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A multi‑scale pipeline 
linking drug transcriptomics 
with pharmacokinetics predicts 
in vivo interactions of tuberculosis 
drugs
Joseph M. Cicchese1, Awanti Sambarey2, Denise Kirschner3*, Jennifer J. Linderman1* & 
Sriram Chandrasekaran2*

Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for 
TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and 
complex pharmaco‑kinetics/dynamics (PK/PD). Here we study the interplay of these factors in 
designing combination therapies by linking a machine‑learning model, INDIGO‑MTB, which predicts 
in vitro drug interactions using drug transcriptomics, with a multi‑scale model of drug PK/PD and 
pathogen‑immune interactions called GranSim. We calculate an in vivo drug interaction score (iDIS) 
from dynamics of drug diffusion, spatial distribution, and activity within lesions against various 
pathogen sub‑populations. The iDIS of drug regimens evaluated against non‑replicating bacteria 
significantly correlates with efficacy metrics from clinical trials. Our approach identifies mechanisms 
that can amplify synergistic or mitigate antagonistic drug interactions in vivo by modulating the 
relative distribution of drugs. Our mechanistic framework enables efficient evaluation of in vivo drug 
interactions and optimization of combination therapies.

Tuberculosis (TB), caused by inhalation of Mycobacterium tuberculosis (Mtb), remains the world’s deadliest 
infectious disease, infecting 30% of all people world-wide and leading to ~ 1.3 million deaths  annually1,2. �e 
emergence of multidrug resistance coupled with slow progress in developing new drugs has created a pressing 
need to identify new approaches to treat TB. �e current standard TB treatment regimen is a combination of four 
�rst-line anti-TB drugs—the antibiotics isoniazid (H), rifampicin (R), pyrazinamide (Z), and ethambutol (E). 
�is treatment has remained unchanged over 50  years3–5. Typical combination therapy for TB is administered for 
at least six months, while treating drug-resistant strains may take up to 2 years. New drugs, such as bedaquiline, 
linezolid, and pretomanid, are being tested in new regimens to potentially shorten TB  treatment6,7 �e WHO has 
called for entirely new strategies to meet the goals for ‘End TB’, which aims to reduce TB deaths by 95% by 2035.

�e large number of potential drug combinations greatly complicates TB treatment  design8. �erapy involv-
ing drug combinations can lead to surprising non-linear e�ects; some drugs can enhance each other’s action 
leading to higher potency (synergy), or drugs can interfere with their action leading to reduced potency (antago-
nism)9,10. Antibiotics can interact synergistically by enhancing the uptake of other drugs or through inhibition 
of compensatory mechanisms. For example, ethambutol represses the levels of the enzyme inhA, the drug-target 
of isoniazid and enhances the bactericidal e�ect of isoniazid against  Mtb11. Similarly, antagonistic interactions 
between bacteriostatic drugs and bactericidal drugs occur due to their opposing e�ects on cellular  metabolism12. 
Drug interactions can impact treatment e�cacy and emergence of drug  resistance13. Synergistic drug combina-
tions can also provide increased e�cacy without augmenting the toxicity of individual drugs.

Such synergistic or antagonistic drug interactions can be determined using checkerboard assays by screening 
a panel of drug combinations in multiple doses against  Mtb14. However, such experimental screening of drug 
interactions has limited throughput despite recent developments in reducing the number of doses required for 
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 measurement15–17. Designing an optimal 4-drug combination from a set of just 50 candidate drugs at a single 
dose requires ~ 200,000 drug interaction experiments. �e dosage and dosing frequency further increase the 
space of possible regimens  exponentially18.

Measuring in vivo drug interactions is even more challenging as it requires mice, primates, or other model 
organisms infected with  Mtb19. Consequently, the number of drug candidates that can be screened through these 
model organisms is very limited. Further, current drug screening strategies for TB do not consider a patient’s 
immune system. Once Mtb is inhaled, it triggers a cascade of immune responses that result in the accumula-
tion of an immune cell-rich mass around infected cells and bacteria known as a granuloma. Mtb can persist for 
decades within granulomas, and there are multiple granulomas within lungs of infected  patients20. Granulomas 
also create a physical barrier altering the penetration of drugs, which can greatly impact relative drug concentra-
tions at the site of infection and lead to e�ective mono-therapies in  granulomas21–24. Granulomas also produce 
nutrient-starved and hypoxic environments that contain Mtb that are phenotypically tolerant to antibiotics, 
further complicating  treatment25,26.

�is study addresses these challenges by creating a multi-scale pipeline combining two cutting-edge com-
putational approaches, operating at di�erent biological scales, to evaluate combination therapies using drug 
transcriptomics and pharmacokinetics/pharmacodynamics (PK/PD) (Fig. 1). First, to rapidly predict drug–drug 
interactions (synergy/antagonism) among combinations of two or more drugs, we utilize the existing in silico 
tool—inferring drug interactions using chemogenomics and orthology (INDIGO) optimized for Mtb (INDIGO-
MTB)8,14. INDIGO-MTB uses a training data of known drug interactions along with drug transcriptomics data 
as inputs. INDIGO-MTB then utilizes a machine-learning algorithm to identify gene expression patterns that 
are predictive of speci�c drug–drug interactions. Once trained, INDIGO-MTB can determine if new drugs 
in combination have synergistic or antagonistic interactions using transcriptomics data. We previously used 
INDIGO-MTB to identify synergistic drug regimens for treating TB from over a million possible drug com-
binations using the pathogen response transcriptome elicited by individual drugs. �e INDIGO-MTB model 
contains 164 drugs with anti-TB activity and it accurately predicted novel interactions of two-drug and three-
drug combinations in vitro8.

Next, to predict in vivo interactions and e�cacy, here we integrate INDIGO-MTB predicted drug interac-
tions within an existing multi-scale model of pathogen-immune dynamics leading to granuloma formation, 
known as GranSim24,28–31. GranSim integrates spatio-temporal host immunity, pathogen growth and drug PK/
PD into a single computational framework. GranSim uses a hybrid agent-based model to describe interactions 
between immune cells and cytokines with bacteria and antibiotic delivery to granulomas, and provides a dynamic 
picture of pathogen clearance leading to granuloma  sterilization24. Previously, we modeled PK/PD in GranSim 
and explored regimens with isoniazid and rifampin, three �uoroquinolones, and more recently  HRZE32–34. An 
important �nding from that work is that the various antibiotics have di�erent abilities to penetrate well into the 
granuloma, at times reducing the number of bacteria exposed to e�ective  concentrations34,35. However, in these 
studies we assumed no interaction between antibiotics. Hence, we now integrate INDIGO-MTB predictions of 
drug interactions within the GranSim framework, allowing the full characterization of drug interaction dynamics 
at the molecular and cellular scales, and verify our results against patient-level data. �is allows us to evaluate 
how drug interactions and PK/PD at the molecular scale in�uence in vivo e�cacy at the granuloma scale.

