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A Multi-Scale Learning Framework

for Visual Categorization

Shao-Chuan Wang and Yu-Chiang Frank Wang

Research Center for Information Technology Innovation
Academia Sinica, Taipei, Taiwan

Abstract. Spatial pyramid matching has recently become a promising
technique for image classification. Despite its success and popularity, no
prior work has tackled the problem of learning the optimal spatial pyra-
mid representation for the given image data and the associated object
category. We propose a Multiple Scale Learning (MSL) framework to
learn the best weights for each scale in the pyramid. Our MSL algorithm
would produce class-specific spatial pyramid image representations and
thus provide improved recognition performance. We approach the MSL
problem as solving a multiple kernel learning (MKL) task, which defines
the optimal combination of base kernels constructed at different pyra-
mid levels. A wide range of experiments on Oxford flower and Caltech-
101 datasets are conducted, including the use of state-of-the-art feature
encoding and pooling strategies. Finally, excellent empirical results re-
ported on both datasets validate the feasibility of our proposed method.

1 Introduction

Among existing methods for image classification, the bag-of-features model [1,2]
has become a very popular technique and has demonstrated its success in re-
cent years. It quantizes image descriptors into distinct visual words, and uses a
compact histogram representation to record the numbers of occurrences of each
visual word in an image. One of the major problems of this is the determination
of visual words, since the widely-used strategy is to cluster local image descrip-
tors into a set of disjoint groups, and thus the representative of each group is
considered as a visual word of the given image data [1,2] (the collection of such
visual words is called a dictionary (or a codebook)). However, the major concern
of this technique is that it discards the spatial order of local descriptors. Lazeb-
nik et al. [3] proposed a spatial pyramid matching (SPM) technique to address
this concern by utilizing a spatial pyramid image representation, in which an
image is iteratively divided into grid cells in a top-down way (i.e. from coarse
to fine scales). Instead of constructing a codebook by vector quantization, Yang
et al. [4] further extended the spatial pyramid representation and proposed a
ScSPM framework with sparse coding of image descriptors and max pooling
techniques. Since only linear kernels are required in their work, Yang’s ScSPM is
able to address large-scale classification problems with reasonable computation
time.
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Fig. 1. An illustration of spatial pyramid image representation. Red dots are the en-
coded coefficient vectors of local image descriptors. Gray pyramids represent the pooling

operations. Blue, yellow, and green dots are the pooled vectors at levels 0, 1 and 2,
respectively. Each dot describes the patch statistics within the associated grid region.
These pooled vectors are typically concatenated with predetermined weights (i.e. bℓ are
fixed) as a single vector, which is the final spatial pyramid image representation. Given
the image data and the associated object category, our multi-scale learning (MSL)
framework aims at identifying the optimal weights for improved classification.

To the best of our knowledge, no prior work has addressed the determination
of the best spatial pyramid representation of the given image data and the asso-
ciated object category. Existing methods using SPM only focus on the designs of
feature encoding methods, pooling strategies and the corresponding classifiers,
and all prior work uses predetermined weights to concatenate mid-level represen-
tation in each scale (c.f. Fig. 1). It is not surprising that, for visual categorization,
some object images are more discriminative at coarse levels, while others contain
more descriptive information at finer scales. Therefore, we advocate the learning

of the best spatial pyramid representation by approaching this problem as solv-
ing a multiple kernel learning (MKL) task, and we refer to our proposed method
as a Multiple Scale Learning (MSL) framework. More specifically, given the im-
age data and the associated object category, our MSL determines the optimal
combination of base kernels constructed at different pyramid levels, and we will
show that this task can be posed as a convex optimization problem and guar-
antees the global optimum. We will also show that the learned weights for each
image scale provide descriptive and semantic interpretation of image data, and
our proposed spatial pyramid representation significantly improves the recogni-
tion performance of image classification.

2 Related Work

Our work is built upon the recent development of spatial pyramid representation
[3, 5] and kernel learning techniques [6, 7] for image classification. As shown in
Figure 1, Lazebnik et al. [3] suggested to partition an image into 2ℓ × 2ℓ grids in
different scales ℓ = 0, 1, 2, etc. The histogram of visual words (or equivalently
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the vectors pooled by the sum operation) within each grid is calculated. All
histograms from different grids and levels are concatenated with a predetermined
factor (e.g. 1 or 1/22ℓ). The final concatenated vector is thus considered as the
spatial pyramid representation of the given image. We note that if the coarsest
level ℓ = 0 is used, SPM is simply the standard bag-of-features model.

