi
 stru
tures using the bi-dire
tional evolutionary stru
tural optimisation te
hnique. The


apability and the e�e
tiveness of their approa
h is demonstrated through some numeri
al

appli
ations on sandwi
h stru
tures.

The study presented in this work 
an be pla
ed within the framework of the resear
h

a
tivities [9, 10℄ previously 
ondu
ted by the authors and 
an be seen as a generalisation

of these works.

In [9, 10℄ a very general multi-s
ale pro
edure for the optimum design of sandwi
h

panels with a hexagonal honey
omb 
ore is proposed. The design problem is formulated

without introdu
ing simplifying hypotheses and by 
onsidering (as design variables) the full

set of geometri
 and material parameters de�ning the behaviour of the stru
ture at ea
h


hara
teristi
 s
ale (meso and ma
ro). The design variables are the geometri
 parameters of

the hexagonal unit 
ell (meso-s
ale) together with the geometri
 and material parameters of

the laminated skins (meso and ma
ro s
ales). To deal with the multi-s
ale design problem

of a sandwi
h plate a two-level optimisation strategy is employed. At the �rst level of the

pro
edure the optimum value of the 
ell parameters along with the material and geometri
al

properties of the laminated skins are determined (at this level ea
h skin is modelled as an

equivalent homogeneous anisotropi
 plate whose me
hani
al behaviour at the ma
ro-s
ale

is des
ribed through a set of tensor invariants, i.e. the laminate polar parameters [11℄).

At the se
ond level of the strategy the goal is to �nd at least one sta
k for ea
h skin (thus

the design variables of this phase are the plies orientation angles) meeting the optimum


ombination of their material and geometri
al parameters resulting from the �rst level of

the pro
edure.

The aim of the present work is twofold. On one hand the formulation of the design

problem of the sandwi
h panel is generalised by 
onsidering the shape optimisation of the

unit 
ell of the 
ore instead of the 
lassi
al size optimisation of a pres
ribed geometry (as
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done in [9, 10℄ for the hexagonal unit 
ell). On the other hand the two-level optimisation

pro
edure has been enri
hed by 
onsidering the manufa
turability 
onstraints linked to

the fabri
ation pro
ess of the unit 
ell within the �rst level of the strategy. In order to

fabri
ate in an easy and fast way a prototype of the 
ellular 
ore a 3D printing te
hnique

has been 
onsidered as a fabri
ation pro
ess. Con
erning the geometry of the 
ellular 
ore,

the shape of the unit 
ell is des
ribed by means of B-spline and Non-Uniform Rational

B-Spline (NURBS) 
urves [12℄. The utilisation of B-spline and NURBS bases allows for

easily translating the manufa
turability 
onstraints (due to the additive manufa
turing

pro
ess) into geometri
al 
onstraints to be imposed on the geometry of the representative

unit 
ell. Moreover, sin
e the �rst level of the strategy involves two di�erent s
ales (the

ma
ro-s
ale of the sandwi
h panel and the meso-s
ale of the 
ellular 
ore) the meso-s
ale

3D �nite element model of the repetitive unit 
ell of the 
ore presented in [9℄ (whi
h is

used to evaluate its e�e
tive elasti
 properties at the ma
ro-s
ale) has been geenralised in

order to take into a

ount for the variation of the shape of the 
ell. The whole pro
edure is

based on the utilisation of the polar formalism [13℄ as well as on a geneti
 algorithm (GA)

previously developed by the �rst author [14℄. The paper is organised as follows: the design

problem, the two-level strategy and the rapid prototyping te
hnique used for fabri
ating

the 
ellular 
ore are dis
ussed in Se
tion 2. The mathemati
al formulation of the �rst-level

problem is detailed in Se
tion 3, while the problem of determining a suitable laminate

is formulated in Se
tion 4. A 
on
ise des
ription of the Finite Element (FE) models of

the sandwi
h stru
ture at both meso and ma
ro s
ales are given in Se
tion 5, while the

numeri
al results of the optimisation pro
edure are shown in Se
tion 6. Finally, Se
tion 7

ends the paper with some 
on
luding remarks.

2 Simultaneous shape and material optimisation of sandwi
h

panels with 
ellular 
ore

2.1 Des
ription of the problem

The optimisation strategy presented in this study is applied to a sandwi
h plate 
omposed

of two laminated skins and a metalli
 
ellular 
ore with free-shape 
ells as depi
ted in

Figs. 1 and 2. The skins are made of 
arbon-epoxy unidire
tional orthotropi
 laminae

while the 
ellular 
ore is obtained from aluminium alloy foils, see Table 1 for the material

properties taken from [15, 16℄. Con
erning the 
ellular 
ore, the basi
 
lassi
al assumptions


onsidered to evaluate its elasti
 response and, hen
e, to determine its e�e
tive material

properties (at the ma
ro-s
ale) are:

• linear, elasti
 behaviour for the material of the 
ell walls;

• perfe
t bonding for the wall-to-wall 
onta
t;
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• the bu
kling of the 
ell walls due to shear stresses is disregarded.

Con
erning the me
hani
al behaviour (at the ma
ro-s
ale) of the identi
al laminated skins,

they are modelled as quasi-homogeneous fully orthotropi
 laminates, see Se
tion 3.2. As

dis
ussed in [10℄, no simplifying hypotheses are made on the geometri
 and me
hani
al pa-

rameters of both skins and 
ore. Only avoiding the utilisation of a priori assumptions that

extremely shrink the solution spa
e (e.g. the utilisation of symmetri
 balan
ed sta
ks for

the laminated fa
es to attain membrane/bending un
oupling and membrane orthotropy,

respe
tively, or the utilisation of regular hexagonal 
ells to redu
e the number of optimi-

sation variables for the 
ore) one 
an hope to obtain the true global optimum for a given

problem: this is a key-point in our approa
h.

Finally, in this work the problem formulation has been enri
hed by in
luding the shape

optimisation of the unit 
ell of the 
ellular 
ore (whi
h is not �xed a priori) as well as the

manufa
turability 
onstraints linked to the fabri
ation pro
ess of the periodi
 stru
ture of

the 
ore.

2.2 Des
ription of the multi-s
ale two-level optimisation strategy

The main goal of the design strategy is the least-weight design of the sandwi
h plate

subje
t to 
onstraints of di�erent nature, i.e. me
hani
al, geometri
al as well as feasibility

and manufa
turability 
onstraints. The optimisation pro
edure is arti
ulated into the

following two distin
t (but linked) optimisation problems.

First-level problem. The aim of this phase is the determination of the optimal shape of

the unit 
ell together with the material and geometri
 parameters of the laminated skins in

order to minimise the weight of the stru
ture and to satisfy, simultaneously, the full set of

optimisation 
onstraints. At this level the laminate representing ea
h skin is modelled as an

equivalent homogeneous anisotropi
 plate whose behaviour at the ma
ro-s
ale is des
ribed

in terms of the laminate polar parameters, see [10℄. Con
erning the model of the 
ellular


ore, the �rst-level problem involves two di�erent s
ales: the meso-s
ale of the repetitive

unit 
ell 
hara
terised by its geometri
 variables, as well as the ma
ro-s
ale where the 
ore

itself is modelled as an homogeneous orthotropi
 solid. The link between these two s
ales,

as widely des
ribed in [9℄, is represented by the homogenisation phase of the 
ellular 
ore.

Se
ond-level problem. At the se
ond level of the strategy, the goal is the determination

of a suitable lay-up for both skins (the skin meso-s
ale) meeting the optimum 
ombination

of their material and geometri
al parameters provided by the �rst level problem. The aim

of this phase is, hen
e, to �nd at least one sta
king sequen
e, for ea
h skin, whi
h has

to be quasi-homogeneous, fully orthotropi
 and that has to satisfy the optimal values of

the polar parameters resulting from the �rst step. At this level of the strategy, the design

variables are the layer orientations.
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2.3 Rapid prototyping of the optimum 
on�gurations

Thanks to the development of more and more forefront fabri
ation te
hniques, the pro
ess

of additive manufa
turing has shown in re
ent years a rapid development. Among the

advantages provided by this te
hnique, the most important 
on
erns the ability of repro-

du
ing obje
ts of 
omplex shape without (or with less) restri
tive te
hnologi
al 
onstraints

linked to the pro
ess itself. Sin
e in our laboratory we do not yet dispose of an additive

manufa
turing ma
hine for fabri
ating stru
tural elements made of aluminium alloy, we

de
ided to employ a 3D printing te
hnique to manufa
ture the prototype of the optimised


on�guration of the 
ellular 
ore of the sandwi
h panel. This fa
t is not limiting be
ause

the aim here is not to reprodu
e the �real� stru
tural element, rather we want to prove that

a new design paradigm 
an be 
on
eived: a true global optimisation of the sandwi
h stru
-

ture 
an be 
arried out only by in
luding both shape and material optimisation aspe
ts

within the design pro
ess. Furthermore, it is possible to obtain realisti
 (i.e. manufa
-

turable) 
omplex shapes of the 
ellular 
ore only if the te
hnologi
al 
onstraints linked to

the fabri
ation pro
ess are taken into a

ount sin
e the early stages of the design pro
ess.