Our study herein represents the �rst pipeline that incorporates both in vitro drug interactions and in vivo 
PK/PD to simulate treatment dynamics of numerous drug regimens. Our study overcomes the limitation of prior 
studies that have focused on variation in PK/PD parameters alone to predict treatment  outcome36–38. Combining 
INDIGO-MTB with GranSim allows us to compare di�erent regimens based on the impact of their interactions 
on various simulated metrics such as rate of pathogen load decline in granulomas and granuloma sterilization 
rates. Our approach provides a measurement of drug interactions within lung granulomas based on concentra-
tions that di�erent bacterial populations are experiencing in their individual granuloma environment.

Results
Drug interactions significantly impact in vivo treatment dynamics in GranSim. We focus on 
combinations of 2, 3 or 4 drugs involving the �rst-line antibiotics and two �uoroquinolones (Supplementary 
Table 1). �ese drugs include isoniazid (H), rifampin (R), ethambutol (E), pyrazinamide (Z), moxi�oxacin (M), 
and levo�oxacin (L). We chose these drugs as they are part of the current standard-of-care for treating TB. Fur-
ther, transcriptomics and PK/PD parameters are available for these drugs for simulation using both INDIGO-
MTB and GranSim.

Using INDIGO-MTB, we �rst predicted all possible in vitro interaction outcomes for these combinations. �e 
combinations are predicted to have FIC values that range from synergistic (e.g. HRZ—FIC of 0.74) to antago-
nistic (e.g. RM—FIC of 2.31). �e standard regimen (HRZE) is predicted to be synergistic (FIC—0.82) while 
moxi�oxacin-containing regimens were mostly antagonistic (Supplementary Table 2). �ese predictions match 
the experimentally observed in vitro FIC values for these combinations from prior  studies8.

Given the various factors that can impact antibiotic e�cacy in vivo that are captured in GranSim, the relative 
impact of drug interactions on treatment outcomes is unclear. We hypothesized that analysis of various drug 
regimens with di�erent drug interaction scores (FIC) can help tease out the impact on treatment outcome. Our 
previous studies of antibiotic treatment using GranSim did not consider drug interactions. Here we explore how 
either antagonistic or synergistic a�ects overall e�cacy using GranSim.

We input FIC values into GranSim and simulated the immune response and antibiotic delivery to granu-
lomas (“Methods”). �e plasma and tissue PK parameters for these drugs within the GranSim computational 
framework were derived from previous studies calibrating PK parameters to experimental plasma and lesion 
drug concentrations (“Methods”). For each regimen tested, 100 simulated granulomas were treated for up to 
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180 days with daily doses of each antibiotic in the speci�ed regimen. To compare the e�cacy of each of these 
regimens, we evaluate three measures: the log decrease in CFU per day, percent sterilization of granulomas, and 
average sterilization time.

�e in vitro FIC value of each combination is correlated with each of the three simulated e�cacy outcomes 
that we calculated (Fig. 2). For our simulated log decrease in CFU per day from 0 to 14 days and the steriliza-
tion percent, we observe that both outcomes tend to decrease as FIC values go from synergistic to antagonistic 
(correlation R = − 0.52 and − 0.59, respectively, Fig. 2A,B). �e average sterilization time is positively correlated 
with FIC value (correlation R = 0.59, Fig. 2C). Overall, this indicates that synergistic regimens are more likely to 
sterilize a greater percentage of granulomas in a shorter time at both early and later time points.

Although these relationships show moderate levels of correlation, there are a few notable deviations. Inter-
estingly, the regimen RM (FIC = 2.31) performs better than the less antagonistic regimen HE (FIC = 1.46). �e 

Figure 1.  Overview of our multiscale pipeline to predict in vivo drug interactions. (a) INDIGO-MTB uses Mtb 
transcriptomic responses to drugs and experimentally measured drug–drug interactions as inputs for training 
a machine-learning model, inferring synergistic and antagonistic interactions between new drug combinations 
as  output8,27. (b) Components of the model integrating GranSim and INDIGO-MTB. From right to le�, the 
plasma PK model determines the time-dependent concentration of all antibiotics following oral doses, which 
in turn determines the amount of antibiotic delivered onto the agent-based model grid. �e computational 
grid is 200 × 200 square grid spaces, representing 4 mm × 4 mm of lung. Within the agent-based model, the 
tissue PK model describes antibiotic di�usion and binding as well as immune cell accumulation. Based on 
the local concentration of antibiotics, the PD model evaluates an antibiotic killing rate constant based on an 
e�ective concentration that is calculated from each individual antibiotic concentration. �e corresponding FIC 
predicted from INDIGO-MTB either increases or decreases this e�ective concentration, depending on whether 
the combination is synergistic or antagonistic. (c) Di�erent predictions and outcomes, with the gradient above 
corresponding to the relevant length scale for the model/prediction. From le� to right, predictions made by 
integration of GranSim and INDIGO-MTB are shown, including FIC predictions from INDIGO-MTB, Mtb-
speci�c killing rate and interactions, number of cells/Mtb overtime used to evaluate simulated EBA, spatial 
analysis of antibiotic concentration and interactions, and sterilization time distributions from a collection of 
granulomas.
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best regimen in terms of average sterilization time is HRZE (FIC = 0.82); however, the regimen RE (FIC = 0.74) 
has a lower FIC but does not perform as well as HRZE. �ese results suggest that FIC values are not the only 
factor impacting granuloma sterilization. Because these results are based on sterilization in granulomas, the 
concentrations of each antibiotic in the granuloma compartment (based on dosage and PK) also impact the 
ability of each regimen to sterilize.

