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Abstrat

This work deals with the problem of the optimum design of a sandwih panel made

of arbon-epoxy skins and a metalli ellular ore. The proposed design strategy is

a multi-sale numerial optimisation proedure that does not make use of any sim-

plifying hypothesis to obtain a true global optimum on�guration of the system. To

fae the design of the sandwih struture at both meso and maro sales, a two-level

optimisation strategy is employed: at the �rst level the goal is the determination of the

optimum shape of the unit ell of the ore (meso-sale) together with the material and

geometri parameters of the laminated skins (maro-sale), while at the seond level

the objetive is the design of the skins staking sequene (skin meso-sale) meeting

the geometrial and material parameters provided by the �rst-level problem. The two-

level strategy is founded on the polar formalism for the desription of the anisotropi

behaviour of the laminates, on the NURBS basis funtions for representing the shape

of the unit ell and on the use of a geneti algorithm as optimisation tool to perform

the solution searh. To prove its e�etiveness, the multi-sale strategy is applied to

the least-weight design of a sandwih plate subjet to onstraints of di�erent nature:

on the positive-de�niteness of the sti�ness tensor of the ore, on the admissible ma-

terial properties of the laminated faes, on the loal bukling load of the unit ell,

on the global bukling load of the panel and geometrial as well as manufaturability

onstraints related to the fabriation proess of the ellular ore.

Keywords:

Honeyomb; Laminates; Bukling; Computational modelling; Shape optimisation.

1 Introdution

Sandwih panels are inreasingly used in aerospae, automotive and naval industries thanks

to their high sti�ness-to-weight and strength-to-weight ratios. In order to further redue

the weight of these strutures, sandwih panels are made by laminated skins separated

by aluminium or resin honeyombs, or by polymer foams whose material and geometrial

properties an be designed to provide sandwih plates with enhaned mehanial properties

(sti�ness, strength, et.). However, the design proess and the subsequent optimisation of

sandwih strutures presents several di�ulties mainly when the panel is made of lami-

nated skins and a honeyomb ore. In this ase the designer has to fae, into the same

design proess, both the di�ulty of designing a laminated plate (onerning the skins) and

that of designing a omplex 3D ellular ontinuum suh as the honeyomb ore. Therefore,

engineers always make use of some simplifying assumptions or rules to obtain, in an easy

and fast way, a solution. For example, in [1, 2, 3℄ the optimal design of a sandwih plate is

addressed by determining exlusively the optimum thikness of both the ore and the skins,

keeping onstant the rest of geometri and material parameters of the system. In [4℄ the

authors deal with the problem of the least-weight design of a sandwih plate onsidering as

design variables the thikness of the ell walls as well as that of the skins together with the

total height of the panel. They employed an analytial model to evaluate both the bukling

load of the ore and the faes yielding whih were onsidered as optimisation onstraints.
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The optimisation problem was solved using a Geneti Algorithm (GA). A step further in

the formulation of the problem of the optimum design of sandwih strutures has been done

by introduing the onept of topology optimisation of periodi strutures. For example, in

[5℄ Neves et al. present two omputational models for prediting the topology of periodi

mirostrutures whih optimise the equivalent material properties determined through a

numerial homogenisation tehnique. Barbarosie and Toader [6℄ derive analytially the

shape and topologial derivatives for ellipti problems in unbounded domains subjet to

periodiity onditions. In [7℄ Wadley et al. ompare di�erent topologies of sandwih ores

in order to evaluate their strutural performane along with the most suited fabriation

proess. In this work the lassial on�gurations of sandwih ores suh as foams or hon-

eyombs are questioned and the authors show how new shapes of the repetitive unit ell,

obtained through an optimisation proess, an lead to more e�ient solutions (i.e. lighter

and sti�er). In [8℄ Huang and Xie present a method for the topology optimisation of peri-

odi strutures using the bi-diretional evolutionary strutural optimisation tehnique. The

apability and the e�etiveness of their approah is demonstrated through some numerial

appliations on sandwih strutures.

The study presented in this work an be plaed within the framework of the researh

ativities [9, 10℄ previously onduted by the authors and an be seen as a generalisation

of these works.

In [9, 10℄ a very general multi-sale proedure for the optimum design of sandwih

panels with a hexagonal honeyomb ore is proposed. The design problem is formulated

without introduing simplifying hypotheses and by onsidering (as design variables) the full

set of geometri and material parameters de�ning the behaviour of the struture at eah

harateristi sale (meso and maro). The design variables are the geometri parameters of

the hexagonal unit ell (meso-sale) together with the geometri and material parameters of

the laminated skins (meso and maro sales). To deal with the multi-sale design problem

of a sandwih plate a two-level optimisation strategy is employed. At the �rst level of the

proedure the optimum value of the ell parameters along with the material and geometrial

properties of the laminated skins are determined (at this level eah skin is modelled as an

equivalent homogeneous anisotropi plate whose mehanial behaviour at the maro-sale

is desribed through a set of tensor invariants, i.e. the laminate polar parameters [11℄).

At the seond level of the strategy the goal is to �nd at least one stak for eah skin (thus

the design variables of this phase are the plies orientation angles) meeting the optimum

ombination of their material and geometrial parameters resulting from the �rst level of

the proedure.

The aim of the present work is twofold. On one hand the formulation of the design

problem of the sandwih panel is generalised by onsidering the shape optimisation of the

unit ell of the ore instead of the lassial size optimisation of a presribed geometry (as
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done in [9, 10℄ for the hexagonal unit ell). On the other hand the two-level optimisation

proedure has been enrihed by onsidering the manufaturability onstraints linked to

the fabriation proess of the unit ell within the �rst level of the strategy. In order to

fabriate in an easy and fast way a prototype of the ellular ore a 3D printing tehnique

has been onsidered as a fabriation proess. Conerning the geometry of the ellular ore,

the shape of the unit ell is desribed by means of B-spline and Non-Uniform Rational

B-Spline (NURBS) urves [12℄. The utilisation of B-spline and NURBS bases allows for

easily translating the manufaturability onstraints (due to the additive manufaturing

proess) into geometrial onstraints to be imposed on the geometry of the representative

unit ell. Moreover, sine the �rst level of the strategy involves two di�erent sales (the

maro-sale of the sandwih panel and the meso-sale of the ellular ore) the meso-sale

3D �nite element model of the repetitive unit ell of the ore presented in [9℄ (whih is

used to evaluate its e�etive elasti properties at the maro-sale) has been geenralised in

order to take into aount for the variation of the shape of the ell. The whole proedure is

based on the utilisation of the polar formalism [13℄ as well as on a geneti algorithm (GA)

previously developed by the �rst author [14℄. The paper is organised as follows: the design

problem, the two-level strategy and the rapid prototyping tehnique used for fabriating

the ellular ore are disussed in Setion 2. The mathematial formulation of the �rst-level

problem is detailed in Setion 3, while the problem of determining a suitable laminate

is formulated in Setion 4. A onise desription of the Finite Element (FE) models of

the sandwih struture at both meso and maro sales are given in Setion 5, while the

numerial results of the optimisation proedure are shown in Setion 6. Finally, Setion 7

ends the paper with some onluding remarks.

2 Simultaneous shape and material optimisation of sandwih

panels with ellular ore

2.1 Desription of the problem

The optimisation strategy presented in this study is applied to a sandwih plate omposed

of two laminated skins and a metalli ellular ore with free-shape ells as depited in

Figs. 1 and 2. The skins are made of arbon-epoxy unidiretional orthotropi laminae

while the ellular ore is obtained from aluminium alloy foils, see Table 1 for the material

properties taken from [15, 16℄. Conerning the ellular ore, the basi lassial assumptions

onsidered to evaluate its elasti response and, hene, to determine its e�etive material

properties (at the maro-sale) are:

• linear, elasti behaviour for the material of the ell walls;

• perfet bonding for the wall-to-wall ontat;
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• the bukling of the ell walls due to shear stresses is disregarded.