The 3D printer employed to fabri
ate the prototypes is the Objet30 Pro of Stratasys

[17℄, while the material employed for the 
ellular 
ore stru
ture is the VeroWhite Full-

Cure830 belonging to the Objet's FullCure Materials family of a
ryli
-based photopolymer

materials [18℄.

3 Mathemati
al formulation of the �rst-level problem

The overall 
hara
teristi
s of the stru
ture have to be designed during this phase. The

weight minimisation of the sandwi
h plate will be performed by satisfying the set of opti-

misation 
onstraints listed below:

• a 
onstraint on the global bu
kling load of the sandwi
h panel;

• a 
onstraint on the lo
al bu
kling load of the repetitive unit 
ell;

• the manufa
turability 
onstraints linked to the 
onsidered fabri
ation pro
ess;

• a geometri
 
onstraint imposed on the shape of the unit 
ell for avoiding overlapping

of the middle-line of the 
ross se
tion of the repetitive unit 
ell (often 
alled non-self-

interse
ting 
ondition;

• some me
hani
al 
onstraints on the e�e
tive material properties of the 
ellular 
ore

(to be used at the ma
ro-s
ale);

• the geometri
 and feasibility 
onstraints on the polar parameters of the laminated

skins.

These aspe
ts are detailed in the following subse
tions.
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3.1 Geometri
al design variables

Before introdu
ing the geometri
 design variables 
hara
terising the sandwi
h panel at ea
h

s
ale, let us des
ribe the Representative Volume Element (RVE) of the periodi
 
ellular


ore. The RVE 
an be dedu
ed from the geometry of the repetitive unit 
ell of the 
ore

whi
h is 
hara
terised by three planes of orthogonal symmetry, as shown in Fig. 2. As

illustrated in Fig. 3 the geometry of the RVE 
an be des
ribed in terms of both global and

lo
al geometri
 design variables. The global ones essentially represent the overall size of the

RVE itself: hc is the 
ore height, tc is the wall thi
kness, v1 is the length of the free-shape

oblique wall of the RVE along the η axis, while h1 and h2 are the lengths of the �at walls

and of the middle region of the RVE along the ξ axis, respe
tively. In parti
ular, the RVE


an be ins
ribed within a parallelepiped having the following sizes:

a1 = 2h1 + h2 , a2 = v1 + tc , a3 =
hc
2

, (1)

where a1, a2 and a3 are the lengths of the edges along ξ, η and ζ axes, respe
tively. On the

other hand, the lo
al geometri
 design variables are needed in order to des
ribe the shape

of the middle region of the RVE. To this purpose, in this work the shape of the oblique

wall of the RVE is represented in terms of a Non-Uniform Rational B-Spline (NURBS)


urve [12℄ as:

ξ (s) =
np∑

i=0
Ri,p (s) ξi,

η (s) =
np∑

i=0
Ri,p (s) ηi,

with Ri,p (s) =
Ni,p (s)ωi

np∑

j=0
Nj,p (s)ωj

0 ≤ s ≤ 1 .

(2)

Eq. (2) fully des
ribes a pth-degree plane NURBS 
urve, as depi
ted in Fig 3. In parti
ular,

{ξi, ηi} (i = 0, · · · , np) are the Cartesian 
oordinates of the ith 
ontrol point (the set of


ontrol points forms the so-
alled 
ontrol polygon), ωi is the weight related to the ith 
ontrol

point, while Ni,p(s) are the pth-degree B-spline basis fun
tions de�ned on the non-periodi
,

non-uniform knot ve
tor:

S =






0, · · · , 0
︸ ︷︷ ︸

p+1

, Sp+1, · · · , Sm−p−1, 1, · · · , 1
︸ ︷︷ ︸

p+1






. (3)

It is noteworthy that the dimension of the knot-ve
tor is m+1 with m = np+ p+1. For a

deeper insight in the matter the reader is addressed to [12℄. In the present work the degree

of the NURBS 
urve is p = 3, the number of 
ontrol points has been 
hosen equal to ten

(thus np = 9) and the B-spline basis fun
tions are de�ned on the following non-periodi


but uniform knot ve
tor:

S =

{

0, 0, 0, 0,
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7
, 1, 1, 1, 1

}

. (4)
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In this ba
kground the shape of the oblique wall of the RVE 
an be modi�ed by 
hanging

the positions of the points of the 
ontrol polygon {ξi, ηi} as well as the related weights

ωi. Therefore the previous parameters represent the lo
al geometri
 design variables of the

RVE. Of 
ourse, both global and lo
al geometri
 design variables of the RVE of the 
ore

intervene at the meso-s
ale level. Sin
e both kinds of geometri
al parameters de�ne the

shape of the RVE a parti
ular 
are must be taken in de�ning the position of the points of

the 
ontrol polygon. The 
oordinates of ea
h point are de�ned as follows:

ξi = h1 + rξih2, (i = 0, · · · , np) ,
ηi = rηiv1.

(5)

Where rξi and rηi are dimensionless parameters varying between zero and one. Moreover,

in order to ensure C0 
ontinuity between the horizontal walls and the oblique part of the

RVE the value of rξi and rηi must be �xed for the �rst and last point of the 
ontrol net as

follows:

rξ0 = rη0 = 0,
rξ9 = rη9 = 1.

(6)

On the other hand, 
on
erning the (identi
al) skins the only geometri
 design variable

is the overall thi
kness h of the laminate. The geometri
 and material design variables

together with their nature and bounds for the �rst-level problem are listed in Table 5. At

this level of the optimisation pro
edure, the thi
kness of the laminated skins is 
onsidered

as a dis
rete optimisation variable, the dis
retisation step being equal to the thi
kness

of the elementary layer, i.e. ∆h = hply (see Table 5). This assumption responds to

a te
hnologi
al 
onstraint, and, in addition, the optimum value of this parameter will

determine also the optimal number of layers n to be used during the se
ond-level design

problem. The geometri
 design variables intervening at the di�erent s
ales 
an be grouped

into the ve
tor of the geometri
al parameters de�ned as:

xg =
{

h, h1, h2, v1, tc, hc, rξ0 , · · · , rξnp
, rη0 , · · · , rηnp

, ω0, · · · , ωnp

}

. (7)

The geometri
 design variables involved within the �rst-level problem are not only limited

by the box-
onstraints de�ned in Table 5, rather they have to meet also a 
ertain number

of requirements imposed to the problem at hand. Firstly, the shape of the 
ell must satisfy

the non-self-interse
ting 
ondition: this 
onstraint equation 
annot be written in a 
lose

analyti
al form and 
an only be 
he
ked numeri
ally (this 
he
k is automati
ally performed

by the �nite element 
ode used to build the meso-s
ale model of the RVE). Se
ondly, the

manufa
turability 
onstraint linked to the 3D printer (used to fabri
ate the prototype of

the 
ellular 
ore) must be 
onsidered. Su
h a 
onstraint 
an be easily translated into a

geometri
 
onstraint on the admissible ratio between the minimum radius of 
urvature of

the oblique wall and the thi
kness of the walls of the RVE as:

g1(xg) = 2tc −min(r(s)) ≤ 0 , (8)
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where r(s) is the lo
al radius of 
urvature of the RVE. Finally, some further 
onstraints must

be 
onsidered to ensure the positive de�niteness of the sti�ness matrix of the 
ellular 
ore

(at the ma
ro-s
ale) whose e�e
tive elasti
 properties depend on the geometri
 parameters

of the RVE at the meso-s
ale. These 
onstraints 
an be written as follows (see [19℄ for

more details):

g2(xg) = −Ec
1 < 0 ,

g3(xg) = −Ec
2 < 0 ,

g4(xg) = −Ec
3 < 0 ,

g5(xg) = −Gc
12 < 0 ,

g6(xg) = −Gc
13 < 0 ,

g7(xg) = −Gc
23 < 0 ,

g8(xg) = |νc12| −

√

Ec
1

Ec
2

< 0 ,

g9(xg) = |νc13| −

√

Ec
1

Ec
3

< 0 ,

g10(xg) = |νc23| −

√

Ec
2

Ec
3

< 0 ,

g11(xg) = 2νc12ν
c
13ν

c
23

Ec
3

Ec
1

+ (νc12)
2 E

c
2

Ec
1

+ (νc23)
2 E

c
3

Ec
2

+ (νc13)
2 E

c
3

Ec
1

− 1 < 0 .

