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Abstract

This work deals with the problem of the optimum design of a sandwich panel made
of carbon-epoxy skins and a metallic cellular core. The proposed design strategy is
a multi-scale numerical optimisation procedure that does not make use of any sim-
plifying hypothesis to obtain a true global optimum configuration of the system. To
face the design of the sandwich structure at both meso and macro scales, a two-level
optimisation strategy is employed: at the first level the goal is the determination of the
optimum shape of the unit cell of the core (meso-scale) together with the material and
geometric parameters of the laminated skins (macro-scale), while at the second level
the objective is the design of the skins stacking sequence (skin meso-scale) meeting
the geometrical and material parameters provided by the first-level problem. The two-
level strategy is founded on the polar formalism for the description of the anisotropic
behaviour of the laminates, on the NURBS basis functions for representing the shape
of the unit cell and on the use of a genetic algorithm as optimisation tool to perform
the solution search. To prove its effectiveness, the multi-scale strategy is applied to
the least-weight design of a sandwich plate subject to constraints of different nature:
on the positive-definiteness of the stiffness tensor of the core, on the admissible ma-
terial properties of the laminated faces, on the local buckling load of the unit cell,
on the global buckling load of the panel and geometrical as well as manufacturability
constraints related to the fabrication process of the cellular core.
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1 Introduction

Sandwich panels are increasingly used in aerospace, automotive and naval industries thanks
to their high stiffness-to-weight and strength-to-weight ratios. In order to further reduce
the weight of these structures, sandwich panels are made by laminated skins separated
by aluminium or resin honeycombs, or by polymer foams whose material and geometrical
properties can be designed to provide sandwich plates with enhanced mechanical properties
(stiffness, strength, etc.). However, the design process and the subsequent optimisation of
sandwich structures presents several difficulties mainly when the panel is made of lami-
nated skins and a honeycomb core. In this case the designer has to face, into the same
design process, both the difficulty of designing a laminated plate (concerning the skins) and
that of designing a complex 3D cellular continuum such as the honeycomb core. Therefore,
engineers always make use of some simplifying assumptions or rules to obtain, in an easy
and fast way, a solution. For example, in [1, 2, 3] the optimal design of a sandwich plate is
addressed by determining exclusively the optimum thickness of both the core and the skins,
keeping constant the rest of geometric and material parameters of the system. In [4] the
authors deal with the problem of the least-weight design of a sandwich plate considering as
design variables the thickness of the cell walls as well as that of the skins together with the
total height of the panel. They employed an analytical model to evaluate both the buckling

load of the core and the faces yielding which were considered as optimisation constraints.



The optimisation problem was solved using a Genetic Algorithm (GA). A step further in
the formulation of the problem of the optimum design of sandwich structures has been done
by introducing the concept of topology optimisation of periodic structures. For example, in
[5] Neves et al. present two computational models for predicting the topology of periodic
microstructures which optimise the equivalent material properties determined through a
numerical homogenisation technique. Barbarosie and Toader [6] derive analytically the
shape and topological derivatives for elliptic problems in unbounded domains subject to
periodicity conditions. In [7] Wadley et al. compare different topologies of sandwich cores
in order to evaluate their structural performance along with the most suited fabrication
process. In this work the classical configurations of sandwich cores such as foams or hon-
eycombs are questioned and the authors show how new shapes of the repetitive unit cell,
obtained through an optimisation process, can lead to more efficient solutions (i.e. lighter
and stiffer). In [8] Huang and Xie present a method for the topology optimisation of peri-
odic structures using the bi-directional evolutionary structural optimisation technique. The
capability and the effectiveness of their approach is demonstrated through some numerical
applications on sandwich structures.

The study presented in this work can be placed within the framework of the research
activities [9, 10| previously conducted by the authors and can be seen as a generalisation
of these works.

In [9, 10] a very general multi-scale procedure for the optimum design of sandwich
panels with a hexagonal honeycomb core is proposed. The design problem is formulated
without introducing simplifying hypotheses and by considering (as design variables) the full
set of geometric and material parameters defining the behaviour of the structure at each
characteristic scale (meso and macro). The design variables are the geometric parameters of
the hexagonal unit cell (meso-scale) together with the geometric and material parameters of
the laminated skins (meso and macro scales). To deal with the multi-scale design problem
of a sandwich plate a two-level optimisation strategy is employed. At the first level of the
procedure the optimum value of the cell parameters along with the material and geometrical
properties of the laminated skins are determined (at this level each skin is modelled as an
equivalent homogeneous anisotropic plate whose mechanical behaviour at the macro-scale
is described through a set of tensor invariants, i.e. the laminate polar parameters [11]).
At the second level of the strategy the goal is to find at least one stack for each skin (thus
the design variables of this phase are the plies orientation angles) meeting the optimum
combination of their material and geometrical parameters resulting from the first level of
the procedure.

The aim of the present work is twofold. On one hand the formulation of the design
problem of the sandwich panel is generalised by considering the shape optimisation of the

unit cell of the core instead of the classical size optimisation of a prescribed geometry (as



done in |9, 10| for the hexagonal unit cell). On the other hand the two-level optimisation
procedure has been enriched by considering the manufacturability constraints linked to
the fabrication process of the unit cell within the first level of the strategy. In order to
fabricate in an easy and fast way a prototype of the cellular core a 3D printing technique
has been considered as a fabrication process. Concerning the geometry of the cellular core,
the shape of the unit cell is described by means of B-spline and Non-Uniform Rational
B-Spline (NURBS) curves [12]. The utilisation of B-spline and NURBS bases allows for
easily translating the manufacturability constraints (due to the additive manufacturing
process) into geometrical constraints to be imposed on the geometry of the representative
unit cell. Moreover, since the first level of the strategy involves two different scales (the
macro-scale of the sandwich panel and the meso-scale of the cellular core) the meso-scale
3D finite element model of the repetitive unit cell of the core presented in [9] (which is
used to evaluate its effective elastic properties at the macro-scale) has been geenralised in
order to take into account for the variation of the shape of the cell. The whole procedure is
based on the utilisation of the polar formalism [13] as well as on a genetic algorithm (GA)
previously developed by the first author [14]. The paper is organised as follows: the design
problem, the two-level strategy and the rapid prototyping technique used for fabricating
the cellular core are discussed in Section 2. The mathematical formulation of the first-level
problem is detailed in Section 3, while the problem of determining a suitable laminate
is formulated in Section 4. A concise description of the Finite Element (FE) models of
the sandwich structure at both meso and macro scales are given in Section 5, while the
numerical results of the optimisation procedure are shown in Section 6. Finally, Section 7

ends the paper with some concluding remarks.

2 Simultaneous shape and material optimisation of sandwich
panels with cellular core

2.1 Description of the problem

The optimisation strategy presented in this study is applied to a sandwich plate composed
of two laminated skins and a metallic cellular core with free-shape cells as depicted in
Figs. 1 and 2. The skins are made of carbon-epoxy unidirectional orthotropic laminae
while the cellular core is obtained from aluminium alloy foils, see Table 1 for the material
properties taken from [15, 16]. Concerning the cellular core, the basic classical assumptions
considered to evaluate its elastic response and, hence, to determine its effective material

properties (at the macro-scale) are:
e linear, elastic behaviour for the material of the cell walls;

e perfect bonding for the wall-to-wall contact;



e the buckling of the cell walls due to shear stresses is disregarded.