Conerning the mehanial behaviour (at the maro-sale) of the idential laminated skins,

they are modelled as quasi-homogeneous fully orthotropi laminates, see Setion 3.2. As

disussed in [10℄, no simplifying hypotheses are made on the geometri and mehanial pa-

rameters of both skins and ore. Only avoiding the utilisation of a priori assumptions that

extremely shrink the solution spae (e.g. the utilisation of symmetri balaned staks for

the laminated faes to attain membrane/bending unoupling and membrane orthotropy,

respetively, or the utilisation of regular hexagonal ells to redue the number of optimi-

sation variables for the ore) one an hope to obtain the true global optimum for a given

problem: this is a key-point in our approah.

Finally, in this work the problem formulation has been enrihed by inluding the shape

optimisation of the unit ell of the ellular ore (whih is not �xed a priori) as well as the

manufaturability onstraints linked to the fabriation proess of the periodi struture of

the ore.

2.2 Desription of the multi-sale two-level optimisation strategy

The main goal of the design strategy is the least-weight design of the sandwih plate

subjet to onstraints of di�erent nature, i.e. mehanial, geometrial as well as feasibility

and manufaturability onstraints. The optimisation proedure is artiulated into the

following two distint (but linked) optimisation problems.

First-level problem. The aim of this phase is the determination of the optimal shape of

the unit ell together with the material and geometri parameters of the laminated skins in

order to minimise the weight of the struture and to satisfy, simultaneously, the full set of

optimisation onstraints. At this level the laminate representing eah skin is modelled as an

equivalent homogeneous anisotropi plate whose behaviour at the maro-sale is desribed

in terms of the laminate polar parameters, see [10℄. Conerning the model of the ellular

ore, the �rst-level problem involves two di�erent sales: the meso-sale of the repetitive

unit ell haraterised by its geometri variables, as well as the maro-sale where the ore

itself is modelled as an homogeneous orthotropi solid. The link between these two sales,

as widely desribed in [9℄, is represented by the homogenisation phase of the ellular ore.

Seond-level problem. At the seond level of the strategy, the goal is the determination

of a suitable lay-up for both skins (the skin meso-sale) meeting the optimum ombination

of their material and geometrial parameters provided by the �rst level problem. The aim

of this phase is, hene, to �nd at least one staking sequene, for eah skin, whih has

to be quasi-homogeneous, fully orthotropi and that has to satisfy the optimal values of

the polar parameters resulting from the �rst step. At this level of the strategy, the design

variables are the layer orientations.
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2.3 Rapid prototyping of the optimum on�gurations

Thanks to the development of more and more forefront fabriation tehniques, the proess

of additive manufaturing has shown in reent years a rapid development. Among the

advantages provided by this tehnique, the most important onerns the ability of repro-

duing objets of omplex shape without (or with less) restritive tehnologial onstraints

linked to the proess itself. Sine in our laboratory we do not yet dispose of an additive

manufaturing mahine for fabriating strutural elements made of aluminium alloy, we

deided to employ a 3D printing tehnique to manufature the prototype of the optimised

on�guration of the ellular ore of the sandwih panel. This fat is not limiting beause

the aim here is not to reprodue the �real� strutural element, rather we want to prove that

a new design paradigm an be oneived: a true global optimisation of the sandwih stru-

ture an be arried out only by inluding both shape and material optimisation aspets

within the design proess. Furthermore, it is possible to obtain realisti (i.e. manufa-

turable) omplex shapes of the ellular ore only if the tehnologial onstraints linked to

the fabriation proess are taken into aount sine the early stages of the design proess.

The 3D printer employed to fabriate the prototypes is the Objet30 Pro of Stratasys

[17℄, while the material employed for the ellular ore struture is the VeroWhite Full-

Cure830 belonging to the Objet's FullCure Materials family of aryli-based photopolymer

materials [18℄.

3 Mathematial formulation of the �rst-level problem

The overall harateristis of the struture have to be designed during this phase. The

weight minimisation of the sandwih plate will be performed by satisfying the set of opti-

misation onstraints listed below:

• a onstraint on the global bukling load of the sandwih panel;

• a onstraint on the loal bukling load of the repetitive unit ell;

• the manufaturability onstraints linked to the onsidered fabriation proess;

• a geometri onstraint imposed on the shape of the unit ell for avoiding overlapping

of the middle-line of the ross setion of the repetitive unit ell (often alled non-self-

interseting ondition;

• some mehanial onstraints on the e�etive material properties of the ellular ore

(to be used at the maro-sale);

• the geometri and feasibility onstraints on the polar parameters of the laminated

skins.

These aspets are detailed in the following subsetions.
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3.1 Geometrial design variables

Before introduing the geometri design variables haraterising the sandwih panel at eah

sale, let us desribe the Representative Volume Element (RVE) of the periodi ellular

ore. The RVE an be dedued from the geometry of the repetitive unit ell of the ore

whih is haraterised by three planes of orthogonal symmetry, as shown in Fig. 2. As

illustrated in Fig. 3 the geometry of the RVE an be desribed in terms of both global and

loal geometri design variables. The global ones essentially represent the overall size of the

RVE itself: hc is the ore height, tc is the wall thikness, v1 is the length of the free-shape

oblique wall of the RVE along the η axis, while h1 and h2 are the lengths of the �at walls

and of the middle region of the RVE along the ξ axis, respetively. In partiular, the RVE

an be insribed within a parallelepiped having the following sizes:

a1 = 2h1 + h2 , a2 = v1 + tc , a3 =
hc
2

, (1)

where a1, a2 and a3 are the lengths of the edges along ξ, η and ζ axes, respetively. On the

other hand, the loal geometri design variables are needed in order to desribe the shape

of the middle region of the RVE. To this purpose, in this work the shape of the oblique

wall of the RVE is represented in terms of a Non-Uniform Rational B-Spline (NURBS)

urve [12℄ as:

ξ (s) =
np∑

i=0
Ri,p (s) ξi,

η (s) =
np∑

i=0
Ri,p (s) ηi,

with Ri,p (s) =
Ni,p (s)ωi

np∑

j=0
Nj,p (s)ωj

0 ≤ s ≤ 1 .

(2)

Eq. (2) fully desribes a pth-degree plane NURBS urve, as depited in Fig 3. In partiular,

{ξi, ηi} (i = 0, · · · , np) are the Cartesian oordinates of the ith ontrol point (the set of

ontrol points forms the so-alled ontrol polygon), ωi is the weight related to the ith ontrol

point, while Ni,p(s) are the pth-degree B-spline basis funtions de�ned on the non-periodi,

non-uniform knot vetor:

S =






0, · · · , 0
︸ ︷︷ ︸

p+1

, Sp+1, · · · , Sm−p−1, 1, · · · , 1
︸ ︷︷ ︸

p+1






. (3)

It is noteworthy that the dimension of the knot-vetor is m+1 with m = np+ p+1. For a

deeper insight in the matter the reader is addressed to [12℄. In the present work the degree

of the NURBS urve is p = 3, the number of ontrol points has been hosen equal to ten

(thus np = 9) and the B-spline basis funtions are de�ned on the following non-periodi

but uniform knot vetor:

S =

{

0, 0, 0, 0,
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7
, 1, 1, 1, 1

}

. (4)
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In this bakground the shape of the oblique wall of the RVE an be modi�ed by hanging

the positions of the points of the ontrol polygon {ξi, ηi} as well as the related weights

ωi. Therefore the previous parameters represent the loal geometri design variables of the

RVE. Of ourse, both global and loal geometri design variables of the RVE of the ore

intervene at the meso-sale level. Sine both kinds of geometrial parameters de�ne the

shape of the RVE a partiular are must be taken in de�ning the position of the points of

the ontrol polygon. The oordinates of eah point are de�ned as follows:

ξi = h1 + rξih2, (i = 0, · · · , np) ,
ηi = rηiv1.