(9)

Ec
1, E

c
2, E

c
3, G

c
12, G

c
13, G

c
23, ν

c
12, ν

c
13 and νc23 are the e�e
tive material properties (engi-

neering moduli) of the homogeneous orthotropi
 
ellular 
ore whi
h are determined via the

numeri
al homogenisation phase dis
ussed in Se
tion 5.1. It is noteworthy that the set of


onstraints of Eq. (9) are impli
itly imposed on the geometri
 design variables (global and

lo
al) of the RVE.

3.2 Me
hani
al design variables

Con
erning the me
hani
al design variables governing the behaviour of the laminated skins

(at the ma
ro-s
ale) the polar formalism has been employed. This method gives a represen-

tation of any planar tensor by means of a 
omplete set of independent invariants, i.e. the

polar parameters. It 
an be proved that in the 
ase of a fully orthotropi
, quasi-homogeneous

laminate the overall number of independent me
hani
al design variables des
ribing the

elasti
 response of ea
h laminated skin redu
es to only three [10℄: the anisotropi
 polar

parameters RA∗

0K and RA∗

1 and the polar angle ΦA∗

1 (this last representing the orientation

of the main orthotropy axis) of the homogenised membrane sti�ness tensor A∗
. For more

details on the me
hani
al design variables intervening within the �rst-level problem the

reader is addressed to [10℄.
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In addition, in the formulation of the optimisation problem for the �rst level of the

strategy, the geometri
 and feasibility 
onstraints on the polar parameters (whi
h arise

from the 
ombination of the layer orientations and positions within the sta
k) must also be


onsidered. These 
onstraints ensure that the optimum values of the polar parameters re-

sulting from the �rst step 
orrespond to a feasible laminate that will be designed during the

se
ond step of the optimisation strategy, see [20℄. Sin
e the laminate is quasi-homogeneous,

su
h 
onstraints 
an be written only for tensor A∗
as follows:







−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗

1 ≤ R1 ,

2

(
RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 .

(10)

The previous variables 
an be grouped into the ve
tor of me
hani
al design variables as

follows:

xm =
{
ΦA∗

1 , RA∗

0K , RA∗

1

}
. (11)

First and se
ond 
onstraints of Eq. (10) 
an be taken into a

ount as admissible intervals

for the relevant optimisation variables, i.e. on RA∗

0K and RA∗

1 . Hen
e, the resulting feasibility


onstraint on the laminate polar parameters is:

g12(xm) = 2

(
RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 . (12)

For a wide dis
ussion upon the laminate feasibility and geometri
al bounds as well as on

the importan
e of the quasi-homogeneity assumption the reader is addressed to [20℄.

3.3 Mathemati
al statement of the problem

As previously said, the aim of the �rst level optimisation is the least-weight design of the

sandwi
h panel satisfying, simultaneously, 
onstraints of di�erent nature. The design vari-

ables (both geometri
al and me
hani
al) of the problem 
an be grouped into the following

ve
tor:

x =
{

ΦA∗

1 , RA∗

0K , RA∗

1 , h, h1, h2, v1, tc, hc, rξ1 , · · · , rξnp
, rη1 , · · · , rηnp

, ω1, · · · , ωnp

}

. (13)

Therefore the optimisation problem 
an be formulated as follows:

min
x

W (x)

subje
t to:







λref
glob − λglob (x) ≤ 0 ,

λref
loc − λloc (x) ≤ 0 ,

gi(x) ≤ 0 , with i = 1, · · · , 12 ,
+ n.s. intersecting condition .

(14)
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where W is the weight of the sandwi
h plate, λglob is the �rst global bu
kling load of the

sandwi
h stru
ture while λloc is the �rst lo
al bu
kling load of the 
ore. λref
glob and λref

loc

are, respe
tively, the global and lo
al bu
kling loads determined on a referen
e stru
ture

having the same in-plane dimensions and boundary 
onditions than those of the sandwi
h

plate that will be optimised, see Se
tion 6.

3.4 Numeri
al strategy

Problem (14) is a non-linear, non-
onvex problem in terms of both geometri
al and me-


hani
al variables. Its non-linearity and non-
onvexity is due on one side on the nature

of the obje
tive fun
tion and on the other side on the optimisation 
onstraints, espe
ially

the 
onstraint on the global bu
kling load that is a high non-
onvex fun
tion in terms of

both the orthotropy orientation (bottom and top laminates) and the shape of the unit 
ell

of the 
ore. In addition, the 
omplexity of su
h a problem is also due to: a) the exis-

ten
e 
onstraints imposed on the te
hni
al moduli of the 
ellular 
ore, see. Eq. (9), b) the

manufa
turability 
onstraint that 
an be translated into a geometri
al 
onstraint imposed

on the ratio between the thi
kness and the minimum radius of 
urvature of the oblique

wall of the RVE, see Eq. (8), 
) the non-self-interse
ting 
onstraint on the midline of the

oblique wall of the RVE. The previous 
onstraints are highly non-
onvex fun
tions of the

geometri
al parameters of the RVE. The total number of design variables is 39 while the

total number of optimisation 
onstraints is 15 (see Eq. (14)).

For the resolution of problem (14) the GA BIANCA [21, 14℄ 
oupled with both the

meso-s
ale FE model of the RVE (used for numeri
al homogenisation of the 
ellular 
ore

as well as for the 
al
ulation of the lo
al bu
kling load of the 
ell) and the ma
ro-s
ale FE

model of the sandwi
h panel for the bu
kling analysis of the stru
ture has been employed,

see Fig. 4. The GA BIANCA was already su

essfully applied to solve di�erent kinds of

real-world engineering problems, see for example [22, 23, 24, 25, 26, 27℄.

As shown in Fig. 4, for ea
h individual at ea
h generation, the numeri
al tool performs a

FE-based homogenisation for the evaluation of the e�e
tive material properties of the 
ore

and a subsequent numeri
al evaluation of the �rst bu
kling load of the sandwi
h stru
ture

(at both meso-s
ale and ma
ros-s
ale for determining the lo
al and global bu
kling loads,

respe
tively) along with its weight. The meso-s
ale FE model makes use of the geomet-

ri
al parameters of the unit 
ell (given by BIANCA and elaborated by MATLAB

r
whi
h

generates the NURBS 
urve representing the midline of the oblique wall of the RVE of the


ore) in order to perform the numeri
al homogenisation of the 
ore and also to 
al
ulate

the lo
al bu
kling load of its unit 
ell. Afterwards, the ma
ro-s
ale FE model utilises the

geometri
al and me
hani
al design variables of the skins given by BIANCA together with

the e�e
tive material properties of the 
ore (resulting from the meso-s
ale FE model of the


ell) to evaluate the global bu
kling load of the stru
ture and its weight. Therefore, for

11



these purposes the GA BIANCA has been interfa
ed with both the 
ommer
ial FE 
ode

ANSYS

r
and the 
ode MATLAB

r
. The GA elaborates the results provided by the two

FE models in order to exe
ute the geneti
 operations. These operations are repeated until

the GA BIANCA meets the user-de�ned 
onvergen
e 
riterion.

The generi
 individual of the GA BIANCA represents a potential solution for the

problem at hand. The genotype of the individual for problem (14) is 
hara
terised by only

one 
hromosome 
omposed of 39 genes, ea
h one 
oding a 
omponent of the ve
tor of the

design variables, see Eq. (13).