Concerning the mechanical behaviour (at the macro-scale) of the identical laminated skins,
they are modelled as quasi-homogeneous fully orthotropic laminates, see Section 3.2. As
discussed in [10], no simplifying hypotheses are made on the geometric and mechanical pa-
rameters of both skins and core. Only avoiding the utilisation of a priori assumptions that
extremely shrink the solution space (e.g. the utilisation of symmetric balanced stacks for
the laminated faces to attain membrane/bending uncoupling and membrane orthotropy,
respectively, or the utilisation of regular hexagonal cells to reduce the number of optimi-
sation variables for the core) one can hope to obtain the true global optimum for a given
problem: this is a key-point in our approach.

Finally, in this work the problem formulation has been enriched by including the shape
optimisation of the unit cell of the cellular core (which is not fixed a priori) as well as the
manufacturability constraints linked to the fabrication process of the periodic structure of

the core.

2.2 Description of the multi-scale two-level optimisation strategy

The main goal of the design strategy is the least-weight design of the sandwich plate
subject to constraints of different nature, i.e. mechanical, geometrical as well as feasibility
and manufacturability constraints. The optimisation procedure is articulated into the

following two distinct (but linked) optimisation problems.

First-level problem. The aim of this phase is the determination of the optimal shape of
the unit cell together with the material and geometric parameters of the laminated skins in
order to minimise the weight of the structure and to satisfy, simultaneously, the full set of
optimisation constraints. At this level the laminate representing each skin is modelled as an
equivalent homogeneous anisotropic plate whose behaviour at the macro-scale is described
in terms of the laminate polar parameters, see [10]. Concerning the model of the cellular
core, the first-level problem involves two different scales: the meso-scale of the repetitive
unit cell characterised by its geometric variables, as well as the macro-scale where the core
itself is modelled as an homogeneous orthotropic solid. The link between these two scales,

as widely described in [9], is represented by the homogenisation phase of the cellular core.

Second-level problem. At the second level of the strategy, the goal is the determination
of a suitable lay-up for both skins (the skin meso-scale) meeting the optimum combination
of their material and geometrical parameters provided by the first level problem. The aim
of this phase is, hence, to find at least one stacking sequence, for each skin, which has
to be quasi-homogeneous, fully orthotropic and that has to satisfy the optimal values of
the polar parameters resulting from the first step. At this level of the strategy, the design

variables are the layer orientations.



2.3 Rapid prototyping of the optimum configurations

Thanks to the development of more and more forefront fabrication techniques, the process
of additive manufacturing has shown in recent years a rapid development. Among the
advantages provided by this technique, the most important concerns the ability of repro-
ducing objects of complex shape without (or with less) restrictive technological constraints
linked to the process itself. Since in our laboratory we do not yet dispose of an additive
manufacturing machine for fabricating structural elements made of aluminium alloy, we
decided to employ a 3D printing technique to manufacture the prototype of the optimised
configuration of the cellular core of the sandwich panel. This fact is not limiting because
the aim here is not to reproduce the “real” structural element, rather we want to prove that
a new design paradigm can be conceived: a true global optimisation of the sandwich struc-
ture can be carried out only by including both shape and material optimisation aspects
within the design process. Furthermore, it is possible to obtain realistic (i.e. manufac-
turable) complex shapes of the cellular core only if the technological constraints linked to
the fabrication process are taken into account since the early stages of the design process.

The 3D printer employed to fabricate the prototypes is the Objet30 Pro of Stratasys
[17], while the material employed for the cellular core structure is the VeroWhite Full-
Cure830 belonging to the Objet’s FullCure Materials family of acrylic-based photopolymer

materials [18].

3 Mathematical formulation of the first-level problem

The overall characteristics of the structure have to be designed during this phase. The
weight minimisation of the sandwich plate will be performed by satisfying the set of opti-

misation constraints listed below:

e 3 constraint on the global buckling load of the sandwich panel;
e 3 constraint on the local buckling load of the repetitive unit cell;
e the manufacturability constraints linked to the considered fabrication process;

e a geometric constraint imposed on the shape of the unit cell for avoiding overlapping
of the middle-line of the cross section of the repetitive unit cell (often called non-self-

intersecting condition;

e some mechanical constraints on the effective material properties of the cellular core

(to be used at the macro-scale);

e the geometric and feasibility constraints on the polar parameters of the laminated

skins.

These aspects are detailed in the following subsections.



3.1 Geometrical design variables

Before introducing the geometric design variables characterising the sandwich panel at each
scale, let us describe the Representative Volume Element (RVE) of the periodic cellular
core. The RVE can be deduced from the geometry of the repetitive unit cell of the core
which is characterised by three planes of orthogonal symmetry, as shown in Fig. 2. As
illustrated in Fig. 3 the geometry of the RVE can be described in terms of both global and
local geometric design variables. The global ones essentially represent the overall size of the
RVE itself: h. is the core height, t. is the wall thickness, v; is the length of the free-shape
oblique wall of the RVE along the 7 axis, while hy and hs are the lengths of the flat walls
and of the middle region of the RVE along the £ axis, respectively. In particular, the RVE
can be inscribed within a parallelepiped having the following sizes:

% , (1)

where a1, ao and ag are the lengths of the edges along &, n and ( axes, respectively. On the

ap =2h1 +hy, ax=vi+t., az=

other hand, the local geometric design variables are needed in order to describe the shape
of the middle region of the RVE. To this purpose, in this work the shape of the oblique
wall of the RVE is represented in terms of a Non-Uniform Rational B-Spline (NURBS)

curve [12] as:
() = 3 Rip ()6
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with R;,, (s) = 0<s<1.
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Eq. (2) fully describes a pth-degree plane NURBS curve, as depicted in Fig 3. In particular,
{&,mi} (1 =0,--- ,np) are the Cartesian coordinates of the ith control point (the set of
control points forms the so-called control polygon), w; is the weight related to the ith control
point, while N; ,(s) are the pth-degree B-spline basis functions defined on the non-periodic,

non-uniform knot vector:

S = 0)"'7075p+17"')5m—p—171)"')1 . (3)
~— ~—
p+1 p+1
It is noteworthy that the dimension of the knot-vector is m +1 with m = n, +p+1. For a
deeper insight in the matter the reader is addressed to [12]. In the present work the degree
of the NURBS curve is p = 3, the number of control points has been chosen equal to ten
(thus n, = 9) and the B-spline basis functions are defined on the following non-periodic

but uniform knot vector:

_ 123456
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In this background the shape of the oblique wall of the RVE can be modified by changing
the positions of the points of the control polygon {&;,n;} as well as the related weights
w;. Therefore the previous parameters represent the local geometric design variables of the
RVE. Of course, both global and local geometric design variables of the RVE of the core
intervene at the meso-scale level. Since both kinds of geometrical parameters define the
shape of the RVE a particular care must be taken in defining the position of the points of
the control polygon. The coordinates of each point are defined as follows:

& =hi+rghe, (1=0,---,1np), (5)
0 = Ty, V1.