The in vivo drug interaction score is predictive of treatment dynamics. �e antibiotic killing 
rate is dependent not only on the FIC value, but also on local drug concentrations within a granuloma, the 
subpopulation of bacteria (intracellular, extracellular replicating, extracellular non-replicating), and the spe-
ci�c PD parameters of antibiotics involved. Based on the de�nition of the FIC, synergistic or antagonistic drug 
combinations result in a lower or higher e�ective concentration to achieve the same level of bacterial killing. To 
evaluate the overall impact of drug interactions on the calculated killing rate constant, we evaluate an in vivo 
Drug Interaction Score (iDIS) for the three subpopulations of bacteria. �e iDIS measures the relative increase or 
decrease of the antibiotic killing rate constant due to the speci�c drug interaction. We calculate iDIS as the ratio 
of the antibiotic killing rate constant evaluated in the simulation to the rate constant if the interaction is simply 
additive (FIC equal to 1.0). �is ratio provides a measure of how much the drug interaction impacts the killing 
rate constant and is unique for each individual mycobacterium within GranSim as drug concentrations change 
over time. At each time step during treatment, the average iDIS over all Mtb by subpopulation is evaluated as a 
model output.

Figure 3 shows the average iDIS for non-replicating Mtb over the �rst dose interval for each regimen, and 
its relationship to regimen outcomes. A value of 1 indicates the interaction has no impact on the killing rate 
constant; values greater than 1 or less than 1 indicate synergistic or antagonistic combinations, respectively.

�e iDIS for each regimen is strongly correlated with the outcomes from our GranSim simulations: log 
decrease in CFU per day (R = 0.86), percentage of negative granulomas at eight weeks (R = 0.73), and the average 
sterilization time (R = − 0.73) (Fig. 3). �e correlations are much stronger than those observed for FIC (Fig. 2), 
indicating that measuring the iDIS, which is calculated for speci�c granuloma environments, provides more 
information on regimen e�cacy than examining FIC values, which are calculated based on in vitro environments.

Each combination of antibiotics has a di�erent absolute killing rate constant based on the speci�c combination 
of PD parameters associated with that combination together with the distribution of antibiotics within a granu-
loma. �ese results suggest that iDIS provides a more accurate representation of how well a given combination 
of antibiotics achieves sterilization as it accounts for the unique killing rate constant that each individual Mtb 
experiences and measures the impact that an FIC value has on that killing rate constant.

Figure 2.  Regimen e�cacy is correlated with FIC for 64 simulated drug regimens. Mean decrease in log CFU 
(0–14 days) averaged over 100 granulomas simulated for each drug regimen (A) and percentage of sterilized 
(negative) granulomas a�er 8 weeks of treatment (B) are negatively correlated with FIC values, with correlation 
coe�cients of − 0.52 and − 0.59, respectively. Mean sterilization time for each regimen over 100 granulomas 
(C) is positively correlated with FIC with a correlation coe�cient of 0.59. Each point represents the regimen 
outcome measurement for a given regimen and error bars indicate ± standard deviation from the sample of 100 
granulomas simulated. �e 64 drug regimens simulated are listed in Supplementary Table 1. �e colored points 
correspond to the regimens HRZE (light blue), RE (dark blue), RM (red) and HE (orange) for emphasis. Plots 
were made using the ggplot2 package in  R39.
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Antibiotics are typically better at killing replicating Mtb than non-replicating Mtb. Antibiotic killing rate 
constants that are higher and closer to their overall  Emax value are less impacted by drug interactions. We found 
that correlations between regimen outcomes and the average iDIS associated with replicating extracellular and 
intracellular Mtb are weaker than when comparing regimen outcomes to the iDIS from non-replicating Mtb 
(Supplementary Figs. 1 and 2). �e average iDIS measurements for replicating Mtb are closer to 1.0 and weaken 
the correlation with regimen outcomes. Hence, the strong correlation between drug interactions and clinical 
outcomes are primarily driven by drug action against non-replicating bacteria.

Figure 4 shows a heat map of the mean sterilization time, iDIS and FIC for each regimen, ordered by decreas-
ing iDIS. In general, the regimens with the fastest sterilization times also have high iDIS. �e top 17 regimens, as 
measured by shortest average sterilization time, all contain RIF, indicating that RIF is a very important addition 
to regimens. Another general trend is that two-drug combinations typically perform worse than 3- or 4-drug 
combinations. Fluoroquinolones tend to participate in more antagonistic combinations, as measured by the iDIS. 
For example, 22 of the 31 MXF or LVX containing regimens are above the median iDIS of all 64 regimens. Two 
regimens (R23.5E45dpw2 and R23.5E90dpw1) with synergistic iDIS measurements showed slow sterilization 
times, as they were dosed less frequently than a day.

INDIGO‑MTB—GranSim regimen rankings are correlated with clinical rankings. To explore 
how our predictions of regimen e�cacy compare to clinical results, we compare our INDIGO-MTB—GranSim 
treatment simulations to results from TB drug clinical trials. Drawing from the meta-analysis of phase II trials 
presented in Bonnet et al., we selected all regimens that reported sputum culture conversion in solid  media40. 
�e e�cacy metric presented for Phase IIb trials is the percent of patients with negative sputum culture a�er 
8 weeks of therapy. Since our simulations predict treatment outcomes at the granuloma scale, we estimated how 
sterilization at the granuloma level relates to host-level culture conversion. Figure 5A shows the comparison of 
the upper and lower bound estimates for percent sputum conversion from our simulation to clinical trial results 
for 26 regimens (“Methods”). For most regimens, estimates of sterilization percentage compare closely to clini-
cally measured culture conversion. In general, INDIGO-MTB—GranSim simulations appear to overpredict the 
rates of sterilization and most incorrect predictions fall into this category (Fig. 5A). �is observed overpredic-
tion is likely due to the simpli�cation of predicting sterilization at the granuloma scale that does not include the 
full spectrum of complex granuloma lesions, failed adherence to regimens, and other factors that complicate TB 
treatment.