4 Methemati
al formulation of the se
ond-level problem

The se
ond-level problem 
on
erns the lay-up design of the laminated skins. Su
h a problem


onsists in determining at least one sta
king sequen
e satisfying the optimum values of both

geometri
 and polar parameters resulting from the �rst level of the strategy and having

the elasti
 symmetries imposed on the laminate within the formulation of the �rst-level

problem, i.e. quasi-homogeneity and orthotropy. In the framework of the polar formalism,

this problem 
an be stated in the form of an un
onstrained minimisation problem:

min
δ

I (fi (δ)) (15)

with

I (fi (δ)) =
6∑

i=1

fi (δ) . (16)

where δ is the ve
tor of the layer orientations, i.e. the design variables of this phase, while

fi (δ) are quadrati
 fun
tions in the spa
e of polar parameters, ea
h one representing a

requirement to be satis�ed, su
h as orthotropy, un
oupling, et
. For the problem at hand

the partial obje
tive fun
tions write:

f1(δ) =

(
|ΦA∗

0 (δ) − ΦA∗

1 (δ)|

π/4
−KA∗(opt)

)2

, f2(δ) =

(

RA∗

0 (δ)−R
A∗(opt)
0

R0

)2

,

f3(δ) =

(

RA∗

1 (δ) −R
A∗(opt)
1

R1

)2

, f4(δ) =

(

|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

(
||C(δ)||

||Q||

)2

,

f6(δ) =

(
||B∗(δ)||

||Q||

)2

,

(17)

where f1 (δ) represents the elasti
 requirement on the orthotropy of the laminate having the

pres
ribed shape (imposed by the value of KA∗

provided by the �rst step of the pro
edure),

f2 (δ), f3 (δ) and f4 (δ) are the requirements related to the pres
ribed values of the optimal

polar parameters resulting from the �rst-level problem, while f5 (δ) and f6 (δ) are linked

to the quasi-homogeneity 
ondition.
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I (fi (δ)) is a positive semi-de�nite 
onvex fun
tion in the spa
e of laminate polar pa-

rameters, sin
e it is de�ned as a sum of 
onvex fun
tions, see Eqs. (16)-(17). Nevertheless,

su
h a fun
tion is highly non-
onvex in the spa
e of plies orientations be
ause the lam-

inate polar parameters depend upon 
ir
ular fun
tions of the layers orientation angles,

see Eq. (??). Moreover, one of the advantages of su
h a formulation 
onsists in the fa
t

that the absolute minima of I (fi (δ)) are known a priori sin
e they are the zeroes of this

fun
tion. For more details about the nature of the se
ond-level problem see [23, 14, 28℄.

Con
erning the numeri
al strategy for solving problem (15) the GA BIANCA has been

employed to �nd a solution also for the se
ond-level problem. In this 
ase, ea
h individual

has a genotype 
omposed of n 
hromosomes, one for ea
h ply, 
hara
terised by a single

gene 
oding the layer orientation. It must be pointed out that problem (15) must be solved

only one time as the skins are identi
al.

As 
on
lusive remark of this se
tion, it must be highlighted the fa
t that ea
h ply

orientation 
an get all the values in the range [-89

◦
, 90

◦
℄ with a dis
retisation step of 1

◦
.

Su
h a step has been 
hosen in order to prove that laminates with given elasti
 properties

(su
h as membrane/bending un
oupling, membrane orthotropy, et
.) 
an be obtained

by abandoning the well-known 
onventional rules for tailoring the laminate sta
k (e.g.

symmetri
-balan
ed sta
ks) whi
h extremely shrink the sear
h spa
e for problem (15).

The true advantages in using �non-
onventional� staking sequen
es 
onsist in the fa
t that

on one hand with a dis
retisation step of one degree for the plies orientations the GA


an explore the overall design spa
e of problem (15) and on the other hand it 
an �nd

very general sta
ks (nor symmetri
 neither balan
ed) that fully meet the elasti
 properties

resulting from the �rst step of the pro
edure with a fewer number of plies (hen
e lighter)

than the standard sta
ks, see [23, 14℄.

5 Finite element models at di�erent s
ales

The FE models used at the �rst-level of the strategy are built using the FE 
ommer
ial


ode ANSYS

r
. The FE analyses are 
ondu
ted to determine the value of the obje
tive

and 
onstraint fun
tions for ea
h individual, i.e. for ea
h point in the design spa
e, at the


urrent generation.

The need to analyse, within the same generation, di�erent geometri
al 
on�gurations

(plates with di�erent geometri
al and material properties), ea
h one 
orresponding to an

individual, requires the 
reation of an ad-ho
 input �le for the FE 
ode that has to be

interfa
ed with BIANCA. The FE model must be 
on
eived to take into a

ount a variable

geometry, material and mesh. Indeed, for ea
h individual at the 
urrent generation the

FE 
ode has to be able to vary in the 
orre
t way the number of elements wherein the

stru
ture is dis
retised, thus a proper parametrisation of the model has to be a
hieved.
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During the optimisation pro
ess of the �rst level of the strategy, for ea
h individual,

eight FE analyses must be performed (see Fig. 4): six stati
 analyses and one linear bu
kling

analysis on the FE model of the unit 
ell of the 
ellular 
ore (in order to determine the

e�e
tive material properties [9℄ and the �rst lo
al bu
kling load) and a linear bu
kling

analysis on the FE model of the whole sandwi
h panel.

5.1 Finite element model of the unit 
ell (meso-s
ale)

In order to a

urately determine the �rst lo
al bu
kling load of the 
ellular 
ore and its

e�e
tive elasti
 properties a linear bu
kling analysis and a numeri
al homogenisation phase

have to be a
hieved, respe
tively. The FE model of the RVE is illustrated in Fig. 5. The

model has been built by using the 20-node solid element SOLID186 with three Degrees Of

Freedom (DOFs) per node.

Con
erning the linear elasti
 bu
kling analysis on the RVE the displa
ement Boundary

Conditions (BCs) listed in Table 2 have been 
onsidered, while a uniform distributed

pressure has been applied on the fa
e lo
ated at ζ = a3. On the other hand, the e�e
tive

properties of the 
ore are determined using the strain energy homogenisation te
hnique of

periodi
 media, see [29℄. This te
hnique makes use of the repetitive unit of the periodi


stru
ture to approximate its e�e
tive properties at the ma
ro-s
ale level. As in [9℄ the nine

independent 
omponents of the sti�ness tensor C of the 
ellular 
ore have been determined

through six stati
 analyses.

The 
orresponding BCs for ea
h one of the six stati
 analyses performed on the FE

model of Fig. 5 are resumed in Tables 3 and 4. These BCs are imposed in order to satisfy

the symmetries of the RVE and to generate a strain �eld in su
h a way that only one


omponent of the strain tensor is di�erent from zero for ea
h stati
 analysis. For a deeper

insight in the matter the reader is addressed to [9, 30℄.

It is noteworthy that sin
e a shape optimisation of the unit 
ell is a
hieved within

the framework of the �rst-level problem, the meso-s
ale FE model of the RVE must be

able to take into a

ount for variable geometry and mesh. To this purpose the mesh tool

of the ANSYS 
ode has been modi�ed in order to make it 
ompatible with a NURBS-

based representation of the geometry (all these operations have been implemented within

the APDL language of the ANSYS 
ode). Finally, it has been previously 
he
ked that a

mesh having an average value of 52000 DOFs (four divisions through the 
ell thi
kness) is

su�
ient for estimating the e�e
tive elasti
 properties as well as the lo
al bu
kling load of

the RVE with a good a

ura
y.

5.2 Finite element model of the sandwi
h panel (ma
ro-s
ale)

At the ma
ro-s
ale the stru
ture is modelled with a 
ombination of shell and solid elements.

In parti
ular, the laminated skins are modelled using ANSYS SHELL281 elements with
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8-nodes and six DOFs per node, and their me
hani
al behaviour is des
ribed by de�ning

dire
tly the homogenised sti�ness tensorsA∗
, B∗

andD∗
. The equivalent solid representing

the 
ore is modelled using ANSYS SOLID186 elements having the material properties

provided by the FE model of the RVE. Con
erning the BCs of the ma
ro-s
ale FE model,

they are depi
ted in Fig. 6 and listed in Table 6. In parti
ular, su
h BCs are applied on

the edges of the skins and not on the 
ore.