Where r¢; and r;, are dimensionless parameters varying between zero and one. Moreover,
in order to ensure Cy continuity between the horizontal walls and the oblique part of the
RVE the value of ¢, and 7, must be fixed for the first and last point of the control net as
follows:

Teo = Ty = 0, (6)
Teg = Tyo = 1.

On the other hand, concerning the (identical) skins the only geometric design variable
is the overall thickness h of the laminate. The geometric and material design variables
together with their nature and bounds for the first-level problem are listed in Table 5. At
this level of the optimisation procedure, the thickness of the laminated skins is considered
as a discrete optimisation variable, the discretisation step being equal to the thickness
of the elementary layer, i.e. Ah = hpy (see Table 5). This assumption responds to
a technological constraint, and, in addition, the optimum value of this parameter will
determine also the optimal number of layers n to be used during the second-level design

problem. The geometric design variables intervening at the different scales can be grouped

into the vector of the geometrical parameters defined as:

Xg = {h7h17h27v17t07hC7T§07"' 7T§np7r17()7"' ,T'nnp,OJO,"' anp} . (7)

The geometric design variables involved within the first-level problem are not only limited
by the box-constraints defined in Table 5, rather they have to meet also a certain number
of requirements imposed to the problem at hand. Firstly, the shape of the cell must satisfy
the non-self-intersecting condition: this constraint equation cannot be written in a close
analytical form and can only be checked numerically (this check is automatically performed
by the finite element code used to build the meso-scale model of the RVE). Secondly, the
manufacturability constraint linked to the 3D printer (used to fabricate the prototype of
the cellular core) must be considered. Such a constraint can be easily translated into a
geometric constraint on the admissible ratio between the minimum radius of curvature of

the oblique wall and the thickness of the walls of the RVE as:

91(xg) = 2t, — min(r(s)) <0, (8)



where 7(s) is the local radius of curvature of the RVE. Finally, some further constraints must
be considered to ensure the positive definiteness of the stiffness matrix of the cellular core
(at the macro-scale) whose effective elastic properties depend on the geometric parameters
of the RVE at the meso-scale. These constraints can be written as follows (see [19] for

more details):

92(xg) = —E7 <0,

g3(xg) = —E5 <0,

ga(xg) = —E5 <0,

95(xg) = =G, <0,

go(xg) = =G5 <0,

g7(xg) = —G53 <0,
c

9s(xg) = V5] f% <0, (9)
c

99(xg) = 15| — f; <0,

g10(xg) = |vi3| — \/5::2; <0,

1 (xg) = Whorfio gt + ()" B2+ 050" B+ () B~ 10

¢, ES, ES, G{y, G{3, GS3, Viy, V{5 and v§; are the effective material properties (engi-
neering moduli) of the homogeneous orthotropic cellular core which are determined via the
numerical homogenisation phase discussed in Section 5.1. It is noteworthy that the set of
constraints of Eq. (9) are implicitly imposed on the geometric design variables (global and
local) of the RVE.

3.2 Mechanical design variables

Concerning the mechanical design variables governing the behaviour of the laminated skins
(at the macro-scale) the polar formalism has been employed. This method gives a represen-
tation of any planar tensor by means of a complete set of independent invariants, i.e. the
polar parameters. It can be proved that in the case of a fully orthotropic, quasi-homogeneous
laminate the overall number of independent mechanical design variables describing the
elastic response of each laminated skin reduces to only three [10]: the anisotropic polar
parameters R()‘l; and Rf* and the polar angle <I>’14* (this last representing the orientation
of the main orthotropy axis) of the homogenised membrane stiffness tensor A*. For more
details on the mechanical design variables intervening within the first-level problem the

reader is addressed to [10].



In addition, in the formulation of the optimisation problem for the first level of the
strategy, the geometric and feasibility constraints on the polar parameters (which arise
from the combination of the layer orientations and positions within the stack) must also be
considered. These constraints ensure that the optimum values of the polar parameters re-
sulting from the first step correspond to a feasible laminate that will be designed during the
second step of the optimisation strategy, see [20]. Since the laminate is quasi-homogeneous,

such constraints can be written only for tensor A* as follows:

—Ro < Rl < Ry,

A(i in : R:*’ (10)

The previous variables can be grouped into the vector of mechanical design variables as
follows:

Xm = {0, R, R} . (11)

First and second constraints of Eq. (10) can be taken into account as admissible intervals
for the relevant optimisation variables, i.e. on Rf)‘l; and Rf‘*. Hence, the resulting feasibility

constraint on the laminate polar parameters is:

=22+ ) -1--K<0. 12
malem) =2 () —1- T < (12)
For a wide discussion upon the laminate feasibility and geometrical bounds as well as on

the importance of the quasi-homogeneity assumption the reader is addressed to [20)].

3.3 Mathematical statement of the problem

As previously said, the aim of the first level optimisation is the least-weight design of the
sandwich panel satisfying, simultaneously, constraints of different nature. The design vari-
ables (both geometrical and mechanical) of the problem can be grouped into the following

vector:

A* A* A*
X = {(I>1 )ROKle )h)hlah%vlatcahcvrfp'" )Tfnp)rnp"' )Tnnp)wl)"' 7wnp} . (13)

Therefore the optimisation problem can be formulated as follows:

min W (x)

subject to:
At = Agiob (%) <0, (14)
Mot = Moc (%) <0,

gi(x) <0, withi=1,---,12,
+ n.s. intersecting condition .
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where W is the weight of the sandwich plate, Ay is the first global buckling load of the
ref

sandwich structure while \j,. is the first local buckling load of the core. A;leob and A .

are, respectively, the global and local buckling loads determined on a reference structure
having the same in-plane dimensions and boundary conditions than those of the sandwich

plate that will be optimised, see Section 6.

3.4 Numerical strategy

Problem (14) is a non-linear, non-convex problem in terms of both geometrical and me-
chanical variables. Its non-linearity and non-convexity is due on one side on the nature
of the objective function and on the other side on the optimisation constraints, especially
the constraint on the global buckling load that is a high non-convex function in terms of
both the orthotropy orientation (bottom and top laminates) and the shape of the unit cell
of the core. In addition, the complexity of such a problem is also due to: a) the exis-
tence constraints imposed on the technical moduli of the cellular core, see. Eq. (9), b) the
manufacturability constraint that can be translated into a geometrical constraint imposed
on the ratio between the thickness and the minimum radius of curvature of the oblique
wall of the RVE, see Eq. (8), ¢) the non-self-intersecting constraint on the midline of the
oblique wall of the RVE. The previous constraints are highly non-convex functions of the
geometrical parameters of the RVE. The total number of design variables is 39 while the
total number of optimisation constraints is 15 (see Eq. (14)).

For the resolution of problem (14) the GA BIANCA |21, 14] coupled with both the
meso-scale FE model of the RVE (used for numerical homogenisation of the cellular core
as well as for the calculation of the local buckling load of the cell) and the macro-scale FE
model of the sandwich panel for the buckling analysis of the structure has been employed,
see Fig. 4. The GA BIANCA was already successfully applied to solve different kinds of
real-world engineering problems, see for example [22, 23, 24, 25, 26, 27].