To the best of our knowledge, existing approaches using SPM for image clas-
sification simply integrate visual word histograms generated at different levels of
the pyramid in an ad hoc way, which might not be practical. We thus propose to
construct the optimal spatial pyramid representation for each class by learning

the weighting factors at each level in the pyramid. Our goal is not only to achieve
better recognition performance, but provides an effective visualization of sematic
and scale information for each object class. While it is possible to use cross valida-
tion to determine the optimal weights for each visual word histogram at different
levels in the pyramid, it will significantly increases the computation complex-
ity, especially if there is a large number of free parameters to be determined in
the entire system. We note that existing work has utilized different learning or
optimization strategies to address this type of problem, and the performance
can be improved without sacrificing the computation load. More specifically, re-
searchers in machine learning communities have proposed boosting techniques to
select the optimal kernel or feature combination for recognition, regression, etc.
problems [8, 9, 10, 11, 12]. Other methods like metric/similarity learning [13, 14],
distance function learning [15, 16, 17, 18], and descriptor learning [19] also ap-
ply the latest optimization strategies to adaptively learn the parameters from
the data. Recently, one of the successful examples in image classification and
kernel learning is the fusion of heterogeneous features proposed by Gehler and
Nowozin [10], and also by Bosch et al. [12]. Gehler and Nowozin proposed to
combine heterogeneous features via multiple kernel learning as well as linear
programming boosting methods (LPBoost), while Bosch fused shape and ap-
pearance features via MKL combined with a regions of interest preprocessing.
Both reported attractive results on Caltech datasets.

Inspired by the above work, we propose to use a MKL framework to identify
discriminating image scales, and thus weight the image representations accord-
ingly. We will show in Sect. 4 that the performance of our proposed framework
outperforms state-of-the-art methods using bag-of-features or SPM models using
predetermined weighting schemes. It is worth repeating that, once the optimal
weights for each scale are determined, one can easily extract significant scale
information for each image object class. This provides an effective semantic in-
terpretation for the given image data.

3 Multi-Scale Learning for Image Classification

Previously, Gehler et al. [10] associated image features with kernel functions, and
transformed the feature selection/combination problem into a task of kernel selec-
tion. Similarly, Subrahmanya and Shin [20] performed a feature selection proce-
dure by constructing base kernels using different group of features. Our proposed
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MSL framework incorporates multi-scale spatial and appearance information to
learn the optimal spatial pyramid representation for image classification.

In our MSL, we define a multi-scale kernel matrix, which is positive semi-
definite and satisfies

Kij ≡ K(xi, xj) =

L∑

ℓ=0

bℓk
ℓ(vℓ

i , v
ℓ
j), (1)

where xi is the image representation of i-th image, kℓ is the kernel function
constructed at level ℓ in the spatial pyramid, bℓ is the associated weight, and

vℓ ∈ R(22ℓ)K is the vector produced by concatenating all 22ℓ pooled vectors at
level ℓ. We note that if the base kernel is linear (as we did in this paper), bℓ will
be super-linearly proportional to the number of grids in level ℓ, since the kernel
output is the inner product between the two pooled vectors from each level.

The determination of the optimal weights in the above equation is known as
the multiple kernel learning problem. Several algorithms have been proposed to
solve the MKL problem and its variants. The reviews of MKL from an optimiza-
tion viewpoint can be seen in [6, 7, 21, 22, 23], and we particularly employ the
algorithm proposed by Sonnenburg et al. [23] due to its efficiency and simplicity
of implementation.

In order to learn the optimal kernels over image scales to represent an image,
we convert the original MKL problem into the following optimization problem
(in its primal form),

(P ) min
wℓ,w0,ξ,b

1
2 (

∑L

ℓ=0 bℓ〈wℓ, wℓ〉)
2 + C

∑N

i=1 ξi (2)

subject to yi(
∑L

ℓ=0 bℓ〈wℓ, Φ(vℓ
i )〉 + w0) ≥ 1 − ξi

∑L

ℓ=0 bℓ = 1, b � 0, ξ � 0,

where 〈·,·〉 represents the inner product in the L2 Hilbert space,b=(b0, b1,. . ., bL)T,
and ξ = (ξ1, ξ2, . . . , ξN )T . However, similar to the standard SVM optimization
problem, the above optimization problem is not as explicit as its dual problem,
which is shown as follows,