The 
ompatibility of the displa
ement �eld between skins (modelled with shell elements)

and 
ore (modelled with solid elements) is a
hieved by using ANSYS CERIG rigid 
on-

straints (also 
alled rigid beams) whose formulation is based upon a 
lassi
al master-slave

s
heme, see [31℄ for more details. Rigid 
onstraints are imposed on ea
h node belonging

to 
ontiguous solid and shell elements as depi
ted in Fig. 6. In parti
ular, rigid beams

are de�ned between the nodes of the middle plane of the top (bottom) skin and the 
orre-

sponding ones of the top (bottom) surfa
e of the solid 
ore. In this 
ase the master nodes

are those belonging to shell elements (the skins), while slave nodes are those belonging the

top and bottom surfa
es of the 
ore.

Finally, before starting the optimisation pro
ess, a sensitivity study (not reported here

for the sake of brevity) on the proposed FE model with respe
t to the mesh size has been


ondu
ted: it was observed that a mesh having 12088 DOFs, i.e. showing two divisions

through the 
ore thi
kness hc, is su�
ient to properly evaluate the �rst bu
kling load of

the stru
ture.

6 Studied 
ases and results

In order to show the e�e
tiveness of the proposed approa
h two di�erent 
ases have been

studied. In both 
ases a bi-axial 
ompressive load per unit length is applied on the skins

edges (as shown in Fig. 6): in the �rst one the ratio between the 
ompressive loads is

Ny

Nx
= 0.5 while in the se
ond one is

Ny

Nx
= 1. Moreover, for ea
h 
ase two sub-
ases have

been 
onsidered: the �rst one wherein the shape of the unit 
ell of the 
ore is designed

using B-Spline 
urves and the se
ond one, more general, where the optimal shape of the

unit 
ell is obtained using NURBS 
urves. It should be pointed out that these sub-
ases

are 
onsidered in order to investigate whi
h-one of the two mathemati
al representations

employed to des
ribe the shape of the oblique wall of the RVE leads the GA to �nd an

optimal solution more e�
ient (in terms of weight and bu
kling loads) than the referen
e

one.

Before starting the multi-s
ale optimisation pro
ess a referen
e stru
ture must be de-

�ned in order to establish referen
e values for the weight and for both the lo
al and global

bu
kling loads of the panel: the material as well as the geometri
al properties of the ref-

eren
e sandwi
h plate are listed in Table 7. One 
an noti
e that the referen
e stru
ture
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has identi
al skins 
omposed of 32 plies with the sta
king sequen
e listed in Table 7. The


hoi
e of the referen
e solution has been oriented towards a non-trivial 
on�guration with

a honey
omb 
ore 
hara
terised by a unit 
ell having the typi
al dimensions of 
ommer-


ial honey
ombs (a regular hexagonal 
ell whose sizes are taken from [32℄, see also [9℄ for

the de�nition of the geometri
 parameters de�ning the RVE of the hexagonal 
ell)) and

two very sti� skins. In fa
t, the weight and the sti�ness properties (in terms of bu
kling

load) of su
h a referen
e 
on�guration are typi
al of real-world engineering appli
ations

(in other words the referen
e solution still represents a �good� 
ompromise between weight

and sti�ness requirements).

Regarding the setting of the geneti
 parameters for the GA BIANCA used to solve

both �rst and se
ond-level problems they are listed in Table 8. Moreover, 
on
erning the


onstraint-handling te
hnique for the �rst-level problem the Automati
 Dynami
 Penal-

ization (ADP) method has been employed, see [21℄. For more details on the numeri
al

te
hniques developed within the new version of BIANCA and the meaning of the values of

the di�erent parameters tuning the GA the reader is addressed to [14, 23℄.

6.1 Case 1.a: shape optimisation using B-spline 
urve, load 
ase Ny =

0.5Nx

For this �rst example, sin
e a B-spline 
urve is utilised to des
ribe the shape of the oblique

wall of the RVE 
ross-se
tion, the number of design variables redu
es from 39 to 29 (all of

the weights ωi are �xed and equal to one).

The optimal values of the geometri
 as well as me
hani
al design variables resulting

from the �rst-level of the optimisation strategy are listed in Table 9. As it 
an be easily

seen, the optimum 
on�guration has a weight of 29.35 Kg (about 27% lower than that

of the referen
e stru
ture) with a �rst global bu
kling load of 1642.98 N/mm (about 5%

higher than that of the referen
e one) and a �rst lo
al bu
kling load of 684.88 MPa (about

37% higher than that of the referen
e one).

Let us 
onsider now the se
ond-level problem: the design of the laminate lay-up. Ta-

ble 10 shows the best sta
king sequen
es for all the studied 
ases. As in ea
h numeri
al

te
hnique, the quality of solutions found by BIANCA 
an be estimated on the basis of a

numeri
al toleran
e, i.e. the residual. For a dis
ussion on the importan
e of the numeri
al

residual in problems of this type, the reader is addressed to [14, 28℄. I (fi (δ)) is a non-

dimensional fun
tion, thus the residual of the solution is a non-dimensional quantity too.

The residual in the last 
olumn of Table 10 is the value of the global obje
tive fun
tion

I (fi (δ)) for the solution indi
ated aside (we remind that exa
t solutions 
orrespond to

the zeroes of the obje
tive fun
tion, see [28℄). From Table 10 one 
an see that the optimal

sta
ks (for all 
ases) are very general sta
ks whi
h 
ompletely satisfy the elasti
 require-

ments of the laminate expe
ted by problem 15. In fa
t, for this �rst 
ase Fig. 7 shows
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the �rst 
omponent of the homogenised sti�ness tensors of the laminate, i.e. A∗
, B∗

and

D∗
: the solid line refers to the membrane sti�ness tensor, the dashed one to the bending

sti�ness tensor, while the dash-dotted one is linked to the membrane/bending 
oupling

sti�ness tensor. It 
an be noti
ed that the laminate is un
oupled as the dash-dotted 
urve

is redu
ed to a point in the 
enter of the plot (B11 is pra
ti
ally null), homogeneous as

the solid and dashed 
urves are almost 
oin
ident and orthotropi
 be
ause there are two

orthogonal axes of symmetry in the plane. In addition, the main orthotropy axis for this


ase is oriented at ΦA∗

1 = 83◦ as indi
ated in Table 9.

6.2 Case 1.b: shape optimisation using NURBS 
urve, load 
ase Ny =

0.5Nx

In this sub-
ase a NURBS 
urve is 
onsidered for des
ribing the shape of the oblique wall

of the RVE 
ross-se
tion, hen
e, the number of design variables is equal to 39 (all of the

weights ωi are in
luded within the ve
tor of design variables).

The optimal values of geometri
 as well as me
hani
al design variables of the �rst level

problem are listed in Table 9. The optimum 
on�guration weighs 28.63 Kg (a redu
tion

of 29% when 
ompared to that of the referen
e stru
ture) with a �rst global bu
kling load

of 1574.91 N/mm (1.2% greater than the referen
e one) and a lo
al bukling load of 585.57

MPa (17% greater than the referen
e one).

This solution, as expe
ted, is lighter than that of the 
ase 1.a with a di�eren
e of

0.72 Kg with a lower value of both global and lo
al bu
kling loads. This di�eren
e is due

ex
lusively to the weight 
ontribution given by the 
ore. In fa
t, the optimum 
on�guration

of the panel for this 
ase is 
hara
terised by two laminated skins whi
h are as thi
k as those

of the panel solution of 
ase 1.a (2.50 mm, i.e. 20 plies); on the other hand the 
ore shape

is di�erent and it is lighter than that 
hara
terising solution 1.a.

In addition, the weight redu
tion of the 
ore has led to a redu
tion of the bu
kling

load of the panel (both global and lo
al) and, therefore, to a more 
ompliant stru
ture

when 
ompared to the solution 1.a. Of 
ourse, the variation of the shape of the unit 
ell

together with the variation of the polar parameters of the skins o

ur in order to meet the

pres
ribed minimal sti�ness of the whole stru
ture (at ea
h s
ale) through the 
onstraint

on the �rst bu
kling loads.