(5)

Where rξi and rηi are dimensionless parameters varying between zero and one. Moreover,

in order to ensure C0 ontinuity between the horizontal walls and the oblique part of the

RVE the value of rξi and rηi must be �xed for the �rst and last point of the ontrol net as

follows:

rξ0 = rη0 = 0,
rξ9 = rη9 = 1.

(6)

On the other hand, onerning the (idential) skins the only geometri design variable

is the overall thikness h of the laminate. The geometri and material design variables

together with their nature and bounds for the �rst-level problem are listed in Table 5. At

this level of the optimisation proedure, the thikness of the laminated skins is onsidered

as a disrete optimisation variable, the disretisation step being equal to the thikness

of the elementary layer, i.e. ∆h = hply (see Table 5). This assumption responds to

a tehnologial onstraint, and, in addition, the optimum value of this parameter will

determine also the optimal number of layers n to be used during the seond-level design

problem. The geometri design variables intervening at the di�erent sales an be grouped

into the vetor of the geometrial parameters de�ned as:

xg =
{

h, h1, h2, v1, tc, hc, rξ0 , · · · , rξnp
, rη0 , · · · , rηnp

, ω0, · · · , ωnp

}

. (7)

The geometri design variables involved within the �rst-level problem are not only limited

by the box-onstraints de�ned in Table 5, rather they have to meet also a ertain number

of requirements imposed to the problem at hand. Firstly, the shape of the ell must satisfy

the non-self-interseting ondition: this onstraint equation annot be written in a lose

analytial form and an only be heked numerially (this hek is automatially performed

by the �nite element ode used to build the meso-sale model of the RVE). Seondly, the

manufaturability onstraint linked to the 3D printer (used to fabriate the prototype of

the ellular ore) must be onsidered. Suh a onstraint an be easily translated into a

geometri onstraint on the admissible ratio between the minimum radius of urvature of

the oblique wall and the thikness of the walls of the RVE as:

g1(xg) = 2tc −min(r(s)) ≤ 0 , (8)
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where r(s) is the loal radius of urvature of the RVE. Finally, some further onstraints must

be onsidered to ensure the positive de�niteness of the sti�ness matrix of the ellular ore

(at the maro-sale) whose e�etive elasti properties depend on the geometri parameters

of the RVE at the meso-sale. These onstraints an be written as follows (see [19℄ for

more details):

g2(xg) = −Ec
1 < 0 ,

g3(xg) = −Ec
2 < 0 ,

g4(xg) = −Ec
3 < 0 ,

g5(xg) = −Gc
12 < 0 ,

g6(xg) = −Gc
13 < 0 ,

g7(xg) = −Gc
23 < 0 ,

g8(xg) = |νc12| −

√

Ec
1

Ec
2

< 0 ,

g9(xg) = |νc13| −

√

Ec
1

Ec
3

< 0 ,

g10(xg) = |νc23| −

√

Ec
2

Ec
3

< 0 ,

g11(xg) = 2νc12ν
c
13ν

c
23

Ec
3

Ec
1

+ (νc12)
2 E

c
2

Ec
1

+ (νc23)
2 E

c
3

Ec
2

+ (νc13)
2 E

c
3

Ec
1

− 1 < 0 .

(9)

Ec
1, E

c
2, E

c
3, G

c
12, G

c
13, G

c
23, ν

c
12, ν

c
13 and νc23 are the e�etive material properties (engi-

neering moduli) of the homogeneous orthotropi ellular ore whih are determined via the

numerial homogenisation phase disussed in Setion 5.1. It is noteworthy that the set of

onstraints of Eq. (9) are impliitly imposed on the geometri design variables (global and

loal) of the RVE.

3.2 Mehanial design variables

Conerning the mehanial design variables governing the behaviour of the laminated skins

(at the maro-sale) the polar formalism has been employed. This method gives a represen-

tation of any planar tensor by means of a omplete set of independent invariants, i.e. the

polar parameters. It an be proved that in the ase of a fully orthotropi, quasi-homogeneous

laminate the overall number of independent mehanial design variables desribing the

elasti response of eah laminated skin redues to only three [10℄: the anisotropi polar

parameters RA∗

0K and RA∗

1 and the polar angle ΦA∗

1 (this last representing the orientation

of the main orthotropy axis) of the homogenised membrane sti�ness tensor A∗
. For more

details on the mehanial design variables intervening within the �rst-level problem the

reader is addressed to [10℄.
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In addition, in the formulation of the optimisation problem for the �rst level of the

strategy, the geometri and feasibility onstraints on the polar parameters (whih arise

from the ombination of the layer orientations and positions within the stak) must also be

onsidered. These onstraints ensure that the optimum values of the polar parameters re-

sulting from the �rst step orrespond to a feasible laminate that will be designed during the

seond step of the optimisation strategy, see [20℄. Sine the laminate is quasi-homogeneous,

suh onstraints an be written only for tensor A∗
as follows:







−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗

1 ≤ R1 ,

2

(
RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 .

(10)

The previous variables an be grouped into the vetor of mehanial design variables as

follows:

xm =
{
ΦA∗

1 , RA∗

0K , RA∗

1

}
. (11)

First and seond onstraints of Eq. (10) an be taken into aount as admissible intervals

for the relevant optimisation variables, i.e. on RA∗

0K and RA∗

1 . Hene, the resulting feasibility

onstraint on the laminate polar parameters is:

g12(xm) = 2

(
RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 . (12)

For a wide disussion upon the laminate feasibility and geometrial bounds as well as on

the importane of the quasi-homogeneity assumption the reader is addressed to [20℄.

3.3 Mathematial statement of the problem

As previously said, the aim of the �rst level optimisation is the least-weight design of the

sandwih panel satisfying, simultaneously, onstraints of di�erent nature. The design vari-

ables (both geometrial and mehanial) of the problem an be grouped into the following

vetor:

x =
{

ΦA∗

1 , RA∗

0K , RA∗

1 , h, h1, h2, v1, tc, hc, rξ1 , · · · , rξnp
, rη1 , · · · , rηnp

, ω1, · · · , ωnp

}

. (13)

Therefore the optimisation problem an be formulated as follows:

min
x

W (x)

subjet to:







λref
glob − λglob (x) ≤ 0 ,

λref
loc − λloc (x) ≤ 0 ,

gi(x) ≤ 0 , with i = 1, · · · , 12 ,
+ n.s. intersecting condition .

(14)
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where W is the weight of the sandwih plate, λglob is the �rst global bukling load of the

sandwih struture while λloc is the �rst loal bukling load of the ore. λref
glob and λref

loc

are, respetively, the global and loal bukling loads determined on a referene struture

having the same in-plane dimensions and boundary onditions than those of the sandwih

plate that will be optimised, see Setion 6.

3.4 Numerial strategy

Problem (14) is a non-linear, non-onvex problem in terms of both geometrial and me-

hanial variables. Its non-linearity and non-onvexity is due on one side on the nature

of the objetive funtion and on the other side on the optimisation onstraints, espeially

the onstraint on the global bukling load that is a high non-onvex funtion in terms of

both the orthotropy orientation (bottom and top laminates) and the shape of the unit ell

of the ore. In addition, the omplexity of suh a problem is also due to: a) the exis-

tene onstraints imposed on the tehnial moduli of the ellular ore, see. Eq. (9), b) the

manufaturability onstraint that an be translated into a geometrial onstraint imposed

on the ratio between the thikness and the minimum radius of urvature of the oblique

wall of the RVE, see Eq. (8), ) the non-self-interseting onstraint on the midline of the

oblique wall of the RVE. The previous onstraints are highly non-onvex funtions of the

geometrial parameters of the RVE. The total number of design variables is 39 while the

total number of optimisation onstraints is 15 (see Eq. (14)).