As shown in Fig. 4, for each individual at each generation, the numerical tool performs a
FE-based homogenisation for the evaluation of the effective material properties of the core
and a subsequent numerical evaluation of the first buckling load of the sandwich structure
(at both meso-scale and macros-scale for determining the local and global buckling loads,
respectively) along with its weight. The meso-scale FE model makes use of the geomet-
rical parameters of the unit cell (given by BIANCA and elaborated by MATLAB® which
generates the NURBS curve representing the midline of the oblique wall of the RVE of the
core) in order to perform the numerical homogenisation of the core and also to calculate
the local buckling load of its unit cell. Afterwards, the macro-scale FE model utilises the
geometrical and mechanical design variables of the skins given by BIANCA together with
the effective material properties of the core (resulting from the meso-scale FE model of the

cell) to evaluate the global buckling load of the structure and its weight. Therefore, for

11



these purposes the GA BIANCA has been interfaced with both the commercial FE code
ANSYS® and the code MATLAB®. The GA elaborates the results provided by the two
FE models in order to execute the genetic operations. These operations are repeated until
the GA BIANCA meets the user-defined convergence criterion.

The generic individual of the GA BIANCA represents a potential solution for the
problem at hand. The genotype of the individual for problem (14) is characterised by only
one chromosome composed of 39 genes, each one coding a component of the vector of the

design variables, see Eq. (13).

4 Methematical formulation of the second-level problem

The second-level problem concerns the lay-up design of the laminated skins. Such a problem
consists in determining at least one stacking sequence satisfying the optimum values of both
geometric and polar parameters resulting from the first level of the strategy and having
the elastic symmetries imposed on the laminate within the formulation of the first-level
problem, i.e. quasi-homogeneity and orthotropy. In the framework of the polar formalism,

this problem can be stated in the form of an unconstrained minimisation problem:

min 1 (f; (8)) (15)
with
6
I(f(8)=>_fi(9) . (16)
=1

where 4 is the vector of the layer orientations, i.e. the design variables of this phase, while
fi (8) are quadratic functions in the space of polar parameters, each one representing a
requirement to be satisfied, such as orthotropy, uncoupling, etc. For the problem at hand

the partial objective functions write:

_ |(I)A*(6)_(I)i4*(5)| *(opt 2 - RA*(J)—RA*(Opt) 2
f1(5)—( 0 7 — KA )) 7 f2(5)—< 0 ROO |
4% () _ pATorn)\ 2 e At 2 )
- (AR - (SHOREE) o (1)
~(1IB*)I1\?
1= ()

(17)

where fi (d) represents the elastic requirement on the orthotropy of the laminate having the
prescribed shape (imposed by the value of K4™ provided by the first step of the procedure),
f2(8), f3(8) and f4 (8) are the requirements related to the prescribed values of the optimal
polar parameters resulting from the first-level problem, while f5(§) and fs (d) are linked

to the quasi-homogeneity condition.

12



I(f;()) is a positive semi-definite convex function in the space of laminate polar pa-
rameters, since it is defined as a sum of convex functions, see Egs. (16)-(17). Nevertheless,
such a function is highly non-convex in the space of plies orientations because the lam-
inate polar parameters depend upon circular functions of the layers orientation angles,
see Eq. (7?7). Moreover, one of the advantages of such a formulation consists in the fact
that the absolute minima of I (f; (d)) are known a priori since they are the zeroes of this
function. For more details about the nature of the second-level problem see [23, 14, 28].
Concerning the numerical strategy for solving problem (15) the GA BIANCA has been
employed to find a solution also for the second-level problem. In this case, each individual
has a genotype composed of n chromosomes, one for each ply, characterised by a single
gene coding the layer orientation. It must be pointed out that problem (15) must be solved
only one time as the skins are identical.

As conclusive remark of this section, it must be highlighted the fact that each ply
orientation can get all the values in the range [-89°, 90°] with a discretisation step of 1°.
Such a step has been chosen in order to prove that laminates with given elastic properties
(such as membrane/bending uncoupling, membrane orthotropy, etc.) can be obtained
by abandoning the well-known conventional rules for tailoring the laminate stack (e.g.
symmetric-balanced stacks) which extremely shrink the search space for problem (15).
The true advantages in using “non-conventional” staking sequences consist in the fact that
on one hand with a discretisation step of one degree for the plies orientations the GA
can explore the overall design space of problem (15) and on the other hand it can find
very general stacks (nor symmetric neither balanced) that fully meet the elastic properties
resulting from the first step of the procedure with a fewer number of plies (hence lighter)

than the standard stacks, see [23, 14].

5 Finite element models at different scales

The FE models used at the first-level of the strategy are built using the FE commercial
code ANSYS®. The FE analyses are conducted to determine the value of the objective
and constraint functions for each individual, i.e. for each point in the design space, at the
current generation.

The need to analyse, within the same generation, different geometrical configurations
(plates with different geometrical and material properties), each one corresponding to an
individual, requires the creation of an ad-hoc input file for the FE code that has to be
interfaced with BIANCA. The FE model must be conceived to take into account a variable
geometry, material and mesh. Indeed, for each individual at the current generation the
FE code has to be able to vary in the correct way the number of elements wherein the

structure is discretised, thus a proper parametrisation of the model has to be achieved.
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During the optimisation process of the first level of the strategy, for each individual,
eight FE analyses must be performed (see Fig. 4): six static analyses and one linear buckling
analysis on the FE model of the unit cell of the cellular core (in order to determine the
effective material properties |9] and the first local buckling load) and a linear buckling

analysis on the FE model of the whole sandwich panel.

5.1 Finite element model of the unit cell (meso-scale)

In order to accurately determine the first local buckling load of the cellular core and its
effective elastic properties a linear buckling analysis and a numerical homogenisation phase
have to be achieved, respectively. The FE model of the RVE is illustrated in Fig. 5. The
model has been built by using the 20-node solid element SOLID186 with three Degrees Of
Freedom (DOFs) per node.

Concerning the linear elastic buckling analysis on the RVE the displacement Boundary
Conditions (BCs) listed in Table 2 have been considered, while a uniform distributed
pressure has been applied on the face located at ( = a3. On the other hand, the effective
properties of the core are determined using the strain energy homogenisation technique of
periodic media, see [29]. This technique makes use of the repetitive unit of the periodic
structure to approximate its effective properties at the macro-scale level. As in [9] the nine
independent components of the stiffness tensor C of the cellular core have been determined
through six static analyses.

The corresponding BCs for each one of the six static analyses performed on the FE
model of Fig. 5 are resumed in Tables 3 and 4. These BCs are imposed in order to satisfy
the symmetries of the RVE and to generate a strain field in such a way that only one
component of the strain tensor is different from zero for each static analysis. For a deeper
insight in the matter the reader is addressed to |9, 30].