Figure 3.  Regimen e�cacy is correlated with the in vivo Drug Interaction Score (iDIS). iDIS associated with 
non-replicating Mtb killing is evaluated for 3 measures over 64 simulated drug combination regimens. �e 
decrease in log CFU (0–14) averaged over 100 granulomas simulated for each regimen (A) and percentage of 
sterilized (negative) granulomas a�er eight weeks of treatment (B) are positively correlated with iDIS of non-
replicating Mtb during the �rst 24 h of treatment (correlation coe�cients of 0.86 and 0.73, respectively). Mean 
sterilization time for each regimen over 100 granulomas (C) is negatively correlated with iDIS of non-replicating 
Mtb (correlation coe�cient of − 0.73). Each point represents the regimen outcome measurement for a given 
regimen and error bars indicate ± standard deviation from the sample of 100 granulomas simulated. �e 64 drug 
regimens simulated are listed in Supplementary Table 1. �e colored points correspond to the regimens HRZE 
(light blue), RE (dark blue), RM (red) and HE (orange) for emphasis. Plots were made using the ggplot2 package 
in  R39.
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We next validate our simulation results by comparing the ranking of the e�cacy of each of the regimens with 
the corresponding ranking of the e�cacy from clinical trials (Fig. 6). �e clinical rank is determined by ranking 
each regimen by the pooled culture conversion a�er 8 weeks, so that a ranking of 1 is the regimen with the lowest 
culture conversion. �e simulation rank is determined by percentage of granulomas sterilized a�er 8 weeks. We 
used the Spearman ranked correlation coe�cient, weighted by the number of patients in each pooled regimen 
result, and found a signi�cantly strong correlation between simulations and clinical trials (R = 0.72).

Recent phase III clinical trials have investigated the impact of introducing �uoroquinolones into treatment 
regimens to treat drug-susceptible TB, some with the additional intent of shortening treatment time from six 
months to four. Many of these trials have failed to show improvement in TB treatment, and o�en led to higher 
rates of unfavorable outcomes at the trial’s  endpoints41–43. �ese trends are re�ected in our analysis of the drug 
interactions for various drug combinations. �e control regimen, HRZE, is strongly synergistic as measured by 
iDIS, and we predict short average sterilization times (14 days, Fig. 4). In contrast, �uoroquinolone containing 
regimens, such as HRMZ and RMZE, are closer to additive, and are predicted to have longer sterilization times 
of 41 and 21 days, respectively. �ese trends indicate that our simulation predictions are consistent with phase 
III clinical trial observations. �us INDIGO-MTB—GranSim simulations provide strong predictive measures 
of clinical outcome for di�erent regimens.

Both iDIS and INDIGO-MTB FIC predictions for these regimens are also signi�cantly correlated with their 
clinical ranking (Fig. 5B,C). �ese simulated results are consistent with the correlation observed in a prior study 
between INDIGO-MTB FIC scores and percentage of patients with negative culture a�er treatment from 57 
randomized clinical  trials8. Based on these results, both interaction measurements have the potential to help 
predict the clinical e�cacy of drug combination regimens.

�e FIC value is one measure of drug interactions in vitro; however, there are many factors that impact regi-
men e�cacy in vivo that FIC alone does not capture. Measuring the iDIS can incorporate changes in concen-
tration due to PK variability, changes to dosing regimens, and heterogeneous antibiotic concentrations due to 
granuloma structure and the varying environments where bacteria reside. It also includes e�ects of the immune 
responses occurring with granulomas.

Spatial variation in drug concentration influences iDIS in granulomas. Nonuniform drug dis-
tributions within granulomas arise due to barriers to di�usion that the cellular structure of granulomas 
 creates22–24,32. �e spatial variation in antibiotic concentrations within a granuloma leads to variations in local 
e�ective concentrations, and ultimately antibiotic killing rates and iDIS. �e free drug concentrations available 
to induce bactericidal activity against Mtb are also in�uenced by binding to extracellular matrix as well as par-
titioning into  macrophages44. Hence, we next focused on the contribution of the drug spatial variation to iDIS.

Figure 7 shows the spatial variation of both e�ective drug concentrations and iDIS for each of the four regi-
mens simulated: HRZE, RE, HE and RM. Overall, when antibiotics in a regimen are present in the granuloma 

Figure 4.  Heat map capturing three metrics for 64 di�erent regimens. �e list of regimens is ordered by 
decreasing predicted iDIS (middle row). For each regimen, the  log2(FIC) value (bottom row) and the average 
predicted granuloma sterilization time (top row) are also represented. For predicted iDIS and FIC, blue 
represents synergy, white represents additivity, and red represents antagonism. For sterilization time, blue 
represents shorter sterilization times and red represents longer. Heat maps were made using the ggplot2 package 
in  R39.
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at similar relative concentrations, the in vitro interaction is maintained in vivo. Interactions can also be strong 
in caseated regions of the granuloma, where non-replicating Mtb are typically located. Because iDIS tends to 
be higher in locations that contain more non-replicating Mtb, this may contribute to synergistic combinations 
performing better than antagonistic combinations.

An additional aspect that in�uences the iDIS is the relative contribution of each antibiotic in the combina-
tions (Fig. 7, column 1). Antibiotic combinations that contribute more equally to the e�ective concentration 
deviate more from additivity than combinations of antibiotic concentrations in which contributions are uneven 
(i.e. when one antibiotic has a much higher adjusted concentration than the other antibiotics). Although RE 
has a more synergistic FIC than HRZE, the iDIS against non-replicating Mtb for HRZE is higher than RE, and 
HRZE has better e�cacy than RE. �is is partially due to R and Z contributing to the e�ective concentration 
in the granuloma evenly (R ~ 50% contribution, Z ~ 40% contribution). �e contributions from R and E in RE, 
however, are more disproportionate, with > 90% of the e�ective concentration due to R and < 10% of the e�ec-
tive concentration from E.

A similar situation occurs with the two antagonistic combinations HE and RM. Although RM is predicted to 
be strongly antagonistic, its e�cacy is still average compared across all regimens tested. HE, on the other hand, 
has a less antagonistic FIC, but performs more poorly than RM. When looking at both antibiotic contributions 
for these two regimens and the iDIS against non-replicating Mtb, we see that H accounts for ~ 75% of the e�ective 
concentration and E accounts for ~ 25%. Although not equal contributions, this still allows for an antagonistic 
interaction to occur. With the RM combination, R accounts for almost all of the contribution to the e�ective 
concentration because its levels are higher relative to its own C50 , resulting in almost no antagonistic interaction 
to occur with M, despite the high FIC. For antagonistic combinations, uneven contributions from the di�erent 
antibiotics in the combination can mitigate the e�ect of the antagonistic interaction.