For the resolution of problem (14) the GA BIANCA [21, 14℄ oupled with both the

meso-sale FE model of the RVE (used for numerial homogenisation of the ellular ore

as well as for the alulation of the loal bukling load of the ell) and the maro-sale FE

model of the sandwih panel for the bukling analysis of the struture has been employed,

see Fig. 4. The GA BIANCA was already suessfully applied to solve di�erent kinds of

real-world engineering problems, see for example [22, 23, 24, 25, 26, 27℄.

As shown in Fig. 4, for eah individual at eah generation, the numerial tool performs a

FE-based homogenisation for the evaluation of the e�etive material properties of the ore

and a subsequent numerial evaluation of the �rst bukling load of the sandwih struture

(at both meso-sale and maros-sale for determining the loal and global bukling loads,

respetively) along with its weight. The meso-sale FE model makes use of the geomet-

rial parameters of the unit ell (given by BIANCA and elaborated by MATLAB

r
whih

generates the NURBS urve representing the midline of the oblique wall of the RVE of the

ore) in order to perform the numerial homogenisation of the ore and also to alulate

the loal bukling load of its unit ell. Afterwards, the maro-sale FE model utilises the

geometrial and mehanial design variables of the skins given by BIANCA together with

the e�etive material properties of the ore (resulting from the meso-sale FE model of the

ell) to evaluate the global bukling load of the struture and its weight. Therefore, for
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these purposes the GA BIANCA has been interfaed with both the ommerial FE ode

ANSYS

r
and the ode MATLAB

r
. The GA elaborates the results provided by the two

FE models in order to exeute the geneti operations. These operations are repeated until

the GA BIANCA meets the user-de�ned onvergene riterion.

The generi individual of the GA BIANCA represents a potential solution for the

problem at hand. The genotype of the individual for problem (14) is haraterised by only

one hromosome omposed of 39 genes, eah one oding a omponent of the vetor of the

design variables, see Eq. (13).

4 Methematial formulation of the seond-level problem

The seond-level problem onerns the lay-up design of the laminated skins. Suh a problem

onsists in determining at least one staking sequene satisfying the optimum values of both

geometri and polar parameters resulting from the �rst level of the strategy and having

the elasti symmetries imposed on the laminate within the formulation of the �rst-level

problem, i.e. quasi-homogeneity and orthotropy. In the framework of the polar formalism,

this problem an be stated in the form of an unonstrained minimisation problem:

min
δ

I (fi (δ)) (15)

with

I (fi (δ)) =
6∑

i=1

fi (δ) . (16)

where δ is the vetor of the layer orientations, i.e. the design variables of this phase, while

fi (δ) are quadrati funtions in the spae of polar parameters, eah one representing a

requirement to be satis�ed, suh as orthotropy, unoupling, et. For the problem at hand

the partial objetive funtions write:

f1(δ) =

(
|ΦA∗

0 (δ) − ΦA∗

1 (δ)|

π/4
−KA∗(opt)

)2

, f2(δ) =

(

RA∗

0 (δ)−R
A∗(opt)
0

R0

)2

,

f3(δ) =

(

RA∗

1 (δ) −R
A∗(opt)
1

R1

)2

, f4(δ) =

(

|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

(
||C(δ)||

||Q||

)2

,

f6(δ) =

(
||B∗(δ)||

||Q||

)2

,

(17)

where f1 (δ) represents the elasti requirement on the orthotropy of the laminate having the

presribed shape (imposed by the value of KA∗

provided by the �rst step of the proedure),

f2 (δ), f3 (δ) and f4 (δ) are the requirements related to the presribed values of the optimal

polar parameters resulting from the �rst-level problem, while f5 (δ) and f6 (δ) are linked

to the quasi-homogeneity ondition.
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I (fi (δ)) is a positive semi-de�nite onvex funtion in the spae of laminate polar pa-

rameters, sine it is de�ned as a sum of onvex funtions, see Eqs. (16)-(17). Nevertheless,

suh a funtion is highly non-onvex in the spae of plies orientations beause the lam-

inate polar parameters depend upon irular funtions of the layers orientation angles,

see Eq. (??). Moreover, one of the advantages of suh a formulation onsists in the fat

that the absolute minima of I (fi (δ)) are known a priori sine they are the zeroes of this

funtion. For more details about the nature of the seond-level problem see [23, 14, 28℄.

Conerning the numerial strategy for solving problem (15) the GA BIANCA has been

employed to �nd a solution also for the seond-level problem. In this ase, eah individual

has a genotype omposed of n hromosomes, one for eah ply, haraterised by a single

gene oding the layer orientation. It must be pointed out that problem (15) must be solved

only one time as the skins are idential.

As onlusive remark of this setion, it must be highlighted the fat that eah ply

orientation an get all the values in the range [-89

◦
, 90

◦
℄ with a disretisation step of 1

◦
.

Suh a step has been hosen in order to prove that laminates with given elasti properties

(suh as membrane/bending unoupling, membrane orthotropy, et.) an be obtained

by abandoning the well-known onventional rules for tailoring the laminate stak (e.g.

symmetri-balaned staks) whih extremely shrink the searh spae for problem (15).

The true advantages in using �non-onventional� staking sequenes onsist in the fat that

on one hand with a disretisation step of one degree for the plies orientations the GA

an explore the overall design spae of problem (15) and on the other hand it an �nd

very general staks (nor symmetri neither balaned) that fully meet the elasti properties

resulting from the �rst step of the proedure with a fewer number of plies (hene lighter)

than the standard staks, see [23, 14℄.

5 Finite element models at di�erent sales

The FE models used at the �rst-level of the strategy are built using the FE ommerial

ode ANSYS

r
. The FE analyses are onduted to determine the value of the objetive

and onstraint funtions for eah individual, i.e. for eah point in the design spae, at the

urrent generation.

The need to analyse, within the same generation, di�erent geometrial on�gurations

(plates with di�erent geometrial and material properties), eah one orresponding to an

individual, requires the reation of an ad-ho input �le for the FE ode that has to be

interfaed with BIANCA. The FE model must be oneived to take into aount a variable

geometry, material and mesh. Indeed, for eah individual at the urrent generation the

FE ode has to be able to vary in the orret way the number of elements wherein the

struture is disretised, thus a proper parametrisation of the model has to be ahieved.

13



During the optimisation proess of the �rst level of the strategy, for eah individual,

eight FE analyses must be performed (see Fig. 4): six stati analyses and one linear bukling

analysis on the FE model of the unit ell of the ellular ore (in order to determine the

e�etive material properties [9℄ and the �rst loal bukling load) and a linear bukling

analysis on the FE model of the whole sandwih panel.

5.1 Finite element model of the unit ell (meso-sale)

In order to aurately determine the �rst loal bukling load of the ellular ore and its

e�etive elasti properties a linear bukling analysis and a numerial homogenisation phase

have to be ahieved, respetively. The FE model of the RVE is illustrated in Fig. 5. The

model has been built by using the 20-node solid element SOLID186 with three Degrees Of

Freedom (DOFs) per node.

Conerning the linear elasti bukling analysis on the RVE the displaement Boundary

Conditions (BCs) listed in Table 2 have been onsidered, while a uniform distributed

pressure has been applied on the fae loated at ζ = a3. On the other hand, the e�etive

properties of the ore are determined using the strain energy homogenisation tehnique of

periodi media, see [29℄. This tehnique makes use of the repetitive unit of the periodi

struture to approximate its e�etive properties at the maro-sale level. As in [9℄ the nine

independent omponents of the sti�ness tensor C of the ellular ore have been determined

through six stati analyses.

The orresponding BCs for eah one of the six stati analyses performed on the FE

model of Fig. 5 are resumed in Tables 3 and 4. These BCs are imposed in order to satisfy

the symmetries of the RVE and to generate a strain �eld in suh a way that only one

omponent of the strain tensor is di�erent from zero for eah stati analysis. For a deeper

insight in the matter the reader is addressed to [9, 30℄.