It is noteworthy that since a shape optimisation of the unit cell is achieved within
the framework of the first-level problem, the meso-scale FE model of the RVE must be
able to take into account for variable geometry and mesh. To this purpose the mesh tool
of the ANSYS code has been modified in order to make it compatible with a NURBS-
based representation of the geometry (all these operations have been implemented within
the APDL language of the ANSYS code). Finally, it has been previously checked that a
mesh having an average value of 52000 DOFs (four divisions through the cell thickness) is
sufficient for estimating the effective elastic properties as well as the local buckling load of

the RVE with a good accuracy.

5.2 Finite element model of the sandwich panel (macro-scale)

At the macro-scale the structure is modelled with a combination of shell and solid elements.

In particular, the laminated skins are modelled using ANSYS SHELL281 elements with
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8-nodes and six DOFs per node, and their mechanical behaviour is described by defining
directly the homogenised stiffness tensors A*, B* and D*. The equivalent solid representing
the core is modelled using ANSYS SOLID186 elements having the material properties
provided by the FE model of the RVE. Concerning the BCs of the macro-scale FE model,
they are depicted in Fig. 6 and listed in Table 6. In particular, such BCs are applied on
the edges of the skins and not on the core.

The compatibility of the displacement field between skins (modelled with shell elements)
and core (modelled with solid elements) is achieved by using ANSYS CERIG rigid con-
straints (also called rigid beams) whose formulation is based upon a classical master-slave
scheme, see [31] for more details. Rigid constraints are imposed on each node belonging
to contiguous solid and shell elements as depicted in Fig. 6. In particular, rigid beams
are defined between the nodes of the middle plane of the top (bottom) skin and the corre-
sponding ones of the top (bottom) surface of the solid core. In this case the master nodes
are those belonging to shell elements (the skins), while slave nodes are those belonging the
top and bottom surfaces of the core.

Finally, before starting the optimisation process, a sensitivity study (not reported here
for the sake of brevity) on the proposed FE model with respect to the mesh size has been
conducted: it was observed that a mesh having 12088 DOFs, i.e. showing two divisions
through the core thickness h., is sufficient to properly evaluate the first buckling load of

the structure.

6 Studied cases and results

In order to show the effectiveness of the proposed approach two different cases have been
studied. In both cases a bi-axial compressive load per unit length is applied on the skins

edges (as shown in Fig. 6): in the first one the ratio between the compressive loads is
Ny
Na
been considered: the first one wherein the shape of the unit cell of the core is designed

o . N
= 0.5 while in the second one is * = 1. Moreover, for each case two sub-cases have
x

using B-Spline curves and the second one, more general, where the optimal shape of the
unit cell is obtained using NURBS curves. It should be pointed out that these sub-cases
are considered in order to investigate which-one of the two mathematical representations
employed to describe the shape of the oblique wall of the RVE leads the GA to find an
optimal solution more efficient (in terms of weight and buckling loads) than the reference
one.

Before starting the multi-scale optimisation process a reference structure must be de-
fined in order to establish reference values for the weight and for both the local and global
buckling loads of the panel: the material as well as the geometrical properties of the ref-

erence sandwich plate are listed in Table 7. One can notice that the reference structure
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has identical skins composed of 32 plies with the stacking sequence listed in Table 7. The
choice of the reference solution has been oriented towards a non-trivial configuration with
a honeycomb core characterised by a unit cell having the typical dimensions of commer-
cial honeycombs (a regular hexagonal cell whose sizes are taken from [32], see also |9] for
the definition of the geometric parameters defining the RVE of the hexagonal cell)) and
two very stiff skins. In fact, the weight and the stiffness properties (in terms of buckling
load) of such a reference configuration are typical of real-world engineering applications
(in other words the reference solution still represents a “good” compromise between weight
and stiffness requirements).

Regarding the setting of the genetic parameters for the GA BIANCA used to solve
both first and second-level problems they are listed in Table 8. Moreover, concerning the
constraint-handling technique for the first-level problem the Automatic Dynamic Penal-
ization (ADP) method has been employed, see [21]. For more details on the numerical
techniques developed within the new version of BIANCA and the meaning of the values of

the different parameters tuning the GA the reader is addressed to [14, 23|.

6.1 Case l.a: shape optimisation using B-spline curve, load case N, =
0.5N,

For this first example, since a B-spline curve is utilised to describe the shape of the oblique
wall of the RVE cross-section, the number of design variables reduces from 39 to 29 (all of
the weights w; are fixed and equal to one).

The optimal values of the geometric as well as mechanical design variables resulting
from the first-level of the optimisation strategy are listed in Table 9. As it can be easily
seen, the optimum configuration has a weight of 29.35 Kg (about 27% lower than that
of the reference structure) with a first global buckling load of 1642.98 N/mm (about 5%
higher than that of the reference one) and a first local buckling load of 684.88 MPa, (about
37% higher than that of the reference one).

Let us consider now the second-level problem: the design of the laminate lay-up. Ta-
ble 10 shows the best stacking sequences for all the studied cases. As in each numerical
technique, the quality of solutions found by BIANCA can be estimated on the basis of a
numerical tolerance, i.e. the residual. For a discussion on the importance of the numerical
residual in problems of this type, the reader is addressed to [14, 28]|. I (f;(d)) is a non-
dimensional function, thus the residual of the solution is a non-dimensional quantity too.
The residual in the last column of Table 10 is the value of the global objective function
I(fi(9)) for the solution indicated aside (we remind that exact solutions correspond to
the zeroes of the objective function, see [28]). From Table 10 one can see that the optimal
stacks (for all cases) are very general stacks which completely satisfy the elastic require-

ments of the laminate expected by problem 15. In fact, for this first case Fig. 7 shows
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the first component of the homogenised stiffness tensors of the laminate, i.e. A*, B* and
D*: the solid line refers to the membrane stiffness tensor, the dashed one to the bending
stiffness tensor, while the dash-dotted one is linked to the membrane/bending coupling
stiffness tensor. It can be noticed that the laminate is uncoupled as the dash-dotted curve
is reduced to a point in the center of the plot (Bj; is practically null), homogeneous as
the solid and dashed curves are almost coincident and orthotropic because there are two
orthogonal axes of symmetry in the plane. In addition, the main orthotropy axis for this

case is oriented at <I>‘14* = 83° as indicated in Table 9.

6.2 Case 1.b: shape optimisation using NURBS curve, load case N, =
0.5N,

In this sub-case a NURBS curve is considered for describing the shape of the oblique wall
of the RVE cross-section, hence, the number of design variables is equal to 39 (all of the
weights w; are included within the vector of design variables).

The optimal values of geometric as well as mechanical design variables of the first level
problem are listed in Table 9. The optimum configuration weighs 28.63 Kg (a reduction
of 29% when compared to that of the reference structure) with a first global buckling load
of 1574.91 N/mm (1.2% greater than the reference one) and a local bukling load of 585.57
MPa (17% greater than the reference one).

This solution, as expected, is lighter than that of the case 1.a with a difference of
0.72 Kg with a lower value of both global and local buckling loads. This difference is due
exclusively to the weight contribution given by the core. In fact, the optimum configuration
of the panel for this case is characterised by two laminated skins which are as thick as those
of the panel solution of case 1.a (2.50 mm, i.e. 20 plies); on the other hand the core shape
is different and it is lighter than that characterising solution 1.a.