(D)min
a,γ

γ −
∑N

i ai (3)

subject to 0 � a � C,
∑N

i aiyi = 0

1
2

∑N

ij aiajyiyjk
ℓ
ij ≤ γ, ∀ℓ = 0, 1, ..., L,

where kℓ
ij = kℓ(vℓ

i , v
ℓ
j) = 〈Φ(vℓ

i), Φ(vℓ
j)〉, and a = (a1, a2, . . . , aN )T . If the kernel

is linear (as ours in this paper), 〈Φ(vℓ
i), Φ(vℓ

j)〉 is simply 〈vℓ
i , v

ℓ
j〉. Note that we

have one quadratic constraint for each kernel kℓ, i.e., we have L + 1 constraints
in total. Sonnenburg et al. [23] have shown that the above problem can be
reformulated as a semi-infinite linear program (SILP),
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max
b,θ

θ (4)

subject to
∑L

ℓ=0 bℓ = 1, b � 0,
∑L

ℓ=0 bℓSℓ(a) ≥ θ

∀a ∈ RN with 0 � a � C and
∑

i yiai = 0,

where Sℓ(a) ≡ 1
2

∑N

ij aiajyiyjk
ℓ
ij −

∑N

i ai.
Note that the above SILP is actually a linear programming problem due to

the fact that θ and b are linearly constrained with infinite constraints, i.e. there
will be a constraint for each a ∈ RN satisfying 0 � a � C and

∑
i yiai = 0.

To solve this problem, a wrapper algorithm [23] is proposed to alternatively
optimize a and b in each iteration. When b is fixed, SILP turns into a single
kernel SVM problem, which can be efficiently solved by many SVM solvers such
as LibSVM [24]. On the other hand, when a is fixed, we need to solve a linear
programming problem with finite constraints, which can be also efficiently solved
by many linear programming solvers. As a result, this wrapper algorithm enjoys
the benefit of easy and efficient implementation.

Algorithm 1. Multi-scale learning for class-specific spatial pyramid rep-
resentation

{1}. Building the kernels in all scales:
for ℓ = 0 to L do

for all i, j do

kℓ
ij ← 〈vℓ

i , v
ℓ
j〉 {for linear kernel}

end for

end for

kℓ ← kℓ/Tr(kℓ) {trace normalization}
{2}. Learning bℓ by solving a semi-infinite linear program [23]:
(a, bℓ) ← SILP(y, k)

Note that all kernel matrices have been normalized to unit trace in order to
balance the contributions of base kernels. Algorithm 1 shows our proposed algo-
rithm for learning class-specific spatial pyramid representations. Note that a, bℓ

in Algorithm 1 are the MKL parameters; a represent the Lagrange multipliers
for SVM, and bℓ describe the optimal weights of each base kernel, indicating the
preferable spatial pyramid image representation for each object category. In our
implementation of the SILP solver, we integrate LibSVM [24] and the MATLAB
function linprog for solving the single kernel SVM and the linear programming
problems, respectively.

After solving the above optimization problem for the given image data, we
obtain the estimated optimal weighting factors bℓ and equivalently acquire the
significance of concatenated pooled vectors from different scales. This weighted
and concatenated feature vector will be the final form for our spatial pyramid
image representation.
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Fig. 2. Example images from the Oxford flower dataset [25]

Fig. 3. Example images from the Caltech 101 dataset [26]

4 Experiments

4.1 Datasets

We conduct experiments on Oxford flower [25] and Caltech-101 [26] datasets in
this paper. The Oxford flower dataset is a small-scale dataset containing 17 dif-
ferent types of flowers (80 images each). Fig. 2 shows some example images from
this dataset. We randomly pick 40 images per category for training, and the re-
maining 40 for testing. To evaluate the feasibility and scalability of our proposed
method, we further consider the Caltech-101 dataset. This dataset consists of
101 different object classes with variant numbers of images per object category
(see Fig. 3 for example images). To compare our results to those reported in
prior work, we use the same experimental setups such as the selection of train-
ing and test sets (15 to 30 training images per object category, and up to 50
images per category for testing), and the choice of the evaluation metric (i.e. the
mean average precision (MAP)).

In our experiments on both datasets, SIFT descriptors are extracted from 16
× 16 pixel patches of an image, and the spacing between adjacent patches is
6 pixels (horizontally and vertically). We further resize the longer side of the
image to 300 pixels if its width or height exceeds 300 pixels. Prior work on the
Caltech-101 dataset also did similar operations [2, 4].
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4.2 Dictionary Learning and Local Descriptor Encoding

We choose two dictionary learning scenarios for comparisons: vector quantiza-
tion (VQ) and sparse coding (SC). We select K = 225 and 900 as the sizes of
the dictionary. To perform sparse coding, we use the SPAMS software package
developed by Mairal et al. [27], and the parameter λ, which controls the sparsity
of the encoded coefficient vectors α, is 0.2. We note that only training images
are involved during the phase of dictionary learning.