It is noteworthy that sine a shape optimisation of the unit ell is ahieved within

the framework of the �rst-level problem, the meso-sale FE model of the RVE must be

able to take into aount for variable geometry and mesh. To this purpose the mesh tool

of the ANSYS ode has been modi�ed in order to make it ompatible with a NURBS-

based representation of the geometry (all these operations have been implemented within

the APDL language of the ANSYS ode). Finally, it has been previously heked that a

mesh having an average value of 52000 DOFs (four divisions through the ell thikness) is

su�ient for estimating the e�etive elasti properties as well as the loal bukling load of

the RVE with a good auray.

5.2 Finite element model of the sandwih panel (maro-sale)

At the maro-sale the struture is modelled with a ombination of shell and solid elements.

In partiular, the laminated skins are modelled using ANSYS SHELL281 elements with
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8-nodes and six DOFs per node, and their mehanial behaviour is desribed by de�ning

diretly the homogenised sti�ness tensorsA∗
, B∗

andD∗
. The equivalent solid representing

the ore is modelled using ANSYS SOLID186 elements having the material properties

provided by the FE model of the RVE. Conerning the BCs of the maro-sale FE model,

they are depited in Fig. 6 and listed in Table 6. In partiular, suh BCs are applied on

the edges of the skins and not on the ore.

The ompatibility of the displaement �eld between skins (modelled with shell elements)

and ore (modelled with solid elements) is ahieved by using ANSYS CERIG rigid on-

straints (also alled rigid beams) whose formulation is based upon a lassial master-slave

sheme, see [31℄ for more details. Rigid onstraints are imposed on eah node belonging

to ontiguous solid and shell elements as depited in Fig. 6. In partiular, rigid beams

are de�ned between the nodes of the middle plane of the top (bottom) skin and the orre-

sponding ones of the top (bottom) surfae of the solid ore. In this ase the master nodes

are those belonging to shell elements (the skins), while slave nodes are those belonging the

top and bottom surfaes of the ore.

Finally, before starting the optimisation proess, a sensitivity study (not reported here

for the sake of brevity) on the proposed FE model with respet to the mesh size has been

onduted: it was observed that a mesh having 12088 DOFs, i.e. showing two divisions

through the ore thikness hc, is su�ient to properly evaluate the �rst bukling load of

the struture.

6 Studied ases and results

In order to show the e�etiveness of the proposed approah two di�erent ases have been

studied. In both ases a bi-axial ompressive load per unit length is applied on the skins

edges (as shown in Fig. 6): in the �rst one the ratio between the ompressive loads is

Ny

Nx
= 0.5 while in the seond one is

Ny

Nx
= 1. Moreover, for eah ase two sub-ases have

been onsidered: the �rst one wherein the shape of the unit ell of the ore is designed

using B-Spline urves and the seond one, more general, where the optimal shape of the

unit ell is obtained using NURBS urves. It should be pointed out that these sub-ases

are onsidered in order to investigate whih-one of the two mathematial representations

employed to desribe the shape of the oblique wall of the RVE leads the GA to �nd an

optimal solution more e�ient (in terms of weight and bukling loads) than the referene

one.

Before starting the multi-sale optimisation proess a referene struture must be de-

�ned in order to establish referene values for the weight and for both the loal and global

bukling loads of the panel: the material as well as the geometrial properties of the ref-

erene sandwih plate are listed in Table 7. One an notie that the referene struture
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has idential skins omposed of 32 plies with the staking sequene listed in Table 7. The

hoie of the referene solution has been oriented towards a non-trivial on�guration with

a honeyomb ore haraterised by a unit ell having the typial dimensions of ommer-

ial honeyombs (a regular hexagonal ell whose sizes are taken from [32℄, see also [9℄ for

the de�nition of the geometri parameters de�ning the RVE of the hexagonal ell)) and

two very sti� skins. In fat, the weight and the sti�ness properties (in terms of bukling

load) of suh a referene on�guration are typial of real-world engineering appliations

(in other words the referene solution still represents a �good� ompromise between weight

and sti�ness requirements).

Regarding the setting of the geneti parameters for the GA BIANCA used to solve

both �rst and seond-level problems they are listed in Table 8. Moreover, onerning the

onstraint-handling tehnique for the �rst-level problem the Automati Dynami Penal-

ization (ADP) method has been employed, see [21℄. For more details on the numerial

tehniques developed within the new version of BIANCA and the meaning of the values of

the di�erent parameters tuning the GA the reader is addressed to [14, 23℄.

6.1 Case 1.a: shape optimisation using B-spline urve, load ase Ny =

0.5Nx

For this �rst example, sine a B-spline urve is utilised to desribe the shape of the oblique

wall of the RVE ross-setion, the number of design variables redues from 39 to 29 (all of

the weights ωi are �xed and equal to one).

The optimal values of the geometri as well as mehanial design variables resulting

from the �rst-level of the optimisation strategy are listed in Table 9. As it an be easily

seen, the optimum on�guration has a weight of 29.35 Kg (about 27% lower than that

of the referene struture) with a �rst global bukling load of 1642.98 N/mm (about 5%

higher than that of the referene one) and a �rst loal bukling load of 684.88 MPa (about

37% higher than that of the referene one).

Let us onsider now the seond-level problem: the design of the laminate lay-up. Ta-

ble 10 shows the best staking sequenes for all the studied ases. As in eah numerial

tehnique, the quality of solutions found by BIANCA an be estimated on the basis of a

numerial tolerane, i.e. the residual. For a disussion on the importane of the numerial

residual in problems of this type, the reader is addressed to [14, 28℄. I (fi (δ)) is a non-

dimensional funtion, thus the residual of the solution is a non-dimensional quantity too.

The residual in the last olumn of Table 10 is the value of the global objetive funtion

I (fi (δ)) for the solution indiated aside (we remind that exat solutions orrespond to

the zeroes of the objetive funtion, see [28℄). From Table 10 one an see that the optimal

staks (for all ases) are very general staks whih ompletely satisfy the elasti require-

ments of the laminate expeted by problem 15. In fat, for this �rst ase Fig. 7 shows
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the �rst omponent of the homogenised sti�ness tensors of the laminate, i.e. A∗
, B∗

and

D∗
: the solid line refers to the membrane sti�ness tensor, the dashed one to the bending

sti�ness tensor, while the dash-dotted one is linked to the membrane/bending oupling

sti�ness tensor. It an be notied that the laminate is unoupled as the dash-dotted urve

is redued to a point in the enter of the plot (B11 is pratially null), homogeneous as

the solid and dashed urves are almost oinident and orthotropi beause there are two

orthogonal axes of symmetry in the plane. In addition, the main orthotropy axis for this

ase is oriented at ΦA∗

1 = 83◦ as indiated in Table 9.

6.2 Case 1.b: shape optimisation using NURBS urve, load ase Ny =

0.5Nx

In this sub-ase a NURBS urve is onsidered for desribing the shape of the oblique wall

of the RVE ross-setion, hene, the number of design variables is equal to 39 (all of the

weights ωi are inluded within the vetor of design variables).

The optimal values of geometri as well as mehanial design variables of the �rst level

problem are listed in Table 9. The optimum on�guration weighs 28.63 Kg (a redution

of 29% when ompared to that of the referene struture) with a �rst global bukling load

of 1574.91 N/mm (1.2% greater than the referene one) and a loal bukling load of 585.57

MPa (17% greater than the referene one).

This solution, as expeted, is lighter than that of the ase 1.a with a di�erene of

0.72 Kg with a lower value of both global and loal bukling loads. This di�erene is due

exlusively to the weight ontribution given by the ore. In fat, the optimum on�guration

of the panel for this ase is haraterised by two laminated skins whih are as thik as those

of the panel solution of ase 1.a (2.50 mm, i.e. 20 plies); on the other hand the ore shape

is di�erent and it is lighter than that haraterising solution 1.a.