In addition, the weight reduction of the core has led to a reduction of the buckling
load of the panel (both global and local) and, therefore, to a more compliant structure
when compared to the solution 1.a. Of course, the variation of the shape of the unit cell
together with the variation of the polar parameters of the skins occur in order to meet the
prescribed minimal stiffness of the whole structure (at each scale) through the constraint
on the first buckling loads.

Concerning the second-level problem, Table 10 shows the best stacking sequences for
both the skins for the present case, while Fig. 8 shows the polar diagram for the first
component of the corresponding homogenised stiffness tensors. Regarding the nature of
the optimal stacks, even for this case, the same considerations as those of case 1.a can be

repeated here.
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6.3 Case 2.a: shape optimisation using B-spline curve, load case N, = N,

In this first sub-case a B-spline curve is employed to describe the shape of the oblique wall
of the RVE cross-section. As in the case 1.a, this implies a reduction of the number of
design variables that passes from 39 to 29 when compared to the most general case.

The optimal values of geometric and mechanical design variables resulting from the
first-level of the optimisation strategy are listed in Table 9. The optimum configuration
has a weight of 29.98 Kg (about 25.5% lower than that of the reference structure) with a
first global buckling load of 1297.73 N/mm (1.1% greater than the reference one) and a
local buckling load of 664.59 MPa (32.7% greater than the reference one).

In this case, the skins have the same weight of those of solutions of cases 1.a and 1.b |
while the core is heavier than those of solutions 1.a and 1.b. Moreover, the core is heavier
than its reference counterpart of about 0.38 Kg, see Table 9. Thus, the weight reduction is
exclusively due to the skins that in terms of geometrical characteristics of the structure is
translated in a laminate thickness reduction (that passes from 4.00 mm for the reference
solution to 2.50 mm for the present case). Finally it can be stated that the constraints
on the first global and local buckling loads are satisfied thanks to the combination of the
optimal material parameters of the skins and the shape of the core that has improved the
stiffness of the panel.

Concerning the results of the second-level problem the optimal stack is listed in Table 10
while the related polar diagrams are depicted in Fig. 9. The considerations already done

for the previous cases can be repeated wverbatim for the present one.

6.4 Case 2.b: shape optimisation using NURBS curve, load case N, = N,

In this last example the shape of the oblique wall of the RVE is mathematically represented
through a NURBS curve, thus the vector of design variables corresponds to that of Eq. (13).

The optimal values of geometric as well as mechanical design variables provided by
the first level of the optimisation strategy are listed in the last column of Table 9. The
optimum configuration has a weight of 28.94 Kg (about 28.1% lower than that of the
reference structure) with a first global buckling load of 1284.69 N/mm (almost equal than
the reference one) and a local buckling load of 534.68 MPa (6.7% greater than the reference
one).

Concerning the results of the second-level problem the optimum stack for both skins is
listed in Table 10, while the related polar diagram is depicted in Fig. 10.

For the rest, the considerations already done for all of the other cases can be repeated

here.
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6.5

General discussion of results

The following aspects, arising from the analysis of the optimal configurations of the sand-

wich panel provided by the first level of the procedure (see Table 9), deserve a particular

attention:

1.

for each loading case, the solution wherein the oblique wall of the RVE is represented
by means of a NURBS curve is lighter than that obtained through a B-spline rep-
resentation (this fact proves the true advantages in using a richer and more general

mathematical representation of parametric curves like the NURBS one);

for all the optimal solutions the thickness of the skins is the same (i.e. the optimum
number of plies is the same for each case), the difference in terms of the laminate
stiffness among the configurations concerns only the values of the laminate polar
parameters resulting at the end of the first step. Accordingly, the optimal stacking

sequences at the end of the second step are considerably different (see Table 10);

the reference solution of Table 7 is characterised by a shape of orthotropy with
KA =1 (the value of Ra“;{ is negative), whilst the optimal configurations show
different kinds of orthotropy (see Table 9 and Figs. 7 to 10): the solution of case 1.a
is characterised by the same shape of orthotropy as the reference one, the laminate
stiffness tensors of solutions 1.b and 2.a show an ordinary orthotropy with K4™ =0
(the corresponding value of RS‘;{ is positive) while solution 2.b is characterised by
a square symmetric membrane stiffness tensor (the value of R‘f‘* is negligible when
compared to its lamina counterpart, i.e. Rjp). Indeed, this means that, for the
same loading conditions, laminates with different shapes of orthotropy are equivalent
“potential” solutions for the problem at hand (this results represents also an evidence

of the non-convexity of the optimisation problem);

for each solution the global design variables “tuning” the shape of the oblique wall of
the RVE, i.e. ho and vy, reach the upper bound, while the wall thickness ¢. gets the
lower bound: this means that the RVE shows a tendency of filling the available space
by maximising the air volume restrained within the unit cell (and by minimising,

simultaneously, the overall mass of the core itself);

the height of the core h. gets the value of 38 mm for the solution of cases l.a, 2.a
and 2.b while its value decrease to 36 mm for the solution of case 1.b, i.e. for each
configuration the optimum value of h. lies almost in the middle of the definition
interval. Indeed, this result is consistent: a high value of h, would imply a decrease
in the local buckling load and an increase in the global one, whereas a low value of
h. would cause the converse phenomenon. The optimum value of h. represents a

compromise between these two opposite responses;
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6. for each solution the height of the core h. is higher than that of the reference one,
however the resulting local buckling load is always considerably higher than the ref-
erence value (37%, 17%, 32.7% and 6.7% for cases 1.a, 1.b, 2.a and 2.b, respectively).
This result is due to the effect of the local geometric design variables (i.e. position of
the control points and weights of the NURBS curve) tuning the shape of the oblique
wall of the RVE: for each optimal configuration the shape of the wall show one or
more “nodal” lines which increase the local buckling load of the unit cell, as depicted
in Fig. 11;

7. the optimal configurations of the sandwich panel (for each considered case) show a
slight increase in the global buckling load when compared to the reference solution
although the overall thickness of the laminated skins strongly decreases. This fact
is due, on one hand, to the higher value of h, which increases the distance between
the skins (thus the flexural stiffness of the panel), while, on the other hand, the skins
get a more efficient combination of the laminate polar parameters (when compared
to the reference solution): the union of these facts engenders a slight increase in the

global buckling load of the sandwich panel.

In order to prove that the technological constraints (linked to the fabrication process) have
been properly considered within the optimisation process and that the resulting complex
(optimal) shapes can be really manufactured, two prototypes of the cellular core were fab-
ricated. Such prototypes have been realised using the 3D printer described in Section 2.3.
In particular, Fig. 11 presents both the Computer Aided Design (CAD) model and the re-
lated prototype of the cellular core for the optimal solutions of case 1.a and case 2.a. It is
noteworthy that the prototype matches very well (i.e. within the technological tolerances)
the CAD model of the core. Moreover, unlike the vast majority of shape and topology
optimisation techniques employed for industrial purposes [33, 34| the proposed strategy
does not need of a further step for the reconstruction of the CAD geometry, because the
NURBS-based representation of the geometry of the cell is totally compatible with several
standard file formats (IGES, STL and STEP) which easily allow the digital exchange of

information among CAD systems.