4.3 Training

In our experiment, we adopt the one-vs-rest scheme to design multi-class MSL
classifiers. Each classifier recognizes one class against all others, and thus learns
the optimal weights bℓ of different image scales for the corresponding object
category. Fig. 5 shows a visualization example of the learned bℓ, as well as the
predetermined ones used in prior work. We consider only linear kernels for a
major advantage that the computation complexity for training and testing will
be significantly reduced compared to the cases using nonlinear kernels. Therefore,
our proposed method is scalable to large-scale classification problems. The only
free parameter to be determined is the regularization term C, and we apply a
five-fold cross validation to search for its optimal value.

4.4 Results of the Oxford Flower Dataset

To compare our proposed MSL method with existing methods for image clas-
sification, we consider two different bag-of-features models as the baselines: the
standard one without pyramid representation (i.e. level L = 0), and the SPM
which concatenates pooled vectors from each scale with constant weights. Sum

Table 1. Mean average precision (MAP) comparison table for Oxford flower dataset.
L: the maximal level in the spatial pyramid.

Encoding
method

L Pooling method MSL MAP
K=225

MAP
K=900

(a) 0 Sum Pooling No 36.76% 40.00%
(b) 2 Pyramid Sum Pooling No 48.09% 49.26%

VQ (c) 2 Pyramid Sum Pooling Yes 53.68% 55.74%
(d) 0 Max Pooling No 19.12% 40.59%
(e) 2 Pyramid Max Pooling No 55.29% 55.59%
(f) 2 Pyramid Max Pooling Yes 53.82% 57.35%

(g) 0 Sum Pooling No 42.94% 47.50%
(h) 2 Pyramid Sum Pooling No 50.74% 55.00%

SC (i) 2 Pyramid Sum Pooling Yes 55.00% 58.68%
(j) 0 Max Pooling No 40.74% 53.38%
(k) 2 Pyramid Max Pooling No 60.30% 62.79%
(m) 2 Pyramid Max Pooling Yes 60.15% 65.29%
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and max pooling operations are used in each baseline method for the complete-
ness of the comparison. The number of levels in the spatial pyramid is chosen as
3 (i.e. ℓ = 0, 1 and 2) for the experiments on this dataset. The complete results
and comparisons on the Oxford flower dataset are shown in Table 1.

As can been seen in Table 1, the MAP for all cases increases when the size
of the dictionary (i.e. the number of visual words K) grows. When using VQ to
learn the dictionary, the cases using the max pooling strategy obtained better
MAP values than those using the sum pooling one, except for the case of the
standard bag-of-features model (MAP = 36.76% in Table 1(a) vs. 19.12% in
(d)). We note that when the sum pooling method is applied to construct feature
vectors for classification (i.e. Table 1(a) to (c)), the use of SPM improves the
recognition performance, while our approach outperforms the one using prede-
termined weights (53.68% vs. 48.09% when K = 225, and 55.74% vs. 49.26%
when K = 900). The max pooling strategy is also observed the same advan-
tage of applying SPM for classification (see Table 1(d) to (f)), while both SPM
methods obtained comparable MAP values.

When the dictionary is learned by SC (Table 1(g) to (m)), we observe signifi-
cant improvements in MAP for all cases. Our method with max pooling strategy
resulted in the highest MAP = 65.29% when a larger size of dictionary K = 900
was used. Comparing to the standard SPM with constant weights, we obtained
comparable MAP when K = 225. We expect to see a significant improvement
in MAP when a larger-scale classification problem is of concern (our test results
on Caltech-101 support this).

4.5 Results of the Caltech-101 Dataset

Our test results on the Caltech-101 dataset and the comparison with different
dictionary learning and feature pooling strategies are shown in Fig. 4. We note
that the number of levels in the spatial pyramid is 4 (i.e. ℓ = 0, 1, 2, 3). We now
summarize our findings as follows:

a. The use of sparse coding for dictionary learning outperforms that learned
by vector quantization. More specifically, the dictionary learned by sparse cod-
ing together with different feature pooling techniques consistently improves the
recognition performance than those learned by vector quantization. This con-
firms the observation in [4].

b. Spatial pyramid representation significantly improves recognition accuracy.
From Fig. 4, we see that the use of spatial pyramid representation with either
sparse coding or vector quantization technique outperforms the pooled features
from a single image scale. This is consistent with the findings in [3] and [4].

c. A larger size of the dictionary improves the performance when a single level
of image representation is used. However, it produces negligible improvements
when spatial pyramid representation is considered.

d. Our muti-scale learning (MSL) improves MAP with different feature encod-
ing (sparse coding and vector quantization) and pooling strategies. In particular,
our proposed framework together with sparse coding and the pyramid max pool-
ing (PMP) strategy achieved the best MAP among all methods.