Figure 5.  Comparison of treatment simulations with clinical trial results. �e results for 26 di�erent regimens 
compiled in Bonnet et al.40 are compared to our treatment simulations. �e clinical regimen e�cacy metric 
used is solid culture conversion following 8 weeks of therapy. We compare the con�dence intervals (black) to 
the percent of simulated granulomas that sterilized (lower red bar) or had fewer than 10 CFU a�er 8 weeks of 
therapy (upper red bar, red dot average of error bars) for all 26 regimens (A). Regimens are abbreviated by the 
single antibiotic abbreviation, followed by the dose in mg/kg for that antibiotic, with the doses per week (dpw) 
listed at the end of the regimen abbreviation. FIC is negatively correlated with clinical rank with a weighted 
correlation of − 0.74 (B), and iDIS is positively correlated with clinical rank with a weighted correlation of 0.67 
(C). Each dot represents an individual regimen, its size is linearly scaled by the number of patients treated (B, 
C). Plots were made using the ggplot2 package in  R39.
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Due to this dependence on drug concentrations, the predicted iDIS varies for di�erent doses and regimens of 
the same drug combination (Supplementary Fig. 3). In contrast, the FIC interaction score is �xed for a combina-
tion irrespective of the dosage. As doses vary in vivo, the strength of the synergistic or antagonistic interactions 
can either increase or decrease, depending on the speci�c combination of antibiotics. One common trend is 
less frequent dosing tends to decrease the interaction strength, which we observe for both the HRZE and RE 
combinations.

Plasma clearance rates correlate with in vivo drug interaction score. Even for a given simulated 
granuloma and drug regimen, antibiotic concentrations can vary due to host-to-host PK  variability34. �is 
can also result in changes in iDIS. We picked four di�erent regimens, ranging from synergistic to antagonistic 
(HRZE, RE, HE, RM) to exhaustively explore the impact of various PK parameters. �e plasma clearance rate 
constant for many of the antibiotics in these regimens is signi�cantly correlated with predicted iDIS, particularly 
the clearance rate constants for R, E and M (Table 1). A more detailed analysis of correlations between plasma 
PK parameters and iDIS is shown in Supplementary Table 3. �e R clearance rate constant is strongly correlated 
with iDIS, with coe�cients between 0.8 and 0.9, depending on the regimen. �e correlation coe�cients for the 
clearance rate constant for R are positive for synergistic combinations (HRZE, RE), and negative for antagonistic 
combinations (RM). Because iDIS values that deviate further from 1 imply a stronger interaction, this means 
that faster clearance rates for R tend to increase the interaction strength. �e opposite is true for the clearance 
rate constant of E. �e correlation coe�cient between the clearance rate constant for E and predicted iDIS is 
negative in synergistic combinations (HRZE, RE), and positive in the antagonistic combination (HE). While 
this may seem counterintuitive, it supports the idea that the iDIS value is dependent on relative in vivo drug 
concentrations. Faster clearance rates generally result in lower concentrations in plasma, and consequently lower 
concentrations in the granuloma. Because R tends to contribute more to e�ective concentrations than other 
antibiotics, increasing the clearance rates for R will strengthen the interaction by decreasing R concentration 
and allow for more similar antibiotic contributions. For E, whose contribution to e�ective concentration tends 
to be lower, increasing clearance rates result in lower E concentrations and contributions, and scenarios of even 
more lopsided contributions and less interaction. Relative drug concentrations inside the granuloma a�ect the 
strength of drug interactions, and these strong correlations indicate that interactions may be stronger or weaker 
for certain combinations depending on an individual’s  PK34.

We see a similar trend to plasma PK when analyzing the impact that lung tissue PK parameters have on iDIS. 
Sensitivity analysis on the tissue PK parameters for di�erent regimens shows that some have a positive correlation 
and some have a negative correlation with iDIS. Tissue PK parameters that lead to more similar concentrations 
and contributions of antibiotics results in stronger interactions (Supplementary Table 4). As an example, for the 
RE regimen, vascular permeability for R is negatively correlated with iDIS of the regimen while vascular perme-
ability for E is positively correlated.

Figure 6.  INDIGO-MTB-GranSim compared with clinical data. Comparison and validation of treatment 
simulations with clinical trial results for 26 di�erent regimens compiled in Bonnet et al.40. Predictions from 
GranSim simulations for 26 drug regimens correlate with clinical outcomes. �e simulation rank, ranked 
by percentage of sterilized granulomas a�er 8 weeks, and clinical rank, ranked by clinically reported culture 
conversion, have a weighted correlation of 0.72, weighted by the number of patients treated with each regimen. 
Plots were made using the ggplot2 package in  R39.
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Discussion
�ere is an urgent need for multi-drug regimens to treat TB, the world’s deadliest disease. In particular, under-
standing the role of synergistic or antagonistic interactions between anti-TB drugs in vivo may provide a more 
rational approach to choosing novel combinations that have greater clinical e�cacy. However, measuring drug 
interactions in vivo is challenging due to the limited throughput, cost, and time involved in testing drugs in 
model organisms. In this study, we introduce a computational pipeline that can simulate in vivo interactions 
by using datasets derived from individual drug-response transcriptomes and PK/PD, thereby greatly reducing 
cost and time. Our approach integrates interaction scores of combinations of antibiotics into a computational 
model that simulates drug delivery into the lung, spatial concentrations of drugs and pharmacodynamic e�ects 
within TB granulomas.

To evaluate drug regimens, we introduce a new metric called the in vivo drug interaction score (iDIS) that 
is dynamic and unique for each mycobacterium based on its location and metabolic state (i.e. replicating/non-
replicating) within a granuloma. Unlike the in vitro drug interaction scores derived from checkerboard assays 

Figure 7.  Contribution of individual antibiotics to the in vivo drug interaction score (iDIS). Values of iDIS 
are associated with the proportion of each antibiotic’s contribution to e�ective concentration. Four di�erent 
regimens are shown: HRZE (�rst row), RE (second row), HE (third row), and RM (fourth row). Bar plots 
indicate the relative contribution of each antibiotic in the regimen to the e�ective concentration on average 
throughout the granuloma. Heat maps for each drug combination show the e�ective concentration normalized 
to the  C50 for non-replicating Mtb (second column). �e calculated iDIS value for non-replicating Mtb is shown 
in the fourth column, with the color bar representing the iDIS value: blue represents synergy, white represents 
additivity, and red represents antagonism. All heat maps re�ect conditions 6 h a�er dosage with each antibiotic 
in the corresponding regimen. Heat maps and plots were made using MATLAB (R2019a)45.