7 Conclusions

The design strategy presented in this paper is a numerical optimisation procedure char-
acterised by several features that make it an innovative, effective and general method for
the multi-scale design of complex structures. In the present work this strategy has been
employed to deal with the problem of the simultaneous shape and material optimisation

of a sandwich panel composed of two laminated skins and a cellular core.
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On one hand, the design process is not submitted to restrictions: any parameter charac-
terising our structure is an optimisation variable. This allows the designer to look for a true
global minimum, hard to be obtained otherwise. The formulation of the design problem of
the sandwich panel is generalised and enriched by considering the shape optimisation of
the unit cell of the core instead of the classical size optimisation of a prescribed geometry.

On the other hand, the multi-scale design problem has been split into two distinct
but linked non-linear minimisation problems which are solved within the same procedure
developed on two different levels. The first level of the procedure involves two different
scales: the macro-scale of the sandwich panel composed of two homogeneous anisotropic
plates (the skins) and of an homogeneous anisotropic core and the meso-scale of the cellular
core modelled through its representative volume element. Many types of design variables
are involved within this first level: the geometrical parameters (local and global) governing
the shape of the unit cell (meso-scale) together with the geometric and material parameters
of each skin (macro-scale). The second level of the procedure concerns the meso-scale of
the laminated skins: in this phase, the goal consists in finding at least one optimal stack
meeting on one hand the elastic requirements imposed to the laminate (quasi-homogeneity
and orthotropy) and on the other hand the optimum value of the laminate polar parameters
resulting from the first step.

Moreover, one of the main purposes of this work consists in proving that complex
shapes of the cellular core can be really designed and manufactured (with the current
technological capabilities): of course, this ambitious aim can be reached only by including,
since the early stages of the design process, the manufacturability constraints linked to
the considered fabrication process. To these purposes the two-level optimisation procedure
has been enriched by considering the technological constraints linked to the 3D printer
(chosen for fabricating the prototype of the unit cell) within the first level of the strategy.
Concerning the topology of the cellular core, the shape of the unit cell is described by
means of NURBS curves. The utilisation of NURBS blending functions allows for easily
translating the manufacturability constraints into geometrical constraints to be imposed on
the geometry of the representative unit cell. A further advantage linked to the utilisation of
a NURBS-based representation of the geometry to be optimised is in the fact that NURBS
curves and surfaces are totally compatible with the most used standard file formats (IGES,
STL and STEP) in CAD systems. This aspect is of paramount importance because it allows
to suppress from the design procedure further steps for the reconstruction of the CAD
geometry that are often needed with usual shape and topology optimisation techniques.

Concerning the numerical computations, they are carried out by a genetic algorithm,
BIANCA, able to handle both continuous and discrete-valued variables during the same
calculation and to effectively handle the constraints of the problem. For the solution of the
first-level problem, the code BIANCA is interfaced with the FE code ANSYS that invokes
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eight FE analyses (at different scales) in order to compute the objective as well as the
constraint functions of the problem.

On the other hand, the mechanical characteristics of the laminated plates are rep-
resented by the polar formalism, a mathematical representation characterised by several
advantages, namely to explicit elastic symmetries, elastic and geometric bounds, and to
eliminate from the procedure redundant mechanical properties. In addition, the utilisation
of polar formalism leads the designer to easily formulate the second-level problem by taking
into account in a correct and elegant way the requirements on the elastic symmetries of
the structure.

To our best knowledge, this is the first time that the problem of the least-weight design
of a sandwich panel with a cellular core is formulated in a very general way, i.e. by
abandoning the usual simplifying hypotheses and the standard rules, taking into account
all geometrical and material parameters characterising the structure as design variables
and considering, within the same procedure, two different scales (meso and macro).

The utilisation of an evolutionary strategy, along with the fact that the problem is
stated in the most general case, allows to find some non-conventional configurations more
efficient than the standard ones. In fact, the considered numerical examples prove that
when standard rules for tailoring the laminate stacks are abandoned and all the parame-
ters characterising the structure, at each scale, are included among the design process a
significant weight saving can be obtained: up to 29% compared to that of the reference
structure with enhanced mechanical properties (in terms of both local and global buckling
loads).

Finally, the proposed solutions can be yet employed for industrial purposes as they can
be fabricated with the current technological capabilities. These considerations remain still
valid if the designer wants to include within the process constraints of different nature,
e.g. on strength, yielding, delamination, etc. or if he wants to improve the mathematical
model to be optimised (i.e. the numerical model simulating the mechanical response of
the structure) by introducing the influence of geometrical imperfections, material as well
as geometrical non-linearity, etc. All of these aspects can be easily integrated within the
optimisation process without altering its overall architecture and they do not represent a
limitation to the proposed strategy, on the contrary they could be an interesting challenge

for future researches on real-life applications.
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Tables

Alluminium | Carbon-Epoxy

Material properties

E 70000 MPa Fy 181000 MPa
v 0.33 Es 10300 MPa,
p  2.7x107% Kg/mm3 | Gi2 7170 MPa
V12 0.28
Ps 1.58 x 1076 Kg/mm?3
hopty 0.125 mm

Polar parameters

To 26880 MPa
T 24744 MPa
Ro 19710 MPa
R1 21433 MPa

<I>0,<1>1 0 deg

Table 1: Material properties of the aluminium foil of the core and of the carbon-epoxy
laminae of the skins.

‘ Nodes  Ug Uy Ue ‘

£E=0 0 free free
E=a 0 free free
n=0 free free free
n=uao free free free
(=0 free free 0

(=a3 O 0 free

Table 2: Boundary conditions for the FE model of the RVE, linear elastic buckling analysis.

‘ 1%t load case ‘ 21 pad case ‘ 374 Jpad case ‘
| Nodes Ug U, U; |Nodes Ue U, U |Nodes U U, U |

£E=0 0 free free | =0 0 free free | =0 0 free free
E=a1 wup free free | &= 0 free free | {=aq 0 free free
n=0 free 0 free|n=0 free 0 free|n=0 free 0 free
n=uay free 0 free|n=uas free wus free|n=as free 0 free
(=0 free free 0 | (=0 free free 0 | (=0 free free 0

(=ag free free 0 |(=a3 free free 0 |(=a3 free free wug

Table 3: Boundary conditions for the FE model of the RVE: 1%¢, 2"¢ and 37 static analyses.
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‘ 4th 1oad case

5t load case

‘ 6t load case

‘ Nodes U U, U ‘ Nodes Ug U, U ‘ Nodes U U, U ‘
£E=0 0 free free | £=0 free 0 0 |[¢&€=0 free 0 0
E=a1 0 free free | =a; free 0 ug | E=a1 free w9 0
n=20 0 free 0 |n=0 free 0 free|n=0 0 free O
n=a 0 free wug |n=ay free 0 free| n=as w3 free 0
(=0 0 0 free| (=0 0 0 free| (=0 free free 0
(=a3 0 us free | (=a3 wu 0 free| (=uag free free 0

Table 4: Boundary conditions for the FE model of the RVE: 4" 5! and 6" static analyses.