Con
erning the se
ond-level problem, Table 10 shows the best sta
king sequen
es for

both the skins for the present 
ase, while Fig. 8 shows the polar diagram for the �rst


omponent of the 
orresponding homogenised sti�ness tensors. Regarding the nature of

the optimal sta
ks, even for this 
ase, the same 
onsiderations as those of 
ase 1.a 
an be

repeated here.

17



6.3 Case 2.a: shape optimisation using B-spline 
urve, load 
ase Ny = Nx

In this �rst sub-
ase a B-spline 
urve is employed to des
ribe the shape of the oblique wall

of the RVE 
ross-se
tion. As in the 
ase 1.a, this implies a redu
tion of the number of

design variables that passes from 39 to 29 when 
ompared to the most general 
ase.

The optimal values of geometri
 and me
hani
al design variables resulting from the

�rst-level of the optimisation strategy are listed in Table 9. The optimum 
on�guration

has a weight of 29.98 Kg (about 25.5% lower than that of the referen
e stru
ture) with a

�rst global bu
kling load of 1297.73 N/mm (1.1% greater than the referen
e one) and a

lo
al bu
kling load of 664.59 MPa (32.7% greater than the referen
e one).

In this 
ase, the skins have the same weight of those of solutions of 
ases 1.a and 1.b ,

while the 
ore is heavier than those of solutions 1.a and 1.b. Moreover, the 
ore is heavier

than its referen
e 
ounterpart of about 0.38 Kg, see Table 9. Thus, the weight redu
tion is

ex
lusively due to the skins that in terms of geometri
al 
hara
teristi
s of the stru
ture is

translated in a laminate thi
kness redu
tion (that passes from 4.00 mm for the referen
e

solution to 2.50 mm for the present 
ase). Finally it 
an be stated that the 
onstraints

on the �rst global and lo
al bu
kling loads are satis�ed thanks to the 
ombination of the

optimal material parameters of the skins and the shape of the 
ore that has improved the

sti�ness of the panel.

Con
erning the results of the se
ond-level problem the optimal sta
k is listed in Table 10

while the related polar diagrams are depi
ted in Fig. 9. The 
onsiderations already done

for the previous 
ases 
an be repeated verbatim for the present one.

6.4 Case 2.b: shape optimisation using NURBS 
urve, load 
ase Ny = Nx

In this last example the shape of the oblique wall of the RVE is mathemati
ally represented

through a NURBS 
urve, thus the ve
tor of design variables 
orresponds to that of Eq. (13).

The optimal values of geometri
 as well as me
hani
al design variables provided by

the �rst level of the optimisation strategy are listed in the last 
olumn of Table 9. The

optimum 
on�guration has a weight of 28.94 Kg (about 28.1% lower than that of the

referen
e stru
ture) with a �rst global bu
kling load of 1284.69 N/mm (almost equal than

the referen
e one) and a lo
al bu
kling load of 534.68 MPa (6.7% greater than the referen
e

one).

Con
erning the results of the se
ond-level problem the optimum sta
k for both skins is

listed in Table 10, while the related polar diagram is depi
ted in Fig. 10.

For the rest, the 
onsiderations already done for all of the other 
ases 
an be repeated

here.
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6.5 General dis
ussion of results

The following aspe
ts, arising from the analysis of the optimal 
on�gurations of the sand-

wi
h panel provided by the �rst level of the pro
edure (see Table 9), deserve a parti
ular

attention:

1. for ea
h loading 
ase, the solution wherein the oblique wall of the RVE is represented

by means of a NURBS 
urve is lighter than that obtained through a B-spline rep-

resentation (this fa
t proves the true advantages in using a ri
her and more general

mathemati
al representation of parametri
 
urves like the NURBS one);

2. for all the optimal solutions the thi
kness of the skins is the same (i.e. the optimum

number of plies is the same for ea
h 
ase), the di�eren
e in terms of the laminate

sti�ness among the 
on�gurations 
on
erns only the values of the laminate polar

parameters resulting at the end of the �rst step. A

ordingly, the optimal sta
king

sequen
es at the end of the se
ond step are 
onsiderably di�erent (see Table 10);

3. the referen
e solution of Table 7 is 
hara
terised by a shape of orthotropy with

KA∗

= 1 (the value of RA∗

0K is negative), whilst the optimal 
on�gurations show

di�erent kinds of orthotropy (see Table 9 and Figs. 7 to 10): the solution of 
ase 1.a

is 
hara
terised by the same shape of orthotropy as the referen
e one, the laminate

sti�ness tensors of solutions 1.b and 2.a show an ordinary orthotropy with KA∗

= 0

(the 
orresponding value of RA∗

0K is positive) while solution 2.b is 
hara
terised by

a square symmetri
 membrane sti�ness tensor (the value of RA∗

1 is negligible when


ompared to its lamina 
ounterpart, i.e. R1). Indeed, this means that, for the

same loading 
onditions, laminates with di�erent shapes of orthotropy are equivalent

�potential� solutions for the problem at hand (this results represents also an eviden
e

of the non-
onvexity of the optimisation problem);

4. for ea
h solution the global design variables �tuning� the shape of the oblique wall of

the RVE, i.e. h2 and v1, rea
h the upper bound, while the wall thi
kness tc gets the

lower bound: this means that the RVE shows a tenden
y of �lling the available spa
e

by maximising the air volume restrained within the unit 
ell (and by minimising,

simultaneously, the overall mass of the 
ore itself);

5. the height of the 
ore hc gets the value of 38 mm for the solution of 
ases 1.a, 2.a

and 2.b while its value de
rease to 36 mm for the solution of 
ase 1.b, i.e. for ea
h


on�guration the optimum value of hc lies almost in the middle of the de�nition

interval. Indeed, this result is 
onsistent: a high value of hc would imply a de
rease

in the lo
al bu
kling load and an in
rease in the global one, whereas a low value of

hc would 
ause the 
onverse phenomenon. The optimum value of hc represents a


ompromise between these two opposite responses;
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6. for ea
h solution the height of the 
ore hc is higher than that of the referen
e one,

however the resulting lo
al bu
kling load is always 
onsiderably higher than the ref-

eren
e value (37%, 17%, 32.7% and 6.7% for 
ases 1.a, 1.b, 2.a and 2.b, respe
tively).

This result is due to the e�e
t of the lo
al geometri
 design variables (i.e. position of

the 
ontrol points and weights of the NURBS 
urve) tuning the shape of the oblique

wall of the RVE: for ea
h optimal 
on�guration the shape of the wall show one or

more �nodal� lines whi
h in
rease the lo
al bu
kling load of the unit 
ell, as depi
ted

in Fig. 11;

7. the optimal 
on�gurations of the sandwi
h panel (for ea
h 
onsidered 
ase) show a

slight in
rease in the global bu
kling load when 
ompared to the referen
e solution

although the overall thi
kness of the laminated skins strongly de
reases. This fa
t

is due, on one hand, to the higher value of hc whi
h in
reases the distan
e between

the skins (thus the �exural sti�ness of the panel), while, on the other hand, the skins

get a more e�
ient 
ombination of the laminate polar parameters (when 
ompared

to the referen
e solution): the union of these fa
ts engenders a slight in
rease in the

global bu
kling load of the sandwi
h panel.

In order to prove that the te
hnologi
al 
onstraints (linked to the fabri
ation pro
ess) have

been properly 
onsidered within the optimisation pro
ess and that the resulting 
omplex

(optimal) shapes 
an be really manufa
tured, two prototypes of the 
ellular 
ore were fab-

ri
ated. Su
h prototypes have been realised using the 3D printer des
ribed in Se
tion 2.3.

In parti
ular, Fig. 11 presents both the Computer Aided Design (CAD) model and the re-

lated prototype of the 
ellular 
ore for the optimal solutions of 
ase 1.a and 
ase 2.a. It is

noteworthy that the prototype mat
hes very well (i.e. within the te
hnologi
al toleran
es)

the CAD model of the 
ore. Moreover, unlike the vast majority of shape and topology

optimisation te
hniques employed for industrial purposes [33, 34℄ the proposed strategy

does not need of a further step for the re
onstru
tion of the CAD geometry, be
ause the

NURBS-based representation of the geometry of the 
ell is totally 
ompatible with several

standard �le formats (IGES, STL and STEP) whi
h easily allow the digital ex
hange of

information among CAD systems.