Table 1.  Signi�cant antibiotic clearance rate constants in determining iDIS. �e relationship between 
clearance rate constants for di�erent antibiotics is correlated with iDIS with non-replicating Mtb during the 
�rst dose of therapy. Table shows PRCC values relating the clearance rate constants to the predicted iDIS 
for the regimens HRZE, RE, HE and RM. �e values shown represent PRCC values that are signi�cant with 
p < 0.01.

Regimen

PRCC values for predicted iDIS

R clearance E clearance M clearance

HRZE 0.89 − 0.56 N/A

RE 0.90 − 0.92 N/A

HE N/A 0.88 N/A

RM − 0.83 N/A 0.99
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and INDIGO-MTB, which are �xed for given drug combinations, the in vivo score can provide a more nuanced 
impact of drug interactions on pathogen clearance. �is allowed us to compare various drug regimens and rank 
them based on their in vivo interactions. We found that our ranking of regimens is highly concordant with clini-
cally observed e�cacy of various drug  combinations40. In Fig. 5, we compare the percentage of simulated granu-
lomas that were sterilized a�er 8 weeks of treatment for 26 di�erent antibiotic regimens, and compared those 
results to 8-week sputum culture conversion from clinical trials of those same regimens. For regimens where 
our predicted sterilization does not agree with clinical results, we tend to overpredict sterilization. �is could 
partially be explained by the fact that while we compare sterilization at the granuloma scale, culture conversion 
re�ects a host-level outcome that involves treating and sterilizing multiple granulomas and lesions. Additionally, 
accounting for di�erent drug–drug interactions depending on a heterogeneous granuloma environment (such 
as in the caseum) could further improve our ability to accurately predict clinical  results46.

When simulating all regimens considered in this study, the FIC alone does correlate with the simulated and 
predicted outcomes from our model. However, there are a handful of regimens that do not �t the trend. Meas-
uring the iDIS, which evaluates the relative increase or decrease in killing rate due to the interaction within the 
complex granuloma environment, provides a complementary measure of regimen outcome. �is is because the 
e�ect that drug interactions have on killing rate constants is dependent on the balance of contributions from 
each single antibiotic. Combinations with highly synergistic or antagonistic FIC values may be closer to additive 
if only one antibiotic is present in su�cient quantities within a granuloma.

Our analysis of various drug regimens revealed ways of amplifying synergy as well mechanisms to mitigate 
antagonism in vivo. We found that some combinations with in vitro antagonism perform well clinically due to the 
distinct spatial distribution of the underlying drugs. Antagonistic interactions can be mitigated if the drugs have 
uneven distributions and e�ective concentrations or through less frequent dosing. Overall, we �nd that combi-
nations with strong in vitro synergy remain synergistic or additive in vivo. Hence screening for synergy in vitro 
can be a useful strategy for identifying regimens with strong in vivo activity. In a minority of cases, this synergy 
may not be achieved in vivo; nevertheless, synergistic combinations generally outperform antagonistic regimens.

HRZE stands out among the regimens we tested because it has a synergistic interaction (FIC) which is main-
tained in vivo (iDIS) due to the similar penetration and distribution of the four drugs in the regimen. In contrast, 
regimens such as RE and RM have dissimilar drug distributions and their in vitro interactions are not observed 
in vivo. �e RE regimen has a synergistic FIC but the dissimilar drug distributions lead to a reduced iDIS. Simi-
larly, RM has a strongly antagonistic FIC but the dissimilar drug distributions lead to reduced antagonism in vivo.

�e clinical relationship between plasma PK and regimen e�cacy is well established, and can impact the 
treatment outcomes and the development of  resistance38,47,48. Measuring PK parameters in patients can help to 
predict sterilization  rates49. While the impact of PK on individual drugs can be straightforward to interpret, the 
relationship between measured PK and e�cacy can be complex for multidrug regimens. Our study suggests that 
changes in interactions likely occur in vivo due to PK variability. Studies that involve measuring variability in 
PK and the e�ect on drug interactions could be the subject of future research.

As part of this study, we wanted to determine which combinations of antibiotics are predicted to have strong 
synergy and antagonism, as well as which combinations are predicted to have high e�cacy. We screened 64 
combinations and regimens of front-line regimens (HRZE) along with M and L. �e clinically used HRZE regi-
men does outperform other screened combinations, which highlights the need for new drugs to achieve the aim 
of improving TB treatment. Based on the INDIGO-MTB model, we previously identi�ed drug combinations 
involving new TB drugs such as bedaquiline that have better synergy than HRZE. Given the concordance between 
INDIGO-MTB FIC and various clinical metrics observed in this study, the synergistic combinations identi�ed by 
INDIGO-MTB may be promising leads for further optimization using GranSim for reducing treatment  time18.

A limitation to our computational model is that the same FIC value is applied to all Mtb within a simula-
tion, regardless of its environment or metabolic state. It is likely that the strength of a given interaction, or even 
whether it is synergistic or antagonistic, is dependent on the bacterium’s microenvironment in the  granuloma46,50. 
Additionally, these simulations represent treatment of primary granulomas in TB disease, and do not necessar-
ily re�ect the true and enormous complexity of granuloma lesions that occur during TB disease. Further, as the 
simulations are at the granuloma scale, relating the outcomes measured by the simulation to clinical outcomes is 
di�cult. �e �nal limitation is that we only considered combinations of six di�erent antibiotics. �ere are many 
other antibiotics in use or in development for use to treat TB. Expanding our ability to accurately simulate the 
PK/PD of additional antibiotics will greatly increase our ability to answer how important drug interactions are 
in determining regimen e�cacy.

In summary, our study addresses an important gap in current methods for identifying promising drug com-
binations for TB treatment by presenting a new pipeline for evaluating interactions between drugs in vivo. 
�is pipeline provides an additional metric with which to evaluate novel combinations of antibiotics, explain 
mechanisms of failed regimens, and assist in optimization regimens as we expand our list of potential antibiotics.