Design variable

Type

Lower bound

Upper bound

Discretisation step

R{Y: [MPa)
R&Xf [MP;]

©3'* [deg]
h [mm]
h1 [mm]|
ho [mm]
v1 [mm)|
te [mm)]
he [mm]
re;

Tn;

continuous  —19710.0
continuous 0

discrete
discrete
discrete
discrete
discrete
discrete
discrete
discrete
discrete
discrete

—90
2.50
1.00
2.00
2.00
0.20
20.00
0.00
0.00
0.01

19710.0
21433.0
90

4.00
4.00
5.00
5.00
0.40
60.00
1.00
1.00
1.00

1

0.125

0.1
0.1
0.1
0.01
1.00
0.01
0.01
0.01

Table 5: Design space of the first-level problem.

Sides

AB, A’B’, CD, C'D’ U, =0

BC, B'C/, DA, D'A’ U, =0

Table 6: BCs of the FE model of the sandwich panel.
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a,b [mm]| 1500.00

O4* [deg] 0.0

RiY: [MPa) —9855.21
R{™* [MPa] 5358.28
h [mm] 4.00

¥ [deg] 60.00

l2 [mm]| 2.75

l1 [mm] 5.50

te [mm)| 0.25

he [mm)] 30

Skins Weight [Kg] 28.44
Core weight [Kg| 11.82
Panel weight [Kg]| 40.26
Buckling load (Case 1) [N/mm]| 1556.43
Buckling load (Case 2) [N/mm]| 1283.50
Local buckling load [MPa] 500.66
Stacking sequence N. of plies

[45/0/45/45/ — 45/45/ — 45/0/ 32
0/45/ — 45/45/ — 45/ — 45/0/45],

Table 7: Reference solution for the sandwich panel design problem,(for the definition of
the geometric parameters of the RVE of the hexagonal unit cell of the honeycomb core
see [9, 10]).

Genetic parameters

15t level problem | 2™ level problem

N. of populations 1 1

N. of individuals 160 500

N. of generations 200 500

Crossover probability | 0.85 0.85
Mutation probability | 0.00625 0.002
Selection operator roulette-wheel roulette-wheel
Elitism operator active active

Table 8: Genetic parameters of the GA BIANCA for both first and second-level problems.
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Solution Solution Solution Solution

case l.a case 1.b case 2.a case 2.b
<I>A* [deg] 83.00 47.00 44.00 49.00
Ré“}’; [MPa] —6608.53 19555.90 19517.30 19517.30
RA* [MPa)| 9281.35 2891.26 4714.00 1613.24
h [mm] 2.50 2.50 2.50 2.50
h1 [mm]| 1.50 1.50 1.60 2.10
ho [mm)] 5.00 5.00 5.00 4.90
v1 [mm]| 5.00 5.00 4.55 5.00
te [mm] 0.20 0.20 0.20 0.20
he [mm]| 38.00 36.00 38.00 38.00
(0,m0) [mm)| (1.50, 0.00)  (1.50, 0.00) (1.60, 0.00)  (2.10, 0.00)
(&1,m) [mm] (2.05, 0.00) (2.05,0.00) (2.15,0.00) (2.64, 0.00)
(&2,m2) [mm)| (2.61, 0.50)  (2.61, 0.50) (2.71, 1.46) (3.19, 1.55)
(&3,7m3) [mm] (3.17,0.70)  (3.17,0.70)  (3.27,2.23)  (3.73, 2.20)
(é4,m4) [mm)| (3.72, 2.25)  (3.72,2.25) (3.82,2.27) (4.28, 3.40)
(¢5,m5) [mm] (4.28,3.25)  (4.28,3.25) (4.38,2.91) (4.82, 3.45)
(&6,m6) [mm)| (4.83, 3.75)  (4.83,3.75) (4.93,3.59) (5.37, 3.60)
(&7,7m7) [mm] (5.39, 3.95) (5.39,3.95) (5.49, 3.18) (5.91, 4.30)
(€8, m8) [mm] (5.94, 5.00)  (5.94, 5.00) (6.04, 4.55)  (6.45, 5.00)
(9,m9) [mm)| (6.50, 5.00)  (6.50, 5.00)  (6.60, 4.55)  (7.00, 5.00)
wo 1.00 0.63 1.00 0.40
w1 1.00 0.27 1.00 0.44
w2 1.00 0.72 1.00 0.72
w3 1.00 0.11 1.00 0.63
wq 1.00 0.70 1.00 0.10
ws 1.00 0.11 1.00 0.44
w6 1.00 0.70 1.00 0.26
w7 1.00 0.67 1.00 0.89
ws 1.00 0.42 1.00 0.51
wg 1.00 0.59 1.00 0.98
Skins Weight [Kg| 17.78 17.78 17.78 17.78
Core weight [Kg| 11.57 10.85 12.20 11.16
Panel weight [Kg]| 29.35 28.63 29.98 28.94
Buckling load [N/mm]| 1642.98 1574.91 1297.73 1284.69
Local buck. load [MPa] 684.88 585.57 664.59 534.68

Table 9: Numerical results of the fist-level optimisation problem for both 1% and 2"? cases.

Best stacking sequence N. of plies  Residual

Reference  [45/0/45/45/ — 45/45/ — 45/0/0/45/ — 45/45/ — 45/ — 45/0/45]s 32

Solution

Case l.a [36/ — 55/68/ — 74/79/ — 71/48/57/ — 55/ — 87/44/50/ 20 2.20 x 10~
—57/ —49/26/ — 74/90/54/60/ — 60]

Case 1.b [47/47) — 43/ — 4347/ — 43/47) — 43/47/ — 43/ — 43/ 20 3.96 x 104
AT/4T/AT)AT) — 43 — 43/4T/4T7) — 43]

Case 2.a [—45/44/43/) — 48/ — 44/44/ — 45/60/35/44/ — 45/ 20 3.18 x 10~4
43/ — 47/ — 48/45) — 41/ — 43/43 — 48/46]

Case 2.b [-40/50/49/ — 44/48/48/ — 40/ — 41/ — 38/55/ — 40/ 20 3.94 x 1074

—43/46/48/ — 44/48/49/50/ — 36/ — 44]

Table 10: Numerical results of the second-level optimisation problem for both 1%¢ and 2"¢
cases.
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Figures

(©)

Figure 2: Honeycomb core structure (a), the repetitive unit cell (b) and the related RVE

(c).
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Figure 3: Global geometric design variables of the RVE (a) and the NURBS representation
of the oblique wall of the RVE (b).
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Figure 4: Logical flow of the numerical procedure for the solution search of the fist-level
problem.
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Figure 5: FE model of the RVE.
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Figure 6: Mesh and rigid constraint equations for the FE model of the sandwich panel.
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Figure 7: First component of the homogenised stiffness tensors of the laminate [MPal, case
la.
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Figure 8: First component of the homogenised stiffness tensors of the laminate [MPal, case
L.b.
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Figure 9: First component of the homogenised stiffness tensors of the laminate [MPal, case
2.a.
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Figure 10: First component of the homogenised stiffness tensors of the laminate [MPal,
case 2.b.
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