In addition, the weight redution of the ore has led to a redution of the bukling

load of the panel (both global and loal) and, therefore, to a more ompliant struture

when ompared to the solution 1.a. Of ourse, the variation of the shape of the unit ell

together with the variation of the polar parameters of the skins our in order to meet the

presribed minimal sti�ness of the whole struture (at eah sale) through the onstraint

on the �rst bukling loads.

Conerning the seond-level problem, Table 10 shows the best staking sequenes for

both the skins for the present ase, while Fig. 8 shows the polar diagram for the �rst

omponent of the orresponding homogenised sti�ness tensors. Regarding the nature of

the optimal staks, even for this ase, the same onsiderations as those of ase 1.a an be

repeated here.
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6.3 Case 2.a: shape optimisation using B-spline urve, load ase Ny = Nx

In this �rst sub-ase a B-spline urve is employed to desribe the shape of the oblique wall

of the RVE ross-setion. As in the ase 1.a, this implies a redution of the number of

design variables that passes from 39 to 29 when ompared to the most general ase.

The optimal values of geometri and mehanial design variables resulting from the

�rst-level of the optimisation strategy are listed in Table 9. The optimum on�guration

has a weight of 29.98 Kg (about 25.5% lower than that of the referene struture) with a

�rst global bukling load of 1297.73 N/mm (1.1% greater than the referene one) and a

loal bukling load of 664.59 MPa (32.7% greater than the referene one).

In this ase, the skins have the same weight of those of solutions of ases 1.a and 1.b ,

while the ore is heavier than those of solutions 1.a and 1.b. Moreover, the ore is heavier

than its referene ounterpart of about 0.38 Kg, see Table 9. Thus, the weight redution is

exlusively due to the skins that in terms of geometrial harateristis of the struture is

translated in a laminate thikness redution (that passes from 4.00 mm for the referene

solution to 2.50 mm for the present ase). Finally it an be stated that the onstraints

on the �rst global and loal bukling loads are satis�ed thanks to the ombination of the

optimal material parameters of the skins and the shape of the ore that has improved the

sti�ness of the panel.

Conerning the results of the seond-level problem the optimal stak is listed in Table 10

while the related polar diagrams are depited in Fig. 9. The onsiderations already done

for the previous ases an be repeated verbatim for the present one.

6.4 Case 2.b: shape optimisation using NURBS urve, load ase Ny = Nx

In this last example the shape of the oblique wall of the RVE is mathematially represented

through a NURBS urve, thus the vetor of design variables orresponds to that of Eq. (13).

The optimal values of geometri as well as mehanial design variables provided by

the �rst level of the optimisation strategy are listed in the last olumn of Table 9. The

optimum on�guration has a weight of 28.94 Kg (about 28.1% lower than that of the

referene struture) with a �rst global bukling load of 1284.69 N/mm (almost equal than

the referene one) and a loal bukling load of 534.68 MPa (6.7% greater than the referene

one).

Conerning the results of the seond-level problem the optimum stak for both skins is

listed in Table 10, while the related polar diagram is depited in Fig. 10.

For the rest, the onsiderations already done for all of the other ases an be repeated

here.
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6.5 General disussion of results

The following aspets, arising from the analysis of the optimal on�gurations of the sand-

wih panel provided by the �rst level of the proedure (see Table 9), deserve a partiular

attention:

1. for eah loading ase, the solution wherein the oblique wall of the RVE is represented

by means of a NURBS urve is lighter than that obtained through a B-spline rep-

resentation (this fat proves the true advantages in using a riher and more general

mathematial representation of parametri urves like the NURBS one);

2. for all the optimal solutions the thikness of the skins is the same (i.e. the optimum

number of plies is the same for eah ase), the di�erene in terms of the laminate

sti�ness among the on�gurations onerns only the values of the laminate polar

parameters resulting at the end of the �rst step. Aordingly, the optimal staking

sequenes at the end of the seond step are onsiderably di�erent (see Table 10);

3. the referene solution of Table 7 is haraterised by a shape of orthotropy with

KA∗

= 1 (the value of RA∗

0K is negative), whilst the optimal on�gurations show

di�erent kinds of orthotropy (see Table 9 and Figs. 7 to 10): the solution of ase 1.a

is haraterised by the same shape of orthotropy as the referene one, the laminate

sti�ness tensors of solutions 1.b and 2.a show an ordinary orthotropy with KA∗

= 0

(the orresponding value of RA∗

0K is positive) while solution 2.b is haraterised by

a square symmetri membrane sti�ness tensor (the value of RA∗

1 is negligible when

ompared to its lamina ounterpart, i.e. R1). Indeed, this means that, for the

same loading onditions, laminates with di�erent shapes of orthotropy are equivalent

�potential� solutions for the problem at hand (this results represents also an evidene

of the non-onvexity of the optimisation problem);

4. for eah solution the global design variables �tuning� the shape of the oblique wall of

the RVE, i.e. h2 and v1, reah the upper bound, while the wall thikness tc gets the

lower bound: this means that the RVE shows a tendeny of �lling the available spae

by maximising the air volume restrained within the unit ell (and by minimising,

simultaneously, the overall mass of the ore itself);

5. the height of the ore hc gets the value of 38 mm for the solution of ases 1.a, 2.a

and 2.b while its value derease to 36 mm for the solution of ase 1.b, i.e. for eah

on�guration the optimum value of hc lies almost in the middle of the de�nition

interval. Indeed, this result is onsistent: a high value of hc would imply a derease

in the loal bukling load and an inrease in the global one, whereas a low value of

hc would ause the onverse phenomenon. The optimum value of hc represents a

ompromise between these two opposite responses;
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6. for eah solution the height of the ore hc is higher than that of the referene one,

however the resulting loal bukling load is always onsiderably higher than the ref-

erene value (37%, 17%, 32.7% and 6.7% for ases 1.a, 1.b, 2.a and 2.b, respetively).

This result is due to the e�et of the loal geometri design variables (i.e. position of

the ontrol points and weights of the NURBS urve) tuning the shape of the oblique

wall of the RVE: for eah optimal on�guration the shape of the wall show one or

more �nodal� lines whih inrease the loal bukling load of the unit ell, as depited

in Fig. 11;

7. the optimal on�gurations of the sandwih panel (for eah onsidered ase) show a

slight inrease in the global bukling load when ompared to the referene solution

although the overall thikness of the laminated skins strongly dereases. This fat

is due, on one hand, to the higher value of hc whih inreases the distane between

the skins (thus the �exural sti�ness of the panel), while, on the other hand, the skins

get a more e�ient ombination of the laminate polar parameters (when ompared

to the referene solution): the union of these fats engenders a slight inrease in the

global bukling load of the sandwih panel.

In order to prove that the tehnologial onstraints (linked to the fabriation proess) have

been properly onsidered within the optimisation proess and that the resulting omplex

(optimal) shapes an be really manufatured, two prototypes of the ellular ore were fab-

riated. Suh prototypes have been realised using the 3D printer desribed in Setion 2.3.

In partiular, Fig. 11 presents both the Computer Aided Design (CAD) model and the re-

lated prototype of the ellular ore for the optimal solutions of ase 1.a and ase 2.a. It is

noteworthy that the prototype mathes very well (i.e. within the tehnologial toleranes)

the CAD model of the ore. Moreover, unlike the vast majority of shape and topology

optimisation tehniques employed for industrial purposes [33, 34℄ the proposed strategy

does not need of a further step for the reonstrution of the CAD geometry, beause the

NURBS-based representation of the geometry of the ell is totally ompatible with several

standard �le formats (IGES, STL and STEP) whih easily allow the digital exhange of

information among CAD systems.