Methods
INDIGO‑MTB model for predicting drug interactions. INDIGO-MTB identi�es interactions between 
drugs in a combination regimen by utilizing pathogen transcriptomics in response to individual drugs. INDIGO-
MTB was built using drug response transcriptome data for 164 drugs, including well known drugs rifampicin, 
isoniazid, streptomycin, and several  �uoroquinolones8. �e model �rst generates a drug–gene association net-
work using the transcriptomics data, and the machine-learning algorithm, Random Forest. �e algorithm iden-
ti�es genes that are predictive of drug interaction outcomes using a training data set of known  interactions27. 
�is trained network model is used to predict interactions for novel drug combinations and provides the Frac-
tional Inhibitory Concentration (FIC) as an output (Fig. 1a). �e model can identify all possible 2-way, 3-way, 
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4-way and 5-way synergistic, additive and antagonistic drug interactions a�er in silico screening of more than 1 
million potential drug combinations. INDIGO-MTB predicted FIC scores to be integrated within GranSim were 
generated for all possible combinations of the �rst line drugs and two �uoroquinolones (H, R, Z, E, Levo�oxacin 
(L) and Moxi�oxacin (M)), as listed in Supplementary Table 1.

GranSim model of granuloma formation and function. GranSim is a well-established agent-based 
model of granuloma formation and  function24,28–31. It simulates the spatial heterogeneity and bacterial burden of 
primary TB lesions by simulating the immune response to infection with Mtb in a computational grid represent-
ing a small section of lung tissue, with formation of a granuloma as an emergent behavior (Fig. 1b,c). �e simula-
tion begins with a single infected macrophage at the center of the grid, and macrophages and T cells are recruited 
to the site of infection and interact with each other according to immunology-based rules that describe cell 
movement, activation, cytokine secretion, and killing of bacteria (for a full list of rules see referenced  webpage51). 
Bacteria are tracked individually and modeled as individual agents in the simulation, existing in three distinct 
subpopulations: intracellular (inside macrophages), extracellular replicating and extracellular non-replicating. 
�e e�ective growth rates of extracellular bacteria are modulated by the number of bacteria in a given grid 
compartment. �e growth rate becomes zero when the carrying capacity for that compartment is reached to 
re�ect the relative availability of nutrients and physical space  limitations30. Growth rates of extracellular Mtb are 
also slowed by the presence of caseum (dead cell debris), as a way to estimate the e�ect of lack of  oxygen52. �e 
parameter values describing rules and interactions are based on previous GranSim studies and evidence from 
experimental literature and datasets on non-human  primates24,34,53.

Simulation of antibiotic delivery and concentrations within granuloma. We simulate antibiotic 
delivery within the GranSim computational framework as previously  described24,32,34. Brie�y, a plasma PK model 
simulates absorption into plasma following an oral dose, exchange with peripheral tissue, and �rst-order elimi-
nation from plasma. Flux of antibiotics into the simulation grid is based on the local gradient between the aver-
age drug concentration surrounding vascular sources on the agent-based grid and the plasma concentration. 
Here we use a 200 × 200 grid representing a 4 mm × 4 mm lung section. �e �ux is calculated over time as plasma 
concentrations change within and around each vascular source and allows for delivery or subtraction from the 
computational lung environment, depending on the direction of the concentration gradient. Once on the grid, 
antibiotics di�use, bind to extracellular material (epithelial tissue and caseum), partition within macrophages 
and degrade (Fig. 1b,c). Based on relative binding and partitioning rates into macrophages, concentrations of 
intracellular and bound antibiotic are modeled at pseudo-steady state for isoniazid, rifampin, ethambutol and 
pyrazinamide. �e drugs moxi�oxacin and levo�oxacin exhibit slower rates of binding and partitioning relative 
to di�usion. Hence the dynamic binding and partitioning of these drugs are modeled using ordinary di�erential 
 equations32. We determined plasma PK parameters by calibration to human data as previously  described22,34,54. 
We calibrated tissue PK parameters based on concentrations in rabbit or human  lesions22,32,34,44. Parameters are 
listed in Supplementary Tables 5 and 6.

Calculation of antibiotic killing rate and in vivo drug interaction. We calculate the antibiotic kill-
ing rate constant using an Emax model (Hill equation) as we have done  previously24, with parameters listed in 
Supplementary Table 7. �is antibiotic killing rate constant is evaluated at each time step for every Mtb in the 
simulation based on the local grid concentrations as they change over time. �e antibiotic killing rate constant 
( k ) is evaluated as

where Emax is the maximal killing rate constant, C50 is the concentration at which half maximal killing is achieved, 
h is the Hill coe�cient, and Ceff  is the e�ective concentration of the antibiotic (or combination of antibiotics). To 
re�ect each antibiotic’s unique levels of activity against di�erent sub-populations of bacteria, the PD parameters 
C50,Emax and h vary depending on the location of the bacteria within the granuloma (intracellular, extracellular 
replicating, or extracellular non-replicating).�e relationship between a combination of drug concentrations and 
pharmacodynamic e�ect (such as killing and inhibition) is described using the Loewe Additivity  model16,55. In 
the Loewe additivity model, a simply additive interaction between two antibiotics is described by

where ICx,1 and ICx,2 are the inhibitory concentrations of drugs 1 and 2 that achieve x% inhibition on their own, 
and C1 and C2 are the concentrations that achieve the same level of inhibition in combination. We can convert the 
concentration of drug 2 to an equipotent concentration of drug 1, shown in Fig. 8 and denoted C2,adj . �is gives 
the concentration of drug 1 that results in the same antibiotic killing rate constant as the given concentration of 
drug 2 ( C2 ), which we de�ne as the adjusted concentration for drug 2 ( C2,adj)

(1)k(t) = Emax
Ceff (t)h

Ceff (t)h + C50
h

(2)
C1

ICx,1

+
C2

ICx,2

= 1

(3)C1 = C2,adj =
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h1C2

h2
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�
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�

− C2
h2
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�e corresponding inhibitory concentrations for a given x% inhibition for drugs 1 and 2 are now both equiva-
lent to ICx,1 , because both C1 and C2,adj are expressed in terms of concentration of drug 1. Substituting C2,adj for 
C2 and ICx,2 for ICx,1 , Equation (2) can be rewritten as

If there are three or more drugs under consideration, we de�ne this sum of concentrations as the e�ective 
concentration ( Ceff  ) of a combination of n antibiotics:

We de�ne synergy or antagonism between two or more drugs based on deviations from simple additivity, as 
assumed above. �is deviation is represented using the Fractional Inhibitory Concentration (FIC)56:

where Co represents the observed combined drug concentration to yield a given level of inhibition, and Ce is 
the expected combined drug concentration to yield the same level of inhibition if the two drugs or more drugs 
were simply  additive16. �e FIC measures changes in potency, i.e. how much drug is needed to produce a certain 
pharmacodynamic e�ect. Based on the value of FIC, synergistic or antagonistic combinations result in a lower 
or higher e�ective drug concentration to achieve the same level of killing. To incorporate drug interactions into 
our model, we assume the e�ective concentration for a combination of n drugs is adjusted from Eq. (5) based 
on the FIC value:

Equation (7) adjusts e�ective concentration so that synergistic combinations (FIC < 1) result in a higher e�ec-
tive concentration, and antagonistic combinations (FIC > 1) result in a lower e�ective concentration. Using our 
de�ned e�ective concentration, we substitute Eq. (7) into Eq. (1) to evaluate the antibiotic killing rate constant 
for combinations of antibiotics while also accounting for drug interactions. Our drug interaction model and 
e�ective concentration formulae accurately recreate in vitro drug interaction behavior observed in checkerboard 
assays (Fig. 8)16.

(4)C1 + C2,adj = ICx,1.

(5)Ceff =

∑n

i=1
Ci,adj

(6)FIC =

Co

Ce

(7)Ceff =

(

∑n

i=1
Ci,adj

FIC
)1/FIC

Figure 8.  Graphical representation of computing the adjusted concentration and killing rate constant (Eqs. 1 
and 3). �e adjusted concentration of a drug is found by computing the equipotent concentration for another 
drug. �e plot of two Hill curves for three di�erent drugs (drug 1, orange; drug 2, blue) shows the relationship 
between concentrations of the two antibiotics and their adjusted concentration (A). �e e�ective concentration, 
evaluated as the sum of the adjusted concentrations, determines the antibiotic killing rate constant. Antibiotic 
killing rate constant contours show the behavior of the drug interaction model for a combination of two 
theoretical drugs. Drug 1 has a c50 of 1 mg/L,  Emax of 0.02 1/s, and a Hill coe�cient of 1. Drug 2 has a c50 of 
2 mg/L,  Emax of 0.01 1/s, and a Hill coe�cient of 1. When the two drugs have an FIC of 1.0 (B), 1.5 (C), or 0.6 
(D), the contours show the characteristic straight line or curved contours characteristic of checkerboard assays 
for additive, antagonistic, or synergistic combinations. A sham combination of Drug 1 (E) results in a simply 
additive case. Contour plots were made using MATLAB (R2019a)45.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5643  | https://doi.org/10.1038/s41598-021-84827-0

www.nature.com/scientificreports/

To evaluate the impact that each drug interaction has on the calculated killing rate constant (Eq. 1) for a given 
combination of antibiotics in our in vivo simulation, we de�ne an in vivo Drug Interaction Score (iDIS). �e iDIS 
is the ratio of the bacterial killing rate constant with a predicted FIC to the killing rate constant if FIC was equal 
to 1, i.e. no or additive drug interactions. �is allows us to quantify the impact that drug interactions have on 
bacterial killing for each individual Mtb at each time step during simulated treatment.

Antibiotic treatment simulations and calculation of regimen efficacy. To simulate treatment with 
di�erent antibiotic combinations, we �rst created an in silico granuloma library to generate a set of granulomas. 
Each library consists of 500 granulomas simulations, generated from 100 parameter sets sampled with Latin 
Hypercube Sampling (LHS), and each parameter set was replicated �ve  times57,58. Supplementary Table 2 lists the 
parameters varied and their ranges, which have been established in previous  work24,34. Parameter ranges capture 
natural variability in the immune response and lung environment, such as di�erences in cellular recruitment and 
immune cell activation. In addition, replicating simulations with the same parameter set incorporates variability 
due to stochasticity in the simulations. Granulomas are simulated for 300 days in the absence of antibiotics. At 
day 300, a random sample of 100 unsterilized granulomas is selected from the relevant library for treatment. �e 
prescribed regimens are simulated for 180 days or until the granuloma is sterilized. See Supplementary Table 1 
for the full list of regimens tested.

We evaluate three metrics from our simulations to assess the e�cacy of each regimen tested: log decrease 
in CFU per day, percent of simulated granulomas that are sterilized a�er 8 weeks of treatment (sterilization 
percent), and average time at which those granulomas become sterile (sterilization time). For each regimen, 100 
granulomas are simulated and results from those simulations are used to calculate three outcomes measures: 
simulated log decrease in CFU per day, sterilization percent, and sterilization time.

Comparison to clinical trials. To validate our model results, we compared our treatment simulation out-
comes to Phase IIb clinical trial  data40. We compared the clinical datasets outcomes for each regimen with our 
simulated granuloma sterilizations a�er 8 weeks of treatment. We used the percent of granulomas that are com-
pletely sterilized at 8 weeks as a lower bound estimate. Our upper bound estimate is the percentage of granulomas 
with fewer than 10 CFU a�er 8 weeks. We chose this value as these granulomas with low bacterial load would 
not be detectable in sputum. Additionally, we compared the rank of clinically tested regimens, ranked by sputum 
conversion, to the rank of regimens based on simulation results. Simulated regimen rankings were ranked by 
average sterilization time, FIC, and average iDIS for non-replicating Mtb. Further, we compared our predicted 
treatment sterilization times for �uoroquinolone-containing regimens with clinical endpoints (up to 6 months) 
from recent phase III clinical trials that include �uoroquinolones for treating drug-susceptible  TB41–43.

Plasma and tissue PK sensitivity analysis on interaction strength. We performed a sensitivity 
analysis to evaluate how PK parameters impact the predicted iDIS for regimens with di�erent levels of synergy. 
For four regimens (HRZE, RE, HE, RM), we selected a single granuloma to simulate treatment for 1 day to 
measure an iDIS. For each regimen, we simulated the granuloma 500 times with di�erent plasma PK parameters 
sampled using LHS. For each plasma PK parameter set, we calculated the average iDIS over the �rst day of dos-
ing over all non-replicating Mtb. We repeated this process for sensitivity analysis on tissue PK parameter, simu-
lating the granuloma 500 times with di�erent tissue PK parameters sampled using LHS. Finally, we evaluated the 
partial ranked correlation coe�cient (PRCC) between each PK parameter and the predicted iDIS to determine 
the impact each parameter has on the drug  interactions58,59.
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