318 S.-C. Wang and Y.-C. F. Wang

Sparse Coding Vector Quantization

Fig. 4. Mean average precision comparison table for the Caltech-101 dataset. K: the
size of dictionary. MSL: Our Multiple Scale Learning (L=3). PSP: Pyramid Sum Pool-
ing (L=3). SP: Sum Pooling (L=0). PMP: Pyramid Max Pooling (L=3). MP: Max
Pooling (L=0). Best viewed in color.

We note that the method PMP in the left column of Fig. 4 is our implemen-
tation of ScSPM, which is proposed by Yang et al. [4]. We did not reproduce
exactly the same results as reported in [4], probably due to the SIFT descriptor
extraction, feature normalization process, etc. engineering details. Therefore, we
choose to use the same implementation details for all methods on both datasets
for comparisons.

To show the competitiveness of our methods, we also compare our approach
with prior work on the Caltech 101 dataset. Our method outperforms many pre-
viously proposed methods, and we believe that this is because our approach is able
to extract more salient properties of class-specific visual patterns across different
image scales from different object categories. It is worth repeating that, different
from many previous methods, our MSL framework only requires linear kernels and
thus provides excellent scalability to large-scale image classification problems.

Fig. 5 illustrates the values of bℓ for all 101 object classes using different
methods. The top row is the case of the standard bag-of-features model. Since
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Table 2. Comparison with prior work on the Caltech-101 dataset. The number of
training images per class for all methods is 15.

Method MAP

Raina et al. [28] 46.6%
Berg et al. [29] 48%

Mutch and Lowe [30] 51%
Lazebnik et al. [3] 56.40%
Zhang et al. [31] 59.10%

Frome and Singer [16] 60.30 %
Lin et al. [32] 61.25 %

Our method 61.43 %
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Fig. 5. Visualization of bℓ for different methods on the Caltech-101 dataset. The en-
coding method considered is vector quantization with K = 900. Best viewed in color.

no pyramid information is used, we simply have b0 = 1, and bℓ = 0 otherwise.
As for the SPM framework adopted by Yang et al. [4], in which the pooled
vectors from each grid at each level are simply concatenated as the final image
representation. It can been seen that finer scales in images are generally assigned
larger (and fixed) weights due to the increasing number of grids in those pyramid
levels. Finally, the last two rows in Fig. 5 present the bℓ learned by our method
using pyramid sum and max pooling strategies, respectively. Together with the
recognition performance reported, this visualization of our bℓ confirms that we
are able to learn the optimal spatial pyramid representation given the image
data, and our method can capture class-dependent salient properties of visual
patterns in different image scales.

We would like to point out that we are aware of recent work which proposed to
combine multiple types of descriptors or features for classification, and thus very
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promising results were reported [10,11,12,33]. Our MSL framework can be easily
combined with these ideas, since multiple feature descriptors can be integrated
into our proposed framework and can still be solved by MKL techniques. In such
cases, we expect a significantly greater improvement on the recognition accuracy
over state-of-the-art classification methods.

5 Conclusion

We presented a novel MSL framework that automatically learns the optimal
spatial pyramid image representation for visual categorization, which is done
by solving a MKL problem which determines the optimal combination of base
kernels constructed by features pooled from different image scales. Our proposed
method is able to capture class-specific salient properties of visual patterns in
different image scales, and thus improves the recognition performance. Among
different dictionary learning and pooling strategies, our proposed framework
based on sparse coding and pyramid max pooling strategies outperforms prior
methods on Oxford flower and Caltech 101-datasets. In addition, through the
visualization of the weights learned for each image scale and for each object
category, our MSL framework produces a class-specific spatial pyramid image
representation, which cannot be achieved by the standard SPM. Finally, since
only linear kernels are required in our proposed learning framework, our method
is computationally feasible for large-scale image classification problems.

Acknowledgement. We are grateful for the anonymous reviewers for their help-
ful comments. This work is supported in part by the National Science Council
of Taiwan under NSC98-2218-E-001-004 and NSC99-2631-H-001-018.
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