7 Conlusions

The design strategy presented in this paper is a numerial optimisation proedure har-

aterised by several features that make it an innovative, e�etive and general method for

the multi-sale design of omplex strutures. In the present work this strategy has been

employed to deal with the problem of the simultaneous shape and material optimisation

of a sandwih panel omposed of two laminated skins and a ellular ore.
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On one hand, the design proess is not submitted to restritions: any parameter hara-

terising our struture is an optimisation variable. This allows the designer to look for a true

global minimum, hard to be obtained otherwise. The formulation of the design problem of

the sandwih panel is generalised and enrihed by onsidering the shape optimisation of

the unit ell of the ore instead of the lassial size optimisation of a presribed geometry.

On the other hand, the multi-sale design problem has been split into two distint

but linked non-linear minimisation problems whih are solved within the same proedure

developed on two di�erent levels. The �rst level of the proedure involves two di�erent

sales: the maro-sale of the sandwih panel omposed of two homogeneous anisotropi

plates (the skins) and of an homogeneous anisotropi ore and the meso-sale of the ellular

ore modelled through its representative volume element. Many types of design variables

are involved within this �rst level: the geometrial parameters (loal and global) governing

the shape of the unit ell (meso-sale) together with the geometri and material parameters

of eah skin (maro-sale). The seond level of the proedure onerns the meso-sale of

the laminated skins: in this phase, the goal onsists in �nding at least one optimal stak

meeting on one hand the elasti requirements imposed to the laminate (quasi-homogeneity

and orthotropy) and on the other hand the optimum value of the laminate polar parameters

resulting from the �rst step.

Moreover, one of the main purposes of this work onsists in proving that omplex

shapes of the ellular ore an be really designed and manufatured (with the urrent

tehnologial apabilities): of ourse, this ambitious aim an be reahed only by inluding,

sine the early stages of the design proess, the manufaturability onstraints linked to

the onsidered fabriation proess. To these purposes the two-level optimisation proedure

has been enrihed by onsidering the tehnologial onstraints linked to the 3D printer

(hosen for fabriating the prototype of the unit ell) within the �rst level of the strategy.

Conerning the topology of the ellular ore, the shape of the unit ell is desribed by

means of NURBS urves. The utilisation of NURBS blending funtions allows for easily

translating the manufaturability onstraints into geometrial onstraints to be imposed on

the geometry of the representative unit ell. A further advantage linked to the utilisation of

a NURBS-based representation of the geometry to be optimised is in the fat that NURBS

urves and surfaes are totally ompatible with the most used standard �le formats (IGES,

STL and STEP) in CAD systems. This aspet is of paramount importane beause it allows

to suppress from the design proedure further steps for the reonstrution of the CAD

geometry that are often needed with usual shape and topology optimisation tehniques.

Conerning the numerial omputations, they are arried out by a geneti algorithm,

BIANCA, able to handle both ontinuous and disrete-valued variables during the same

alulation and to e�etively handle the onstraints of the problem. For the solution of the

�rst-level problem, the ode BIANCA is interfaed with the FE ode ANSYS that invokes
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eight FE analyses (at di�erent sales) in order to ompute the objetive as well as the

onstraint funtions of the problem.

On the other hand, the mehanial harateristis of the laminated plates are rep-

resented by the polar formalism, a mathematial representation haraterised by several

advantages, namely to expliit elasti symmetries, elasti and geometri bounds, and to

eliminate from the proedure redundant mehanial properties. In addition, the utilisation

of polar formalism leads the designer to easily formulate the seond-level problem by taking

into aount in a orret and elegant way the requirements on the elasti symmetries of

the struture.

To our best knowledge, this is the �rst time that the problem of the least-weight design

of a sandwih panel with a ellular ore is formulated in a very general way, i.e. by

abandoning the usual simplifying hypotheses and the standard rules, taking into aount

all geometrial and material parameters haraterising the struture as design variables

and onsidering, within the same proedure, two di�erent sales (meso and maro).

The utilisation of an evolutionary strategy, along with the fat that the problem is

stated in the most general ase, allows to �nd some non-onventional on�gurations more

e�ient than the standard ones. In fat, the onsidered numerial examples prove that

when standard rules for tailoring the laminate staks are abandoned and all the parame-

ters haraterising the struture, at eah sale, are inluded among the design proess a

signi�ant weight saving an be obtained: up to 29% ompared to that of the referene

struture with enhaned mehanial properties (in terms of both loal and global bukling

loads).

Finally, the proposed solutions an be yet employed for industrial purposes as they an

be fabriated with the urrent tehnologial apabilities. These onsiderations remain still

valid if the designer wants to inlude within the proess onstraints of di�erent nature,

e.g. on strength, yielding, delamination, et. or if he wants to improve the mathematial

model to be optimised (i.e. the numerial model simulating the mehanial response of

the struture) by introduing the in�uene of geometrial imperfetions, material as well

as geometrial non-linearity, et. All of these aspets an be easily integrated within the

optimisation proess without altering its overall arhiteture and they do not represent a

limitation to the proposed strategy, on the ontrary they ould be an interesting hallenge

for future researhes on real-life appliations.
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Tables

Alluminium Carbon-Epoxy

Material properties

E 70000 MPa E1 181000 MPa

ν 0.33 E2 10300 MPa

ρ 2.7× 10−6
Kg/mm

3 G12 7170 MPa

ν12 0.28
ρs 1.58× 10−6

Kg/mm

3

hply 0.125 mm

Polar parameters

T0 26880 MPa

T1 24744 MPa

R0 19710 MPa

R1 21433 MPa

Φ0,Φ1 0 deg

Table 1: Material properties of the aluminium foil of the ore and of the arbon-epoxy

laminae of the skins.

Nodes Uξ Uη Uζ

ξ = 0 0 free free

ξ = a1 0 free free

η = 0 free free free

η = a2 free free free

ζ = 0 free free 0

ζ = a3 0 0 free

Table 2: Boundary onditions for the FE model of the RVE, linear elasti bukling analysis.

1st load ase 2nd load ase 3rd load ase

Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ

ξ = 0 0 free free ξ = 0 0 free free ξ = 0 0 free free

ξ = a1 u1 free free ξ = a1 0 free free ξ = a1 0 free free

η = 0 free 0 free η = 0 free 0 free η = 0 free 0 free

η = a2 free 0 free η = a2 free u2 free η = a2 free 0 free

ζ = 0 free free 0 ζ = 0 free free 0 ζ = 0 free free 0

ζ = a3 free free 0 ζ = a3 free free 0 ζ = a3 free free u3

Table 3: Boundary onditions for the FE model of the RVE: 1st, 2nd and 3rd stati analyses.

26



4th load ase 5th load ase 6th load ase

Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ Nodes Uξ Uη Uζ

ξ = 0 0 free free ξ = 0 free 0 0 ξ = 0 free 0 0

ξ = a1 0 free free ξ = a1 free 0 u3 ξ = a1 free u2 0

η = 0 0 free 0 η = 0 free 0 free η = 0 0 free 0

η = a2 0 free u3 η = a2 free 0 free η = a2 u1 free 0

ζ = 0 0 0 free ζ = 0 0 0 free ζ = 0 free free 0

ζ = a3 0 u2 free ζ = a3 u1 0 free ζ = a3 free free 0

Table 4: Boundary onditions for the FE model of the RVE: 4th, 5th and 6th stati analyses.

Design variable Type Lower bound Upper bound Disretisation step

RA∗

0K [MPa℄ ontinuous −19710.0 19710.0 -

RA∗

1
[MPa℄ ontinuous 0 21433.0 -

ΦA∗

1
[deg℄ disrete −90 90 1

h [mm℄ disrete 2.50 4.00 0.125
h1 [mm℄ disrete 1.00 4.00 0.1
h2 [mm℄ disrete 2.00 5.00 0.1
v1 [mm℄ disrete 2.00 5.00 0.1
tc [mm℄ disrete 0.20 0.40 0.01
hc [mm℄ disrete 20.00 60.00 1.00
rξi disrete 0.00 1.00 0.01
rηi disrete 0.00 1.00 0.01
ωi disrete 0.01 1.00 0.01

Table 5: Design spae of the �rst-level problem.