7 Con
lusions

The design strategy presented in this paper is a numeri
al optimisation pro
edure 
har-

a
terised by several features that make it an innovative, e�e
tive and general method for

the multi-s
ale design of 
omplex stru
tures. In the present work this strategy has been

employed to deal with the problem of the simultaneous shape and material optimisation

of a sandwi
h panel 
omposed of two laminated skins and a 
ellular 
ore.
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On one hand, the design pro
ess is not submitted to restri
tions: any parameter 
hara
-

terising our stru
ture is an optimisation variable. This allows the designer to look for a true

global minimum, hard to be obtained otherwise. The formulation of the design problem of

the sandwi
h panel is generalised and enri
hed by 
onsidering the shape optimisation of

the unit 
ell of the 
ore instead of the 
lassi
al size optimisation of a pres
ribed geometry.

On the other hand, the multi-s
ale design problem has been split into two distin
t

but linked non-linear minimisation problems whi
h are solved within the same pro
edure

developed on two di�erent levels. The �rst level of the pro
edure involves two di�erent

s
ales: the ma
ro-s
ale of the sandwi
h panel 
omposed of two homogeneous anisotropi


plates (the skins) and of an homogeneous anisotropi
 
ore and the meso-s
ale of the 
ellular


ore modelled through its representative volume element. Many types of design variables

are involved within this �rst level: the geometri
al parameters (lo
al and global) governing

the shape of the unit 
ell (meso-s
ale) together with the geometri
 and material parameters

of ea
h skin (ma
ro-s
ale). The se
ond level of the pro
edure 
on
erns the meso-s
ale of

the laminated skins: in this phase, the goal 
onsists in �nding at least one optimal sta
k

meeting on one hand the elasti
 requirements imposed to the laminate (quasi-homogeneity

and orthotropy) and on the other hand the optimum value of the laminate polar parameters

resulting from the �rst step.

Moreover, one of the main purposes of this work 
onsists in proving that 
omplex

shapes of the 
ellular 
ore 
an be really designed and manufa
tured (with the 
urrent

te
hnologi
al 
apabilities): of 
ourse, this ambitious aim 
an be rea
hed only by in
luding,

sin
e the early stages of the design pro
ess, the manufa
turability 
onstraints linked to

the 
onsidered fabri
ation pro
ess. To these purposes the two-level optimisation pro
edure

has been enri
hed by 
onsidering the te
hnologi
al 
onstraints linked to the 3D printer

(
hosen for fabri
ating the prototype of the unit 
ell) within the �rst level of the strategy.

Con
erning the topology of the 
ellular 
ore, the shape of the unit 
ell is des
ribed by

means of NURBS 
urves. The utilisation of NURBS blending fun
tions allows for easily

translating the manufa
turability 
onstraints into geometri
al 
onstraints to be imposed on

the geometry of the representative unit 
ell. A further advantage linked to the utilisation of

a NURBS-based representation of the geometry to be optimised is in the fa
t that NURBS


urves and surfa
es are totally 
ompatible with the most used standard �le formats (IGES,

STL and STEP) in CAD systems. This aspe
t is of paramount importan
e be
ause it allows

to suppress from the design pro
edure further steps for the re
onstru
tion of the CAD

geometry that are often needed with usual shape and topology optimisation te
hniques.

Con
erning the numeri
al 
omputations, they are 
arried out by a geneti
 algorithm,

BIANCA, able to handle both 
ontinuous and dis
rete-valued variables during the same


al
ulation and to e�e
tively handle the 
onstraints of the problem. For the solution of the

�rst-level problem, the 
ode BIANCA is interfa
ed with the FE 
ode ANSYS that invokes

21



eight FE analyses (at di�erent s
ales) in order to 
ompute the obje
tive as well as the


onstraint fun
tions of the problem.

On the other hand, the me
hani
al 
hara
teristi
s of the laminated plates are rep-

resented by the polar formalism, a mathemati
al representation 
hara
terised by several

advantages, namely to expli
it elasti
 symmetries, elasti
 and geometri
 bounds, and to

eliminate from the pro
edure redundant me
hani
al properties. In addition, the utilisation

of polar formalism leads the designer to easily formulate the se
ond-level problem by taking

into a

ount in a 
orre
t and elegant way the requirements on the elasti
 symmetries of

the stru
ture.

To our best knowledge, this is the �rst time that the problem of the least-weight design

of a sandwi
h panel with a 
ellular 
ore is formulated in a very general way, i.e. by

abandoning the usual simplifying hypotheses and the standard rules, taking into a

ount

all geometri
al and material parameters 
hara
terising the stru
ture as design variables

and 
onsidering, within the same pro
edure, two di�erent s
ales (meso and ma
ro).

The utilisation of an evolutionary strategy, along with the fa
t that the problem is

stated in the most general 
ase, allows to �nd some non-
onventional 
on�gurations more

e�
ient than the standard ones. In fa
t, the 
onsidered numeri
al examples prove that

when standard rules for tailoring the laminate sta
ks are abandoned and all the parame-

ters 
hara
terising the stru
ture, at ea
h s
ale, are in
luded among the design pro
ess a

signi�
ant weight saving 
an be obtained: up to 29% 
ompared to that of the referen
e

stru
ture with enhan
ed me
hani
al properties (in terms of both lo
al and global bu
kling

loads).

Finally, the proposed solutions 
an be yet employed for industrial purposes as they 
an

be fabri
ated with the 
urrent te
hnologi
al 
apabilities. These 
onsiderations remain still

valid if the designer wants to in
lude within the pro
ess 
onstraints of di�erent nature,

e.g. on strength, yielding, delamination, et
. or if he wants to improve the mathemati
al

model to be optimised (i.e. the numeri
al model simulating the me
hani
al response of

the stru
ture) by introdu
ing the in�uen
e of geometri
al imperfe
tions, material as well

as geometri
al non-linearity, et
. All of these aspe
ts 
an be easily integrated within the

optimisation pro
ess without altering its overall ar
hite
ture and they do not represent a

limitation to the proposed strategy, on the 
ontrary they 
ould be an interesting 
hallenge

for future resear
hes on real-life appli
ations.
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Tables

Alluminium Carbon-Epoxy

Material properties

E 70000 MPa E1 181000 MPa

ν 0.33 E2 10300 MPa

ρ 2.7× 10−6
Kg/mm

3 G12 7170 MPa

ν12 0.28
ρs 1.58× 10−6

Kg/mm

3

hply 0.125 mm

Polar parameters

T0 26880 MPa

T1 24744 MPa

R0 19710 MPa

R1 21433 MPa

Φ0,Φ1 0 deg

Table 1: Material properties of the aluminium foil of the 
ore and of the 
arbon-epoxy

laminae of the skins.

Nodes Uξ Uη Uζ

ξ = 0 0 free free

ξ = a1 0 free free

η = 0 free free free

η = a2 free free free

ζ = 0 free free 0

ζ = a3 0 0 free

Table 2: Boundary 
onditions for the FE model of the RVE, linear elasti
 bu
kling analysis.

1st load 
ase 2nd load 
ase 3rd load 
ase

Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ

ξ = 0 0 free free ξ = 0 0 free free ξ = 0 0 free free

ξ = a1 u1 free free ξ = a1 0 free free ξ = a1 0 free free

η = 0 free 0 free η = 0 free 0 free η = 0 free 0 free

η = a2 free 0 free η = a2 free u2 free η = a2 free 0 free

ζ = 0 free free 0 ζ = 0 free free 0 ζ = 0 free free 0

ζ = a3 free free 0 ζ = a3 free free 0 ζ = a3 free free u3

Table 3: Boundary 
onditions for the FE model of the RVE: 1st, 2nd and 3rd stati
 analyses.
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4th load 
ase 5th load 
ase 6th load 
ase

Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ

ξ = 0 0 free free ξ = 0 free 0 0 ξ = 0 free 0 0

ξ = a1 0 free free ξ = a1 free 0 u3 ξ = a1 free u2 0

η = 0 0 free 0 η = 0 free 0 free η = 0 0 free 0

η = a2 0 free u3 η = a2 free 0 free η = a2 u1 free 0

ζ = 0 0 0 free ζ = 0 0 0 free ζ = 0 free free 0

ζ = a3 0 u2 free ζ = a3 u1 0 free ζ = a3 free free 0

Table 4: Boundary 
onditions for the FE model of the RVE: 4th, 5th and 6th stati
 analyses.

Design variable Type Lower bound Upper bound Dis
retisation step

RA∗

0K [MPa℄ 
ontinuous −19710.0 19710.0 -

RA∗

1
[MPa℄ 
ontinuous 0 21433.0 -

ΦA∗

1
[deg℄ dis
rete −90 90 1

h [mm℄ dis
rete 2.50 4.00 0.125
h1 [mm℄ dis
rete 1.00 4.00 0.1
h2 [mm℄ dis
rete 2.00 5.00 0.1
v1 [mm℄ dis
rete 2.00 5.00 0.1
tc [mm℄ dis
rete 0.20 0.40 0.01
hc [mm℄ dis
rete 20.00 60.00 1.00
rξi dis
rete 0.00 1.00 0.01
rηi dis
rete 0.00 1.00 0.01
ωi dis
rete 0.01 1.00 0.01

Table 5: Design spa
e of the �rst-level problem.

Sides BCs

AB, A

′
B

′
, CD, C

′
D

′ Ux = 0
Uz = 0

BC, B

′
C

′
, DA, D

′
A

′ Uy = 0
Uz = 0

Table 6: BCs of the FE model of the sandwi
h panel.
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a, b [mm℄ 1500.00
ΦA∗

1
[deg℄ 0.0

RA∗

0K [MPa℄ −9855.21
RA∗

1
[MPa℄ 5358.28

h [mm℄ 4.00
ϑ [deg℄ 60.00
l2 [mm℄ 2.75
l1 [mm℄ 5.50
tc [mm℄ 0.25
hc [mm℄ 30
Skins Weight [Kg℄ 28.44
Core weight [Kg℄ 11.82
Panel weight [Kg℄ 40.26
Bu
kling load (Case 1) [N/mm℄ 1556.43
Bu
kling load (Case 2) [N/mm℄ 1283.50
Lo
al bu
kling load [MPa℄ 500.66

Sta
king sequen
e N. of plies

[45/0/45/45/ − 45/45/ − 45/0/ 32

0/45/ − 45/45/ − 45/− 45/0/45]s

Table 7: Referen
e solution for the sandwi
h panel design problem,(for the de�nition of

the geometri
 parameters of the RVE of the hexagonal unit 
ell of the honey
omb 
ore

see [9, 10℄).

Geneti
 parameters

1

st
level problem 2

nd
level problem

N. of populations 1 1
N. of individuals 160 500
N. of generations 200 500
Crossover probability 0.85 0.85
Mutation probability 0.00625 0.002
Sele
tion operator roulette-wheel roulette-wheel

Elitism operator a
tive a
tive

Table 8: Geneti
 parameters of the GA BIANCA for both �rst and se
ond-level problems.
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Solution Solution Solution Solution


ase 1.a 
ase 1.b 
ase 2.a 
ase 2.b

ΦA∗

1
[deg℄ 83.00 47.00 44.00 49.00

RA∗

0K [MPa℄ −6608.53 19555.90 19517.30 19517.30
RA∗

1
[MPa℄ 9281.35 2891.26 4714.00 1613.24

h [mm℄ 2.50 2.50 2.50 2.50
h1 [mm℄ 1.50 1.50 1.60 2.10
h2 [mm℄ 5.00 5.00 5.00 4.90
v1 [mm℄ 5.00 5.00 4.55 5.00
tc [mm℄ 0.20 0.20 0.20 0.20
hc [mm℄ 38.00 36.00 38.00 38.00
(ξ0, η0) [mm℄ (1.50, 0.00) (1.50, 0.00) (1.60, 0.00) (2.10, 0.00)
(ξ1, η1) [mm℄ (2.05, 0.00) (2.05, 0.00) (2.15, 0.00) (2.64, 0.00)
(ξ2, η2) [mm℄ (2.61, 0.50) (2.61, 0.50) (2.71, 1.46) (3.19, 1.55)
(ξ3, η3) [mm℄ (3.17, 0.70) (3.17, 0.70) (3.27, 2.23) (3.73, 2.20)
(ξ4, η4) [mm℄ (3.72, 2.25) (3.72, 2.25) (3.82, 2.27) (4.28, 3.40)
(ξ5, η5) [mm℄ (4.28, 3.25) (4.28, 3.25) (4.38, 2.91) (4.82, 3.45)
(ξ6, η6) [mm℄ (4.83, 3.75) (4.83, 3.75) (4.93, 3.59) (5.37, 3.60)
(ξ7, η7) [mm℄ (5.39, 3.95) (5.39, 3.95) (5.49, 3.18) (5.91, 4.30)
(ξ8, η8) [mm℄ (5.94, 5.00) (5.94, 5.00) (6.04, 4.55) (6.45, 5.00)
(ξ9, η9) [mm℄ (6.50, 5.00) (6.50, 5.00) (6.60, 4.55) (7.00, 5.00)
ω0 1.00 0.63 1.00 0.40
ω1 1.00 0.27 1.00 0.44
ω2 1.00 0.72 1.00 0.72
ω3 1.00 0.11 1.00 0.63
ω4 1.00 0.70 1.00 0.10
ω5 1.00 0.11 1.00 0.44
ω6 1.00 0.70 1.00 0.26
ω7 1.00 0.67 1.00 0.89
ω8 1.00 0.42 1.00 0.51
ω9 1.00 0.59 1.00 0.98
Skins Weight [Kg℄ 17.78 17.78 17.78 17.78
Core weight [Kg℄ 11.57 10.85 12.20 11.16
Panel weight [Kg℄ 29.35 28.63 29.98 28.94
Bu
kling load [N/mm℄ 1642.98 1574.91 1297.73 1284.69
Lo
al bu
k. load [MPa℄ 684.88 585.57 664.59 534.68

Table 9: Numeri
al results of the �st-level optimisation problem for both 1

st
and 2

nd

ases.

Best sta
king sequen
e N. of plies Residual

Referen
e [45/0/45/45/ − 45/45/ − 45/0/0/45/ − 45/45/ − 45/− 45/0/45]s 32

Solution

Case 1.a [36/− 55/68/ − 74/79/ − 71/48/57/ − 55/ − 87/44/50/ 20 2.20× 10−4

−57/− 49/26/ − 74/90/54/60/ − 60]

Case 1.b [47/47/ − 43/ − 43/47/ − 43/47/ − 43/47/ − 43/ − 43/ 20 3.96× 10−4

47/47/47/47/ − 43/− 43/47/47/ − 43]

Case 2.a [−45/44/43/ − 48/ − 44/44/ − 45/60/35/44/ − 45/ 20 3.18× 10−4

43/− 47/ − 48/45/ − 41/ − 43/43/ − 48/46]

Case 2.b [−40/50/49/ − 44/48/48/ − 40/ − 41/ − 38/55/ − 40/ 20 3.94× 10−4

−43/46/48/ − 44/48/49/50/ − 36/ − 44]

Table 10: Numeri
al results of the se
ond-level optimisation problem for both 1

st
and 2

nd


ases.
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Figures

Figure 1: Geometry of the sandwi
h panel.

Figure 2: Honey
omb 
ore stru
ture (a), the repetitive unit 
ell (b) and the related RVE

(
).
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Figure 3: Global geometri
 design variables of the RVE (a) and the NURBS representation

of the oblique wall of the RVE (b).

Figure 4: Logi
al �ow of the numeri
al pro
edure for the solution sear
h of the �st-level

problem.
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Figure 5: FE model of the RVE.

Figure 6: Mesh and rigid 
onstraint equations for the FE model of the sandwi
h panel.
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Figure 7: First 
omponent of the homogenised sti�ness tensors of the laminate [MPa℄, 
ase

1.a.
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Figure 8: First 
omponent of the homogenised sti�ness tensors of the laminate [MPa℄, 
ase

1.b.
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Figure 9: First 
omponent of the homogenised sti�ness tensors of the laminate [MPa℄, 
ase

2.a.
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Figure 10: First 
omponent of the homogenised sti�ness tensors of the laminate [MPa℄,


ase 2.b.
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Figure 11: CAD and 3D printed prototypes of the 
ellular 
ore for the optimal solution of


ase 1.a (a) and 
ase 2.a (b).
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