Sides BCs

AB, A

′
B

′
, CD, C

′
D

′ Ux = 0
Uz = 0

BC, B

′
C

′
, DA, D

′
A

′ Uy = 0
Uz = 0

Table 6: BCs of the FE model of the sandwih panel.
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a, b [mm℄ 1500.00
ΦA∗

1
[deg℄ 0.0

RA∗

0K [MPa℄ −9855.21
RA∗

1
[MPa℄ 5358.28

h [mm℄ 4.00
ϑ [deg℄ 60.00
l2 [mm℄ 2.75
l1 [mm℄ 5.50
tc [mm℄ 0.25
hc [mm℄ 30
Skins Weight [Kg℄ 28.44
Core weight [Kg℄ 11.82
Panel weight [Kg℄ 40.26
Bukling load (Case 1) [N/mm℄ 1556.43
Bukling load (Case 2) [N/mm℄ 1283.50
Loal bukling load [MPa℄ 500.66

Staking sequene N. of plies

[45/0/45/45/ − 45/45/ − 45/0/ 32

0/45/ − 45/45/ − 45/− 45/0/45]s

Table 7: Referene solution for the sandwih panel design problem,(for the de�nition of

the geometri parameters of the RVE of the hexagonal unit ell of the honeyomb ore

see [9, 10℄).

Geneti parameters

1

st
level problem 2

nd
level problem

N. of populations 1 1
N. of individuals 160 500
N. of generations 200 500
Crossover probability 0.85 0.85
Mutation probability 0.00625 0.002
Seletion operator roulette-wheel roulette-wheel

Elitism operator ative ative

Table 8: Geneti parameters of the GA BIANCA for both �rst and seond-level problems.
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Solution Solution Solution Solution

ase 1.a ase 1.b ase 2.a ase 2.b

ΦA∗

1
[deg℄ 83.00 47.00 44.00 49.00

RA∗

0K [MPa℄ −6608.53 19555.90 19517.30 19517.30
RA∗

1
[MPa℄ 9281.35 2891.26 4714.00 1613.24

h [mm℄ 2.50 2.50 2.50 2.50
h1 [mm℄ 1.50 1.50 1.60 2.10
h2 [mm℄ 5.00 5.00 5.00 4.90
v1 [mm℄ 5.00 5.00 4.55 5.00
tc [mm℄ 0.20 0.20 0.20 0.20
hc [mm℄ 38.00 36.00 38.00 38.00
(ξ0, η0) [mm℄ (1.50, 0.00) (1.50, 0.00) (1.60, 0.00) (2.10, 0.00)
(ξ1, η1) [mm℄ (2.05, 0.00) (2.05, 0.00) (2.15, 0.00) (2.64, 0.00)
(ξ2, η2) [mm℄ (2.61, 0.50) (2.61, 0.50) (2.71, 1.46) (3.19, 1.55)
(ξ3, η3) [mm℄ (3.17, 0.70) (3.17, 0.70) (3.27, 2.23) (3.73, 2.20)
(ξ4, η4) [mm℄ (3.72, 2.25) (3.72, 2.25) (3.82, 2.27) (4.28, 3.40)
(ξ5, η5) [mm℄ (4.28, 3.25) (4.28, 3.25) (4.38, 2.91) (4.82, 3.45)
(ξ6, η6) [mm℄ (4.83, 3.75) (4.83, 3.75) (4.93, 3.59) (5.37, 3.60)
(ξ7, η7) [mm℄ (5.39, 3.95) (5.39, 3.95) (5.49, 3.18) (5.91, 4.30)
(ξ8, η8) [mm℄ (5.94, 5.00) (5.94, 5.00) (6.04, 4.55) (6.45, 5.00)
(ξ9, η9) [mm℄ (6.50, 5.00) (6.50, 5.00) (6.60, 4.55) (7.00, 5.00)
ω0 1.00 0.63 1.00 0.40
ω1 1.00 0.27 1.00 0.44
ω2 1.00 0.72 1.00 0.72
ω3 1.00 0.11 1.00 0.63
ω4 1.00 0.70 1.00 0.10
ω5 1.00 0.11 1.00 0.44
ω6 1.00 0.70 1.00 0.26
ω7 1.00 0.67 1.00 0.89
ω8 1.00 0.42 1.00 0.51
ω9 1.00 0.59 1.00 0.98
Skins Weight [Kg℄ 17.78 17.78 17.78 17.78
Core weight [Kg℄ 11.57 10.85 12.20 11.16
Panel weight [Kg℄ 29.35 28.63 29.98 28.94
Bukling load [N/mm℄ 1642.98 1574.91 1297.73 1284.69
Loal buk. load [MPa℄ 684.88 585.57 664.59 534.68

Table 9: Numerial results of the �st-level optimisation problem for both 1

st
and 2

nd
ases.

Best staking sequene N. of plies Residual

Referene [45/0/45/45/ − 45/45/ − 45/0/0/45/ − 45/45/ − 45/− 45/0/45]s 32

Solution

Case 1.a [36/− 55/68/ − 74/79/ − 71/48/57/ − 55/ − 87/44/50/ 20 2.20× 10−4

−57/− 49/26/ − 74/90/54/60/ − 60]

Case 1.b [47/47/ − 43/ − 43/47/ − 43/47/ − 43/47/ − 43/ − 43/ 20 3.96× 10−4

47/47/47/47/ − 43/− 43/47/47/ − 43]

Case 2.a [−45/44/43/ − 48/ − 44/44/ − 45/60/35/44/ − 45/ 20 3.18× 10−4

43/− 47/ − 48/45/ − 41/ − 43/43/ − 48/46]

Case 2.b [−40/50/49/ − 44/48/48/ − 40/ − 41/ − 38/55/ − 40/ 20 3.94× 10−4

−43/46/48/ − 44/48/49/50/ − 36/ − 44]

Table 10: Numerial results of the seond-level optimisation problem for both 1

st
and 2

nd

ases.
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Figures

Figure 1: Geometry of the sandwih panel.

Figure 2: Honeyomb ore struture (a), the repetitive unit ell (b) and the related RVE

().
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Figure 3: Global geometri design variables of the RVE (a) and the NURBS representation

of the oblique wall of the RVE (b).

Figure 4: Logial �ow of the numerial proedure for the solution searh of the �st-level

problem.
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Figure 5: FE model of the RVE.

Figure 6: Mesh and rigid onstraint equations for the FE model of the sandwih panel.
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Figure 7: First omponent of the homogenised sti�ness tensors of the laminate [MPa℄, ase
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Figure 8: First omponent of the homogenised sti�ness tensors of the laminate [MPa℄, ase

1.b.
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Figure 9: First omponent of the homogenised sti�ness tensors of the laminate [MPa℄, ase
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Figure 10: First omponent of the homogenised sti�ness tensors of the laminate [MPa℄,

ase 2.b.
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Figure 11: CAD and 3D printed prototypes of the ellular ore for the optimal solution of

ase 1.a (a) and ase 2.a (b).

35


	Introduction
	Simultaneous shape and material optimisation of sandwich panels with cellular core
	Description of the problem
	Description of the multi-scale two-level optimisation strategy
	Rapid prototyping of the optimum configurations

	Mathematical formulation of the first-level problem
	Geometrical design variables
	Mechanical design variables
	Mathematical statement of the problem
	Numerical strategy

	Methematical formulation of the second-level problem
	Finite element models at different scales
	Finite element model of the unit cell (meso-scale)
	Finite element model of the sandwich panel (macro-scale)

	Studied cases and results
	Case 1.a: shape optimisation using B-spline curve, load case Ny=0.5Nx
	Case 1.b: shape optimisation using NURBS curve, load case Ny=0.5Nx
	Case 2.a: shape optimisation using B-spline curve, load case Ny=Nx
	Case 2.b: shape optimisation using NURBS curve, load case Ny=Nx
	General discussion of results

	Conclusions

